
1.5 Smooth maps
For topological manifolds M,N of dimension m,n, the natural notion of
morphism from M to N is that of a continuous map. A continuous map
with continuous inverse is then a homeomorphism from M to N , which
is the natural notion of equivalence for topological manifolds. Since the
composition of continuous maps is continuous, we obtain a “category” of
topological manifolds and continuous maps.

A category is a collection of objects C (in our case, topological mani-
folds) and a collection of arrows A (in our case, continuous maps). Each
arrow goes from an object (the source) to another object (the target),
meaning that there are “source” and “target” maps from A to C:
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Also, a category has an identity arrow for each object, given by a map
id : C −→ A (in our case, the identity map of any manifold to itself).
Furthermore, there is an associative composition operation on arrows.

Conventionally, we write the set of arrows from X to X as Hom(X,Y ),
i.e.

Hom(X,Y ) = {a ∈ A : s(a) = X and t(a) = Y }. (26)
Then the associative composition of arrows mentioned above becomes a
map

Hom(X,Y )×Hom(Y,Z)→ Hom(X,Z). (27)
We have described the category of topological manifolds; we now describe
the category of smooth manifolds by defining the notion of a smooth map.
Definition 1.36. A map f : M → N is called smooth when for each chart
(U,ϕ) for M and each chart (V, ψ) for N , the composition ψ ◦ f ◦ ϕ−1 is
a smooth map, i.e. ψ ◦ f ◦ ϕ−1 ∈ C∞(ϕ(U),Rn).

The set of smooth maps (i.e. morphisms) from M to N is denoted
C∞(M,N). A smooth map with a smooth inverse is called a diffeomor-
phism.
Proposition 1.37. If g : L→M and f : M → N are smooth maps, then
so is the composition f ◦ g.

Proof. If charts ϕ, χ, ψ for L,M,N are chosen near p ∈ L, g(p) ∈ M ,
and (fg)(p) ∈ N , then ψ ◦ (f ◦ g) ◦ ϕ−1 = A ◦ B, for A = ψfχ−1 and
B = χgϕ−1 both smooth mappings Rn → Rn. By the chain rule, A ◦ B
is differentiable at p, with derivative Dφ(p)(A ◦B) = (Dχ(g(p))A)(Dφ(p)B)
(matrix multiplication).

Now we have a new category, the category of smooth manifolds and
smooth maps; two manifolds are considered isomorphic when they are
diffeomorphic. In fact, the definitions above carry over, word for word, to
the setting of manifolds with boundary. Hence we have defined another
category, the category of smooth manifolds with boundary.

In defining the arrows for the category of manifolds with boundary,
we may choose to consider all smooth maps, or only those smooth maps
which send the boundary to the boundary, i.e. boundary-preserving maps.
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The operation ∂ of “taking the boundary” sends a manifold with
boundary to a usual manifold. Furthermore, if ψ : M → N is a boundary-
preserving smooth map, then we can “take its boundary” by restricting
it to the boundary, i.e. ∂ψ = ψ|∂M . Since ∂ takes objects to objects and
arrows to arrows in a manner which respects compositions and identity
maps, it is called a “functor” from the category of manifolds with bound-
ary (and boundary-preserving smooth maps) to the category of smooth
manifolds.
Example 1.38. The complex projective line CP 1 is diffeomorphic to the
2-sphere S2: consider the maps f+(x0, x1, x2) = [1 + x0 : x1 + ix2] and
f−(x0, x1, x2) = [x1 − ix2 : 1 − x0]. Since f± is continuous on x0 6= ±1,
and since f− = f+ on |x0| < 1, the pair (f−, f+) defines a continuous map
f : S2 −→ CP 1. To check smoothness, we compute the compositions

ϕ0 ◦ f+ ◦ ϕ−1
N : (y1, y2) 7→ y1 + iy2, (28)

ϕ1 ◦ f− ◦ ϕ−1
S : (y1, y2) 7→ y1 − iy2, (29)

both of which are obviously smooth maps.
Example 1.39. The smooth inclusion j : S1 → C induces a smooth
inclusion j×j of the 2-torus T 2 = S1×S1 into C2. The image of j×j does
not include zero, so we may compose with the projection π : C2 \ {0} →
CP 1 and the diffeomorphism CP 1 → S2, to obtain a smooth map

π ◦ (j × j) : T 2 → S2. (30)

Remark 1.40 (Exotic smooth structures). The topological Poincaré con-
jecture, now proven, states that any topological manifold homotopic to
the n-sphere is in fact homeomorphic to it. We have now seen how to put
a differentiable structure on this n-sphere. Remarkably, there are other
differentiable structures on the n-sphere which are not diffeomorphic to
the standard one we gave; these are called exotic spheres.

Since the connected sum of spheres is homeomorphic to a sphere, and
since the connected sum operation is well-defined as a smooth manifold,
it follows that the connected sum defines a monoid structure on the set of
smooth n-spheres. In fact, Kervaire and Milnor showed that for n 6= 4, the
set of (oriented) diffeomorphism classes of smooth n-spheres forms a finite
abelian group under the connected sum operation. This is not known to
be the case in four dimensions. Kervaire and Milnor also compute the
order of this group, and the first dimension where there is more than one
smooth sphere is n = 7, in which case they show there are 28 smooth
spheres, which we will encounter later on.

