
1.2 Smooth manifolds
Given coordinate charts (Ui, ϕi) and (Uj , ϕj) on a topological manifold,
we can compare them along the intersection Uij = Ui ∩ Uj , by forming
the “gluing map”

ϕj ◦ ϕ−1
i |ϕi(Uij ) : ϕi(Uij) −→ ϕj(Uij). (12)

This is a homeomorphism, since it is a composition of homeomorphisms.
In this sense, topological manifolds are glued together by homeomor-
phisms.

This means that a given function on the manifold may happen to be
differentiable in one chart but not in another, if the gluing map between
the charts is not smooth – there is no way to make sense of calculus on
topological manifolds. This is why we introduce smooth manifolds, where
the gluing maps are smooth.
Remark 1.18 (Aside on smooth maps of vector spaces). Let U ⊂ V be
an open set in a finite-dimensional vector space, and let f : U −→W be a
function with values in another vector spaceW . We say f is differentiable
at p ∈ U if there is a linear map Df(p) : V −→W which approximates f
near p, meaning that

lim
x→0
x 6=0

||f(p+ x)− f(p)−Df(p)(x)||
||x|| = 0. (13)

Notice that Df(p) is uniquely characterized by the above property.
We have implicitly chosen inner products, and hence norms, on V and

W in the above definition, though the differentiability of f is independent
of this choice, since all norms are equivalent in finite dimensions. This is
no longer true for infinite-dimensional vector spaces, where the norm or
topology must be clearly specified andDf(p) is required to be a continuous
linear map. Most of what we do in this course can be developed in the
setting of Banach spaces, i.e. complete normed vector spaces.

A basis for V has a corresponding dual basis (x1, . . . , xn) of linear
functions on V , and we call these “coordinates”. Similarly, let (y1, . . . , ym)
be coordinates on W . Then the vector-valued function f has m scalar
components fj = yj ◦ f , and then the linear map Df(p) may be written,
relative to the chosen bases for V,W , as an m × n matrix, called the
Jacobian matrix of f at p.

Df(p) =


∂f1
∂x1

· · · ∂f1
∂xn

...
...

∂fm
∂x1

· · · ∂fm
∂xn

 (14)

We say that f is differentiable in U when it is differentiable at all p ∈ U ,
and we say it is continuously differentiable when

Df : U −→ Hom(V,W ) (15)

is continuous. The vector space of continuously differentiable functions
on U with values in W is called C1(U,W ).
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Notice that the first derivative Df is itself a map from U to a vector
space Hom(V,W ), so if its derivative exists, we obtain a map

D2f : U −→ Hom(V,Hom(V,W )), (16)

and so on. The vector space of k times continuously differentiable func-
tions on U with values in W is called Ck(U,W ). We are most interested
in C∞ or “smooth” maps, all of whose derivatives exist; the space of these
is denoted C∞(U,W ), and so we have

C∞(U,W ) =
⋂
k

Ck(U,W ). (17)

Note: for a C2 function, D2f actually has values in a smaller subspace
of V ∗⊗V ∗⊗W , namely in Sym2(V ∗)⊗W , since “mixed partials are equal”.
Definition 1.19. A smooth manifold is a topological manifold equipped
with an equivalence class of smooth atlases, as explained next.
Definition 1.20. An atlas A = {(Ui, ϕi)} for a topological manifold is
called smooth when all gluing maps

ϕj ◦ ϕ−1
i |ϕi(Uij ) : ϕi(Uij) −→ ϕj(Uij) (18)

are smooth maps, i.e. lie in C∞(ϕi(Uij),Rn). Two atlases A,A′ are
equivalent if A ∪A′ is itself a smooth atlas.
Remark 1.21. Instead of requiring an atlas to be smooth, we could ask
for it to be Ck, or real-analytic, or even holomorphic (this makes sense for
a 2n-dimensional topological manifold when we identify R2n ∼= Cn). This
is how we define Ck, real-analytic, and complex manifolds, respectively.

We may now verify that all the examples from §1.1 are actually smooth
manifolds:
Example 1.22 (Spheres). The charts for the n-sphere given in Exam-
ple 1.5 form a smooth atlas, since

ϕN ◦ ϕ−1
S : ~z 7→ 1−x0

1+x0
~z = (1−x0)2

|~x|2 ~z = |~z|−2~z (19)

is a smooth map Rn \ {0} → Rn \ {0}, as required.
The Cartesian product of smooth manifolds inherits a natural smooth

structure from taking the Cartesian product of smooth atlases. Hence the
n-torus, for example, equipped with the atlas we described in Example 1.4,
is smooth. Example 1.2 is clearly defining a smooth manifold, since the
restriction of a smooth map to an open set is always smooth.
Example 1.23 (Projective spaces). The charts for projective spaces given
in Example 1.8 form a smooth atlas, since

