3 Transversality

We continue to use the constant rank theorem to produce more manifolds, except now these will be cut out only *locally* by functions. Globally, they are cut out by intersecting with another submanifold. You should think that intersecting with a submanifold locally imposes a number of constraints equal to its codimension.

The problem is that the intersection of submanifolds need not be a submanifold; this is why the condition of transversality is so important it guarantees that intersections are smooth.

Two subspaces $K, L \subset V$ of a vector space V are *transverse* when K + L = V, i.e. every vector in V may be written as a (possibly nonunique) linear combination of vectors in K and L. In this situation one can easily see that dim $V = \dim K + \dim L - \dim K \cap L$, or equivalently

$$\operatorname{codim}(K \cap L) = \operatorname{codim} K + \operatorname{codim} L.$$
(50)

We may apply this to submanifolds as follows:

Definition 3.1. Let $K, L \subset M$ be regular submanifolds such that every point $p \in K \cap L$ satisfies

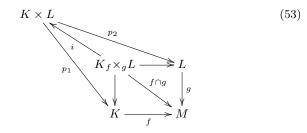
$$T_p K + T_p L = T_p M. ag{51}$$

Then K, L are said to be *transverse* submanifolds and we write $K \uparrow L$.

Proposition 3.2. If $K, L \subset M$ are transverse submanifolds, then $K \cap L$ is either empty, or a submanifold of codimension $\operatorname{codim} K + \operatorname{codim} L$.

Proof. Let $p \in K \cap L$. Then there is a neighbourhood U of p for which $K \cap U = f^{-1}(0)$ for 0 a regular value of a function $f: U \longrightarrow \mathbb{R}^{\operatorname{codim} K}$ and $L \cap U = g^{-1}(0)$ for 0 a regular value of a function $g: L \cap U \longrightarrow \mathbb{R}^{\operatorname{codim} L}$.

Then p must be a regular point for $(f,g): L \cap M \cap U \longrightarrow \mathbb{R}^{\operatorname{codim} K + \operatorname{codim} L}$ since the kernel of its derivative is the intersection ker $Df(p) \cap \ker Dg(p)$, which is exactly $T_pK \cap T_pL$, which has codimension $\operatorname{codim} K + \operatorname{codim} L$ by the transversality assumption, implying D(f,g)(p) is surjective. Therefore $(f,g)|_{\tilde{U}}^{-1}(0,0) = f^{-1}(0) \cap g^{-1}(0) = K \cap L \cap \tilde{U}$ is a submanifold. \Box


Example 3.3 (Exotic spheres). Consider the following intersections in $\mathbb{C}^5 \setminus 0$:

$$S_k^7 = \{z_1^2 + z_2^2 + z_3^2 + z_4^3 + z_5^{6k-1} = 0\} \cap \{|z_1|^2 + |z_2|^2 + |z_3|^2 + |z_4|^2 + |z_5|^2 = 1\}.$$
(52)

This is a transverse intersection, and for k = 1, ..., 28 the intersection is a smooth manifold homeomorphic to S^7 . These exotic 7-spheres were constructed by Brieskorn and represent each of the 28 diffeomorphism classes on S^7 .

We may choose to phrase the previous transversality result in a slightly different way, in terms of the embedding maps k, l for K, L in M. Specifically, we say the maps k, l are transverse in the sense that $\forall a \in K, b \in L$ such that k(a) = l(b) = p, we have $im(Dk(a)) + im(Dl(b)) = T_p M$. The advantage of this approach is that it makes sense for any maps, not necessarily embeddings. **Definition 3.4.** Two maps $f: K \longrightarrow M$, $g: L \longrightarrow M$ of manifolds are called *transverse* when $\operatorname{im}(Df(a)) + \operatorname{im}(Dg(b)) = T_pM$ for all a, b, p such that f(a) = g(b) = p.

Proposition 3.5. If $f : K \longrightarrow M$, $g : L \longrightarrow M$ are transverse smooth maps, then $K_f \times_g L = \{(a, b) \in K \times L : f(a) = g(b)\}$ is naturally a smooth manifold equipped with commuting maps

where i is the inclusion and $f \cap g : (a, b) \mapsto f(a) = g(b)$.

The manifold $K_f \times_g L$ of the previous proposition is called the *fiber* product of K with L over M, and is a generalization of the intersection product. It is often denoted simply by $K \times_M L$, when the maps to M are clear.

Proof. Consider the graphs $\Gamma_f \subset K \times M$ and $\Gamma_g \subset L \times M$. To impose f(k) = g(l), we can take an intersection with the diagonal submanifold

$$\Delta = \{ (k, m, l, m) \in K \times M \times L \times M \}.$$
(54)

Step 1. We show that the intersection $\Gamma = (\Gamma_f \times \Gamma_g) \cap \Delta$ is transverse. Let f(k) = g(l) = m so that $x = (k, m, l, m) \in \Gamma$, and note that

$$T_x(\Gamma_f \times \Gamma_g) = \{((v, Df(v)), (w, Dg(w))), v \in T_k K, w \in T_l L\}$$
(55)

whereas we also have

$$T_x(\Delta) = \{ ((v,m), (w,m)) : v \in T_k K, w \in T_l L, m \in T_p M \}$$
(56)

By transversality of f, g, any tangent vector $m_i \in T_p M$ may be written as $Df(v_i) + Dg(w_i)$ for some (v_i, w_i) , i = 1, 2. In particular, we may decompose a general tangent vector to $M \times M$ as

$$(m_1, m_2) = (Df(v_2), Df(v_2)) + (Dg(w_1), Dg(w_1)) + (Df(v_1 - v_2), Dg(w_2 - w_1)),$$
(57)

leading directly to the transversality of the spaces (55), (56). This shows that Γ is a submanifold of $K \times M \times L \times M$.