The situation for spheres may be contrasted with that for the Eu-
clidean spaces: any differentiable manifold homeomorphic to Rn for n 6= 4
must be diffeomorphic to it. On the other hand, by results of Donaldson,
Freedman, Taubes, and Kirby, we know that there are uncountably many
non-diffeomorphic smooth structures on the topological manifold R4; these
are called fake R4s.
Remark 1.41. The maps α : x 7→ x and β : x 7→ x3 are both homeo-
morphisms from R to R. Each one defines, by itself, a smooth atlas on R.
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These two smooth atlases are not compatible (why?), so they do not de-
fine the same smooth structure on R. Nevertheless, the smooth structures
are equivalent, since there is a diffeomorphism taking one to the other.
What is it?
Example 1.42 (Lie groups). A group is a set G with an associative mul-
tiplication G×G m // G , an identity element e ∈ G, and an inversion
map ι : G −→ G, usually written ι(g) = g−1.

If we endow G with a topology for which G is a topological manifold
and m, ι are continuous maps, then the resulting structure is called a
topological group. If G is a given a smooth structure and m, ι are smooth
maps, the result is a Lie group.

The real line (where m is given by addition), the circle (where m is
given by complex multiplication), and their Cartesian products give simple
but important examples of Lie groups. We have also seen the general
linear group GL(n,R), which is a Lie group since matrix multiplication
and inversion are smooth maps.

Since m : G × G −→ G is a smooth map, we may fix g ∈ G and
define smooth maps Lg : G −→ G and Rg : G −→ G via Lg(h) = gh and
Rg(h) = hg. These are called left multiplication and right multiplication.
Note that the group axioms imply that RgLh = LhRg.

2 The derivative
The derivative of a smooth map is an absolutely central topic in differential
geometry. To make sense of the derivative, however, we must introduce
the notion of tangent vector and, further, the space of all tangent vectors,
known as the tangent bundle. In this section, we describe the tangent
bundle intrinsically, without reference to any embedding of the manifold
in a vector space.

2.1 The tangent bundle
The tangent bundle of an n-manifold M is a 2n-manifold, called TM ,
naturally constructed in terms ofM . As a set, it is fairly easy to describe,
as simply the disjoint union of all tangent spaces. However we must
explain precisely what we mean by the tangent space TpM to p ∈M .
Definition 2.1. Let (U,ϕ), (V, ψ) be coordinate charts around p ∈ M .
Let u ∈ Tϕ(p)ϕ(U) and v ∈ Tψ(p)ψ(V ). Then the triples (U,ϕ, u), (V, ψ, v)
are called equivalent when D(ψ ◦ ϕ−1)(ϕ(p)) : u 7→ v. The chain rule
for derivatives Rn −→ Rn guarantees that this is indeed an equivalence
relation.

The set of equivalence classes of such triples is called the tangent space
to p of M , denoted TpM . It is a real vector space of dimension dimM ,
since both Tϕ(p)ϕ(U) and Tψ(p)ψ(V ) are, and D(ψ ◦ ϕ−1) is a linear iso-
morphism.

As a set, the tangent bundle is defined by

TM =
⊔
p∈M

TpM, (31)
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and it is equipped with a natural surjective map π : TM −→M , which is
simply π(X) = x for X ∈ TxM .

We now give it a manifold structure in a natural way.
Proposition 2.2. For an n-manifold M , the set TM has a natural
topology and smooth structure which make it a 2n-manifold, and make
π : TM −→M a smooth map.

Proof. Any chart (U,ϕ) for M defines a bijection

Tϕ(U) ∼= U × Rn −→ π−1(U) (32)

via (p, v) 7→ (U,ϕ, v). Using this, we induce a smooth manifold structure
on π−1(U), and view the inverse of this map as a chart (π−1(U),Φ) to
ϕ(U)× Rn.

given another chart (V, ψ), we obtain another chart (π−1(V ),Ψ) and
we may compare them via

Ψ ◦ Φ−1 : ϕ(U ∩ V )× Rn −→ ψ(U ∩ V )× Rn, (33)

which is given by (p, u) 7→ ((ψ ◦ϕ−1)(p), D(ψ ◦ϕ−1)pu), which is smooth.
Therefore we obtain a topology and smooth structure on all of TM (by
defining W to be open when W ∩ π−1(U) is open for every U in an atlas
for M ; all that remains is to verify the Hausdorff property, which holds
since points x, y are either in the same chart (in which case it is obvious)
or they can be separated by the given type of charts.

Remark 2.3. This is a more constructive way of looking at the tangent
bundle: We choose a countable, locally finite atlas {(Ui, ϕi)} for M and
glue together Ui × Rn to Uj × Rn via an equivalence

(x, u) ∼ (y, v) ⇔ y = ϕj ◦ ϕ−1
i (x) and v = D(ϕj ◦ ϕ−1

i )xu, (34)

and verify the conditions of the general gluing construction 1.14. The
choice of a different atlas yields a canonically diffeomorphic manifold.
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