
2.2 The derivative
A description of the tangent bundle is not complete without defining the
derivative of a general smooth map of manifolds f : M −→ N . Such a map
may be defined locally in charts (Ui, ϕi) for M and (Vα, ψα) for N as a
collection of vector-valued functions ψα◦f◦ϕ−1

i = fiα : ϕi(Ui) −→ ψα(Vα)
which satisfy

(ψβ ◦ ψ−1
α ) ◦ fiα = fjβ ◦ (ϕj ◦ ϕ−1

i ). (35)
Differentiating, we obtain

D(ψβ ◦ ψ−1
α ) ◦Dfiα = Dfjβ ◦D(ϕj ◦ ϕ−1

i ). (36)

Equation 36 shows that Dfiα and Dfjβ glue together to define a map
TM −→ TN . This map is called the derivative of f and is denoted
Df : TM −→ TN . Sometimes it is called the “push-forward” of vectors
and is denoted f∗. The map fits into the commutative diagram

TM
Df //

π

��

TN

π

��
M

f
// N

(37)

Each fiber π−1(x) = TxM ⊂ TM is a vector space, and the map Df :
TxM −→ Tf(x)N is a linear map. In fact, (f,Df) defines a homomorphism
of vector bundles from TM to TN .

The usual chain rule for derivatives then implies that if f ◦ g = h
as maps of manifolds, then Df ◦ Dg = Dh. As a result, we obtain the
following category-theoretic statement.
Proposition 2.4. The mapping T which assigns to a manifold M its
tangent bundle TM , and which assigns to a map f : M −→ N its deriva-
tive Df : TM −→ TN , is a functor from the category of manifolds and
smooth maps to itself1.

For this reason, the derivative map Df is sometimes called the “tan-
gent mapping” Tf .

2.3 Vector fields
A vector field on an open subset U ⊂ V of a vector space V is what
we usually call a vector-valued function, i.e. a function X : U → V .
If (x1, . . . , xn) is a basis for V ∗, hence a coordinate system for V , then
the constant vector fields dual to this basis are usually denoted in the
following way: (

∂

∂x1
, . . . ,

∂

∂xn

)
. (38)

The reason for this notation is that we may identify a vector v with the
operator of directional derivative in the direction v. We will see later that

1We can also say that it is a functor from manifolds to the category of smooth vector
bundles.
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vector fields may be viewed as derivations on functions. A derivation is
a linear map D from smooth functions to R satisfying the Leibniz rule
D(fg) = fDg + gDf .

The tangent bundle allows us to make sense of the notion of vector
field in a global way. Locally, in a chart (Ui, ϕi), we would say that a
vector field Xi is simply a vector-valued function on Ui, i.e. a function
Xi : ϕ(Ui) −→ Rn. Of course if we had another vector fieldXj on (Uj , ϕj),
then the two would agree as vector fields on the overlap Ui ∩ Uj when
D(ϕj ◦ϕ−1

i ) : Xi 7→ Xj . So, if we specify a collection {Xi ∈ C∞(Ui,Rn)}
which glue together on overlaps, it defines a global vector field.
Definition 2.5. A smooth vector field on the manifold M is a smooth
map X : M −→ TM such that π ◦ X = idM . In words, it is a smooth
assignment of a unique tangent vector to each point in M .

Such maps X are also called cross-sections or simply sections of the
tangent bundle TM , and the set of all such sections is denoted C∞(M,TM)
or, better, Γ∞(M,TM), to distinguish them from all smooth mapsM −→
TM . The space vector fields is also sometimes denoted by X(M).
Example 2.6. From a computational point of view, given an atlas (Ũi, ϕi)
for M , let Ui = ϕi(Ũi) ⊂ Rn and let ϕij = ϕj ◦ ϕ−1

i . Then a global vec-
tor field X ∈ Γ∞(M,TM) is specified by a collection of vector-valued
functions

Xi : Ui −→ Rn, (39)
such that

Dϕij(Xi(x)) = Xj(ϕij(x)) (40)
for all x ∈ ϕi(Ũi ∩ Ũj). For example, if S1 = U0 t U1/ ∼, with U0 = R
and U1 = R, with x ∈ U0\{0} ∼ y ∈ U1\{0} whenever y = x−1, then
ϕ01 : x 7→ x−1 and Dϕ01(x) : v 7→ −x−2v. Then if we define (letting x be
the standard coordinate along R)

X0 = ∂

∂x

X1 = −y2 ∂

∂y
,

we see that this defines a global vector field, which does not vanish in U0
but vanishes to order 2 at a single point in U1. Find the local expression in
these charts for the rotational vector field on S1 given in polar coordinates
by ∂

∂θ
.