ϕ1 ◦ ϕ−1
0 (z1, . . . , zn) = (z−1

1 , z−1
1 z2, . . . , z

−1
1 zn), (20)

which is smooth on Rn\{z1 = 0}, as required, and similarly for all ϕi, ϕj .
The two remaining examples were constructed by gluing: the con-

nected sum in Example 1.9 is clearly smooth since φ is a smooth map,
and any topological manifold from Example 1.14 will be endowed with a
natural smooth atlas as long as the gluing maps ϕij are chosen to be C∞.
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1.3 Manifolds with boundary
Manifolds with boundary relate manifolds of different dimension. Since
manifolds are not defined as subsets of another topological space, the
notion of boundary is not the usual one from point set topology. To
introduce boundaries, we change the local model for manifolds to

Hn = {(x1, . . . , xn) ∈ Rn : xn ≥ 0}, (21)

with the induced topology from Rn.
Definition 1.24. A topological manifold with boundary M is a second
countable Hausdorff topological space which is locally homeomorphic to
Hn. Its boundary ∂M is the (n − 1) manifold consisting of all points
mapped to xn = 0 by a chart, and its interior IntM is the set of points
mapped to xn > 0 by some chart. It follows that M = ∂M t IntM .

A smooth structure on such a manifold with boundary is an equivalence
class of smooth atlases, with smoothness as defined below.
Definition 1.25. Let V,W be finite-dimensional vector spaces, as before.
A function f : A −→W from an arbitrary subset A ⊂ V is smooth when
it admits a smooth extension to an open neighbourhood Up ⊂W of every
point p ∈ A.
Example 1.26. The function f(x, y) = y is smooth on H2 but f(x, y) =√
y is not, since its derivatives do not extend to y ≤ 0.

Remark 1.27. If M is an n-manifold with boundary, then IntM is a
usual n-manifold (without boundary). Also, ∂M is an n − 1-manifold
without boundary. This is sometimes phrased as the equation

∂2 = 0. (22)

Example 1.28 (Möbius strip). Consider the quotient of R × [0, 1] by
the identification (x, y) ∼ (x+ 1, 1− y). The result E is a manifold with
boundary. It is also a fiber bundle over S1, via the map π : [(x, y)] 7→ e2πix.
The boundary, ∂E, is isomorphic to S1, so this provides us with our
first example of a non-trivial fiber bundle, since the trivial fiber bundle
S1 × [0, 1] has disconnected boundary.

1.4 Cobordism
Compact (n+1)-Manifolds with boundary provide us with a natural equiv-
alence relation on compact n-manifolds, called cobordism.
Definition 1.29. Compact n-manifoldsM1,M2 are cobordant when there
existsN , a compact n+1-manifold with boundary, such that ∂N is isomor-
phic to the disjoint union M1 tM2. All manifolds cobordant to M form
the cobordism class of M . We say that M is null-cobordant if M = ∂N
for N a compact n+ 1–manifold with boundary.
Remark 1.30. It is important to assume compactness, otherwise all man-
ifolds are null-cobordant, by taking Cartesian product with the noncom-
pact manifold with boundary [0, 1).
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Let Ωn be the set of cobordism classes of compact n-manifolds, includ-
ing the empty set ∅ as a compact n-manifold. Using the disjoint union
operation [M1] + [M2] = [M1 tM2], we see that Ωn is an abelian group
with identity [∅].

The direct sum Ω• = ⊕n≥0Ωn is then endowed with another operation,

[M1] · [M2] = [M1 ×M2], (23)

rendering Ω• into a commutative ring, called the cobordism ring. It has
a multiplicative unit [∗], the class of the 0-manifold consisting of a single
point. It is also graded by dimension.
Proposition 1.31. The cobordism ring is 2-torsion, i.e. x+ x = 0 ∀x.

Proof. For any manifold M , the manifold with boundary M × [0, 1] has
boundary M tM . Hence [M ] + [M ] = [∅] = 0, as required.

Example 1.32. The n-sphere Sn is null-cobordant (i.e. cobordant to ∅),
since ∂Bn+1(0, 1) ∼= Sn, where Bn+1(0, 1) denotes the unit ball in Rn+1.
Example 1.33. Any oriented compact 2-manifold is null-cobordant: we
may embed it in R3 and the “inside” is a 3-manifold with boundary.

We now state an amazing theorem of Thom, which is a complete de-
scription of the cobordism ring of smooth compact n-manifolds.
Theorem 1.34. The cobordism ring is a (countably generated) polynomial
ring over F2 with generators in every dimension n 6= 2k − 1, i.e.

Ω• = F2[x2, x4, x5, x6, x8, . . .]. (24)

This theorem implies that there are 3 cobordism classes in dimension
4, namely x2

2, x4, and x2
2 + x4. Can you find 4-manifolds representing

these classes? Can you find connected representatives?
Remark 1.35. Dold constructed the family of manifolds

P (m,n) = (Sm × CPn)/((x, y) ∼ (−x, ȳ)),

and showed that the generator xn above is represented by the manifold
P (2r, s2r), where n = 2r(2s+ 1).
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