Step 2. The projection map $\pi : K \times M \times L \times M \to K \times L$ takes Γ bijectively to $K_f \times_g L$. Since (55) is a graph, it follows that $\pi|_{\Gamma} : \Gamma \to K \times L$ is an injective immersion. Since the projection π is an open map, it also follows that $\pi|_{\Gamma}$ is a homeomorphism onto its image, hence is an embedding. This shows that $K_f \times_g L$ is a submanifold of $K \times L$.

Example 3.6. If $K_1 = M \times Z_1$ and $K_2 = M \times Z_2$, we may view both K_i as "fibering" over M with fibers Z_i . If p_i are the projections to M, then $K_1 \times_M K_2 = M \times Z_1 \times Z_2$, hence the name "fiber product".

Example 3.7. Consider the Hopf map $p: S^3 \longrightarrow S^2$ given by composing the embedding $S^3 \subset \mathbb{C}^2 \setminus \{0\}$ with the projection $\pi: \mathbb{C}^2 \setminus \{0\} \longrightarrow \mathbb{C}P^1 \cong S^2$. Then for any point $q \in S^2$, $p^{-1}(q) \cong S^1$. Since p is a submersion, it is obviously transverse to itself, hence we may form the fiber product

$$S^3 \times_{S^2} S^3$$

which is a smooth 4-manifold equipped with a map $p \cap p$ to S^2 with fibers $(p \cap p)^{-1}(q) \cong S^1 \times S^1$.

These are our first examples of nontrivial fiber bundles, which we shall explore later.

The following result is an exercise: just as we may take the product of a manifold with boundary K with a manifold without boundary L to obtain a manifold with boundary $K \times L$, we have a similar result for fiber products.

Proposition 3.8. Let K be a manifold with boundary where L, M are without boundary. Assume that $f: K \longrightarrow M$ and $g: L \longrightarrow M$ are smooth maps such that both f and ∂f are transverse to g. Then the fiber product $K \times_M L$ is a manifold with boundary equal to $\partial K \times_M L$.

3.1 Stability

Transversality is a stable condition. In other words, if transversality holds, it will continue to hold for any sufficiently small perturbation (of the submanifolds or maps involved). Not only is transversality *stable*, it is actually *generic*, meaning that even if it does not hold, it can be made to hold by a small perturbation. In a sense, stability says that transversal maps form an open set, and genericity says that this open set is dense in the space of maps. To make this precise, we would introduce a topology on the space of maps, something which we leave for another course.

Definition 3.9. We call a smooth map

$$F: M \times [0,1] \to N \tag{58}$$

a smooth homotopy from f_0 to f_1 , where $f_t = F \circ j_t$ and $j_t : M \to M \times [0, 1]$ is the embedding $x \mapsto (x, t)$.

Definition 3.10. A property of a smooth map $f : M \longrightarrow N$ is stable under perturbations when for any smooth homotopy f_t with $f_0 = f$, there exists an $\epsilon > 0$ such that the property holds for all f_t with $t < \epsilon$.

Proposition 3.11. If M is compact, then the property of $f: M \to N$ being an immersion (or submersion) is stable under perturbations.

Proof. If $f_t, t \in [0, 1]$ is a smooth homotopy of the immersion f_0 , then in any chart around the point $p \in M$, the derivative $Df_0(p)$ has a $m \times m$ submatrix with nonvanishing determinant, for $m = \dim M$. By continuity, this $m \times m$ submatrix must have nonvanishing determinant in a neighbourhood around $(p, 0) \in M \times [0, 1]$. We can cover $M \times \{0\}$ by a finite number of such neighbourhoods, since M is compact. Choose ϵ such that $M \times [0, \epsilon)$ is contained in the union of these intervals, giving the result. The proof for submersions is identical. **Corollary 3.12.** If K is compact and $f : K \to M$ is transverse to the closed submanifold $L \subset M$ (this just means that f is transverse to the embedding $\iota : L \to M$), then the transversality is stable under perturbations of f.

Proof. Let $F: K \times [0,1] \to M$ be a homotopy with $f_0 = f$. We show that K has an open cover by neighbourhoods in which f_t is transverse for t in a small interval; we then use compactness to obtain a uniform interval.

First the points which do not intersect L: $F^{-1}(M \setminus L)$ is open in $K \times [0, 1]$ and contains $(K \setminus f^{-1}(L)) \times \{0\}$. So, for each $p \in K \setminus f^{-1}(L)$, there is a neighbourhood $U_p \subset K$ of p and an interval $I_p = [0, \epsilon_p)$ such that $F(U_p \times I_p) \cap L = \emptyset$.

Now, the points which do intersect L: L is a submanifold, so for each $p \in f^{-1}(L)$, we can find a neighbourhood $V \subset M$ containing f(p) and a submersion $\psi: V \to \mathbb{R}^l$ cutting out $L \cap V$. Transversality of f and L is then the statement that ψf is a submersion at p. This implies there is a neighbourhood \tilde{U}_p of (p, 0) in $K \times [0, 1]$ where ψf_t is a submersion. Choose an open subset (containing (p, 0)) of the form $U_p \times I_p$, for $I_p = [0, \epsilon_p)$.

By compactness of K, choose a finite subcover of $\{U_p\}_{p \in K}$; the smallest ϵ_p in the resulting subcover gives the required interval in which f_t remains transverse to L.

Remark 3.13. Transversality of two maps $f: M \to N$, $g: M' \to N$ can be expressed in terms of the transversality of $f \times g: M \times M' \to N \times N$ to the diagonal $\Delta_N \subset N \times N$. So, if M and M' are compact, we get stability for transversality of f, g under perturbations of both f and g.

Remark 3.14. Local diffeomorphism and embedding are also stable properties.