Remark 2.7. While a vector v ∈ TpM is mapped to a vector (Df)p(v) ∈
Tf(p)N by the derivative of a map f ∈ C∞(M,N), there is no way, in
general, to transport a vector field X on M to a vector field on N . If f is
invertible, then of course Df ◦X ◦f−1 : N → TN defines a vector field on
N , which can be called f∗X, but if f is not invertible this approach fails.
Definition 2.8. We say that X ∈ X(M) and Y ∈ X(N) are f–related,
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for f ∈ C∞(M,N), when the following diagram commutes

TM
Df // TN

M

X

OO

f
// N

Y

OO .

(41)

2.4 Local structure of smooth maps
In some ways, smooth manifolds are easier to produce or find than general
topological manifolds, because of the fact that smooth maps have linear
approximations. Therefore smooth maps often behave like linear maps of
vector spaces, and we may gain inspiration from vector space construc-
tions (e.g. subspace, kernel, image, cokernel) to produce new examples of
manifolds.

In charts (U,ϕ), (V, ψ) for the smooth manifoldsM,N , a smooth map
f : M −→ N is represented by a smooth map ψ◦f ◦ϕ−1 ∈ C∞(ϕ(U),Rn).
We shall give a general local classification of such maps, based on the
behaviour of the derivative. The fundamental result which provides in-
formation about the map based on its derivative is the inverse function
theorem.
Theorem 2.9 (Inverse function theorem). Let f : (M,p) → (N, q) be a
smooth map of n-dimensional manifolds and suppose that Df(p) : TpM →
TqN is invertible. Then f has a local smooth inverse. That is, there are
neighbourhoods U, V of p, q and a smooth map g : V → U such that
f ◦ g = idV and g ◦ f = idU .

Proof. Without loss of generality, we can take M to be a neighbourhood
of the origin in Rn and N = Rn, and assume that f(0) = 0. We can
also assume Df(p) = Id, since we can replace f by (Df(0))−1 ◦ f (linear
change of variables). We are trying to invert f , so solve the equation
y = f(x) uniquely for x. Define k so that f(x) = x+ k(x). Hence k(x) is
the nonlinear part of f .

The claim is that if y is in a sufficiently small neighbourhood of the
origin, then the map hy : x 7→ y− k(x) is a contraction mapping on some
closed ball; it then has a unique fixed point g(y), and so y−k(g(y)) = g(y),
i.e. g is an inverse for f .

Why is hy a contraction mapping? Note that Dhy(0) = 0 and hence
there is a ball B(0, r) where ||Dhy|| ≤ 1

2 . This then implies (mean value
theorem) that for x, x′ ∈ B(0, r),

||hy(x)− hy(x′)|| ≤ 1
2 ||x− x

′||.

Therefore hy does look like a contraction, we just have to make sure it’s
operating on a complete metric space. Let’s estimate the size of hy(x):

||hy(x)|| ≤ ||hy(x)− hy(0)||+ ||hy(0)|| ≤ 1
2 ||x||+ ||y||.

Therefore by taking y ∈ B(0, r2 ), the map hy is a contraction mapping
on B(0, r). Let g(y) be the unique fixed point of hy guaranteed by the
contraction mapping theorem.
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To see that φ is continuous (and hence f is a homeomorphism), we
compute

||g(y)− g(y′)|| = ||hy(g(y))− hy′ (g(y′))||
≤ ||hy(g(y))− hy(g(y′))||+ ||y − y′||
≤ 1

2 ||g(y)− g(y′)||+ ||y − y′||,

so that we have ||g(y)− g(y′)|| ≤ 2||y − y′||, as required.
Having shown that g is continuous, we can choose an open set U ⊂

B(0, r) and define V = g−1(U) ⊂ B(0, r2 ). Then f ◦ g = idV by the fixed
point property and g ◦ f = idU by the uniqueness of fixed points in the
closed ball, proving that f : U → V is indeed a homeomorphism.

To see that g is differentiable, we guess the derivative (Df)−1 and
compute. Let x = g(y) and x′ = g(y′). For this to make sense we must
have chosen r small enough so that Df is nonsingular on B(0, r), which
is not a problem.

||g(y)− g(y′)− (Df(x))−1(y − y′)|| = ||x− x′ − (Df(x))−1(f(x)− f(x′))||
≤ ||(Df(x))−1||||(Df(x))(x− x′)− (f(x)− f(x′))||.

Now note that ||(Df(x))−1|| is bounded and ||x − x′|| ≤ 2||y − y′|| as
shown before. Dividing by ||y − y′||, taking the limit y → y′, and using
the differentiability of f , we get that g is differentiable, and with derivative
(Df)−1. That is,

Dg = (Df)−1. (42)
Since inversion is C∞, g has as many derivatives as f , hence g is C∞.

This theorem provides us with a local normal form for a smooth map
with Df(p) invertible: we may choose coordinates on sufficiently small
neighbourhoods of p, f(p) so that f is represented by the identity map
Rn −→ Rn.

In fact, the inverse function theorem leads to a normal form theorem
for a more general class of maps:
Theorem 2.10 (Constant rank theorem). Let f : Mm → Nn be a smooth
map such that Df has constant rank k in a neighbourhood of p ∈M . Then
there are charts (U,ϕ) and (V, ψ) containing p, f(p) such that

ψ ◦ f ◦ ϕ−1 : (x1, . . . , xm) 7→ (x1, . . . , xk, 0, . . . , 0). (43)

Proof. Begin by choosing charts so that without loss of generality M is
an open set in Rm and N is Rn.

Since rk Df = k at p, there is a k × k minor of Df(p) with nonzero
determinant. Reorder the coordinates on Rm and Rn so that this minor is
top left, and translate coordinates so that f(0) = 0. label the coordinates
(x1, . . . , xk, y1, . . . ym−k) on the domain and (u1, . . . uk, v1, . . . , vn−k) on
the codomain.

Then we may write f(x, y) = (Q(x, y), R(x, y)), where Q is the pro-
jection to u = (u1, . . . , uk) and R is the projection to v. with ∂Q

∂x
non-

singular. First we wish to put Q into normal form. Consider the map
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φ(x, y) = (Q(x, y), y), which has derivative

Dφ =
(

∂Q
∂x

∂Q
∂y

0 1

)
(44)

As a result we see Dφ(0) is nonsingular and hence there exists a local
inverse φ−1(x, y) = (A(x, y), B(x, y)). Since it’s an inverse this means
(x, y) = φ(φ−1(x, y)) = (Q(A,B), B), which implies that B(x, y) = y.

Then f ◦ φ−1 : (x, y) 7→ (x, S = R(A, y)), and must still be of rank k.
Since its derivative is

D(f ◦ φ−1) =
(

Ik×k 0
∂S
∂x

∂S
∂y

)
(45)

we conclude that ∂S
∂y

= 0, meaning that we have eliminated the y-dependence:

f ◦ φ−1 : (x, y) 7→ (x, S(x)). (46)

We now postcompose by the diffeomorphism σ : (u, v) 7→ (u, v−S(u)), to
obtain

σ ◦ f ◦ φ−1 : (x, y) 7→ (x, 0), (47)
as required.

As we shall see, these theorems have many uses. One of the most
straightforward uses is for defining submanifolds.

There are several ways to define the notion of submanifold. We will
use a definition which works for topological and smooth manifolds, based
on the local model of inclusion of a vector subspace. These are sometimes
called regular or embedded submanifolds.
Definition 2.11. A subspace L ⊂ M of an m-manifold is called a sub-
manifold of codimension k when each point x ∈ L is contained in a chart
(U,ϕ) for M such that

L ∩ U = f−1(0), (48)
where f is the composition of ϕ with the projection Rm → Rk to the
last k coordinates (xm−k+1, . . . , xm). A submanifold of codimension 1 is
usually called a hypersurface.
Proposition 2.12. If f : M −→ N is a smooth map of manifolds, and if
Df(p) has constant rank on M , then for any q ∈ f(M), the inverse image
f−1(q) ⊂M is a regular submanifold.

Proof. Let x ∈ f−1(q). Then there exist charts ψ,ϕ such that ψ◦f ◦ϕ−1 :
(x1, . . . , xm) 7→ (x1, . . . , xk, 0, . . . , 0) and f−1(q) ∩ U = {x1 = · · · = xk =
0}. Hence we obtain that f−1(q) is a codimension k submanifold.

Example 2.13. Let f : Rn −→ R be given by (x1, . . . , xn) 7→
∑

x2
i .

Then Df(x) = (2x1, . . . , 2xn), which has rank 1 at all points in Rn\{0}.
Hence since f−1(q) contains {0} iff q = 0, we see that f−1(q) is a regular
submanifold for all q 6= 0. Exercise: show that this manifold structure is
compatible with that obtained in Example 1.22.

The previous example leads to the following special case.
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Proposition 2.14. If f : M −→ N is a smooth map of manifolds and
Df(p) has rank equal to dimN along f−1(q), then this subset f−1(q) is
an embedded submanifold of M .

Proof. Since the rank is maximal along f−1(q), it must be maximal in an
open neighbourhood U ⊂ M containing f−1(q), and hence f : U −→ N
is of constant rank.

Definition 2.15. If f : M −→ N is a smooth map such that Df(p) is
surjective, then p is called a regular point. Otherwise p is called a critical
point. If all points in the level set f−1(q) are regular points, then q is
called a regular value, otherwise q is called a critical value. In particular,
if f−1(q) = ∅, then q is regular.

It is often useful to highlight two classes of smooth maps; those for
which Df is everywhere injective, or, on the other hand surjective.
Definition 2.16. A smooth map f : M −→ N is called a submersion
when Df(p) is surjective at all points p ∈M , and is called an immersion
when Df(p) is injective at all points p ∈M . If f is an injective immersion
which is a homeomorphism onto its image (when the image is equipped
with subspace topology), then we call f an embedding.
Proposition 2.17. If f : M −→ N is an embedding, then f(M) is a
regular submanifold.

Proof. Let f : M −→ N be an embedding. Then for all m ∈M , we have
charts (U,ϕ), (V, ψ) where ψ◦f◦ϕ−1 : (x1, . . . , xm) 7→ (x1, . . . , xm, 0, . . . , 0).
If f(U) = f(M)∩V , we’re done. To make sure that some other piece ofM
doesn’t get sent into the neighbourhood, use the fact that f(U) is open in
the subspace topology. This means we can find a smaller open set V ′ ⊂ V
such that V ′ ∩ f(M) = f(U). Restricting the coordinates to V ′, we see
that f(M) is cut out by (xm+1, . . . , xn), where n = dimN .

Example 2.18. If ι : M −→ N is an embedding of M into N , then Dι :
TM −→ TN is also an embedding (hence so are Dkι : T kM −→ T kN),
showing that TM is a submanifold of TN .

2.5 Smooth maps between manifolds with bound-
ary
We may also use the constant rank theorem to study manifolds with
boundary.
Proposition 2.19. Let M be a smooth n-manifold and f : M −→ R
a smooth and proper real-valued function, and let a, b, with a < b, be
regular values of f . Then f−1([a, b]) is a cobordism between the closed
n− 1-manifolds f−1(a) and f−1(b).

Proof. The pre-image f−1((a, b)) is an open subset of M and hence a
submanifold. Since p is regular for all p ∈ f−1(a), we may (by the constant
rank theorem) find charts such that f is given near p by the linear map

(x1, . . . , xm) 7→ xm. (49)
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Possibly replacing xm by −xm, we therefore obtain a chart near p for
f−1([a, b]) into Hm, as required. Proceed similarly for p ∈ f−1(b).

Example 2.20. Using f : Rn −→ R given by (x1, . . . , xn) 7→
∑

x2
i ,

this gives a simple proof for the fact that the closed unit ball B(0, 1) =
f−1([−1, 1]) is a manifold with boundary.
Example 2.21. Consider the C∞ function f : R3 −→ R given by
(x, y, z) 7→ x2 + y2 − z2. Both +1 and −1 are regular values for this
map, with pre-images given by 1- and 2-sheeted hyperboloids, respec-
tively. Hence f−1([−1, 1]) is a cobordism between hyperboloids of 1 and 2
sheets. In other words, it defines a cobordism between the disjoint union
of two closed disks and the closed cylinder (each of which has boundary
S1 t S1). Does this cobordism tell us something about the cobordism
class of a connected sum?
Proposition 2.22. Let f : M −→ N be a smooth map from a manifold
with boundary to the manifold N . Suppose that q ∈ N is a regular value
of f and also of f |∂M . Then the pre-image f−1(q) is a submanifold with
boundary2. Furthermore, the boundary of f−1(q) is simply its intersection
with ∂M .

Proof. If p ∈ f−1(q) is not in ∂M , then as before f−1(q) is a submanifold
in a neighbourhood of p. Therefore suppose p ∈ ∂M ∩f−1(q). Pick charts
ϕ,ψ so that ϕ(p) = 0 and ψ(q) = 0, and ψfϕ−1 is a map U ⊂ Hm −→ Rn.
Extend this to a smooth function f̃ defined in an open set Ũ ⊂ Rm
containing U . Shrinking Ũ if necessary, we may assume f̃ is regular on
Ũ . Hence f̃−1(0) is a submanifold of Rm of codimension n.

Now consider the real-valued function π : f̃−1(0) −→ R given by the
restriction of (x1, . . . , xm) 7→ xm. 0 ∈ R must be a regular value of π,
since if not, then the tangent space to f̃−1(0) at 0 would lie completely
in xm = 0, which contradicts the fact that q is a regular point for f |∂M .

Hence, by Proposition 2.19, we have expressed f−1(q), in a neighbour-
hood of p, as a regular submanifold with boundary given by {ϕ−1(x) :
x ∈ f̃−1(0) and π(x) ≥ 0}, as required.

2i.e. locally modeled on the inclusion Hk ⊂ Hn given by (x1, . . . xk) 7→ (0, . . . , 0, x1, . . . xk).
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