
3 Transversality
We continue to use the constant rank theorem to produce more manifolds,
except now these will be cut out only locally by functions. Globally,
they are cut out by intersecting with another submanifold. You should
think that intersecting with a submanifold locally imposes a number of
constraints equal to its codimension.

The problem is that the intersection of submanifolds need not be a
submanifold; this is why the condition of transversality is so important -
it guarantees that intersections are smooth.

Two subspaces K,L ⊂ V of a vector space V are transverse when
K + L = V , i.e. every vector in V may be written as a (possibly non-
unique) linear combination of vectors in K and L. In this situation one
can easily see that dimV = dimK + dimL− dimK ∩ L, or equivalently

codim(K ∩ L) = codimK + codimL. (50)

We may apply this to submanifolds as follows:
Definition 3.1. Let K,L ⊂ M be regular submanifolds such that every
point p ∈ K ∩ L satisfies

TpK + TpL = TpM. (51)

Then K,L are said to be transverse submanifolds and we write K ∩| L.
Proposition 3.2. If K,L ⊂M are transverse submanifolds, then K ∩ L
is either empty, or a submanifold of codimension codimK + codimL.

Proof. Let p ∈ K ∩ L. Then there is a neighbourhood U of p for which
K ∩U = f−1(0) for 0 a regular value of a function f : U −→ RcodimK and
L ∩ U = g−1(0) for 0 a regular value of a function g : L ∩ U −→ RcodimL.

Then pmust be a regular point for (f, g) : L∩M∩U −→ RcodimK+codimL,
since the kernel of its derivative is the intersection kerDf(p)∩ kerDg(p),
which is exactly TpK ∩TpL, which has codimension codimK+codimL by
the transversality assumption, implyingD(f, g)(p) is surjective. Therefore
(f, g)|−1

Ũ
(0, 0) = f−1(0) ∩ g−1(0) = K ∩ L ∩ Ũ is a submanifold.

Example 3.3 (Exotic spheres). Consider the following intersections in
C5\0:

S7
k = {z2

1 +z2
2 +z2

3 +z3
4 +z6k−1

5 = 0}∩{|z1|2+|z2|2+|z3|2+|z4|2+|z5|2 = 1}.
(52)

This is a transverse intersection, and for k = 1, . . . , 28 the intersection
is a smooth manifold homeomorphic to S7. These exotic 7-spheres were
constructed by Brieskorn and represent each of the 28 diffeomorphism
classes on S7.

We may choose to phrase the previous transversality result in a slightly
different way, in terms of the embedding maps k, l for K,L in M . Specif-
ically, we say the maps k, l are transverse in the sense that ∀a ∈ K, b ∈ L
such that k(a) = l(b) = p, we have im(Dk(a)) + im(Dl(b)) = TpM . The
advantage of this approach is that it makes sense for any maps, not nec-
essarily embeddings.
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Definition 3.4. Two maps f : K −→ M , g : L −→ M of manifolds are
called transverse when im(Df(a)) + im(Dg(b)) = TpM for all a, b, p such
that f(a) = g(b) = p.
Proposition 3.5. If f : K −→ M , g : L −→ M are transverse smooth
maps, then Kf×gL = {(a, b) ∈ K × L : f(a) = g(b)} is naturally a
smooth manifold equipped with commuting maps

K × L
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(53)

where i is the inclusion and f ∩ g : (a, b) 7→ f(a) = g(b).
The manifold Kf×gL of the previous proposition is called the fiber

product of K with L over M , and is a generalization of the intersection
product. It is often denoted simply by K ×M L, when the maps to M are
clear.

Proof. Consider the graphs Γf ⊂ K ×M and Γg ⊂ L ×M . To impose
f(k) = g(l), we can take an intersection with the diagonal submanifold

∆ = {(k,m, l,m) ∈ K ×M × L×M}. (54)

Step 1. We show that the intersection Γ = (Γf × Γg) ∩∆ is transverse.
Let f(k) = g(l) = m so that x = (k,m, l,m) ∈ Γ, and note that

Tx(Γf × Γg) = {((v,Df(v)), (w,Dg(w))), v ∈ TkK, w ∈ TlL} (55)

whereas we also have

Tx(∆) = {((v,m), (w,m)) : v ∈ TkK, w ∈ TlL, m ∈ TpM} (56)

By transversality of f, g, any tangent vector mi ∈ TpM may be written
as Df(vi) + Dg(wi) for some (vi, wi), i = 1, 2. In particular, we may
decompose a general tangent vector to M ×M as

(m1,m2) = (Df(v2), Df(v2))+(Dg(w1), Dg(w1))+(Df(v1−v2), Dg(w2−w1)),
(57)

leading directly to the transversality of the spaces (55), (56). This shows
that Γ is a submanifold of K ×M × L×M .
Step 2. The projection map π : K×M×L×M → K×L takes Γ bijectively
to Kf×gL. Since (55) is a graph, it follows that π|Γ : Γ → K × L is an
injective immersion. Since the projection π is an open map, it also follows
that π|Γ is a homeomorphism onto its image, hence is an embedding. This
shows that Kf×gL is a submanifold of K × L.

Example 3.6. If K1 = M ×Z1 and K2 = M ×Z2, we may view both Ki

as “fibering” over M with fibers Zi. If pi are the projections to M , then
K1 ×M K2 = M × Z1 × Z2, hence the name “fiber product”.
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Example 3.7. Consider the Hopf map p : S3 −→ S2 given by composing
the embedding S3 ⊂ C2\{0} with the projection π : C2\{0} −→ CP 1 ∼=
S2. Then for any point q ∈ S2, p−1(q) ∼= S1. Since p is a submersion, it
is obviously transverse to itself, hence we may form the fiber product

S3 ×S2 S3,

which is a smooth 4-manifold equipped with a map p∩p to S2 with fibers
(p ∩ p)−1(q) ∼= S1 × S1.

These are our first examples of nontrivial fiber bundles, which we shall
explore later.

The following result is an exercise: just as we may take the product
of a manifold with boundary K with a manifold without boundary L to
obtain a manifold with boundary K×L, we have a similar result for fiber
products.
Proposition 3.8. Let K be a manifold with boundary where L,M are
without boundary. Assume that f : K −→M and g : L −→M are smooth
maps such that both f and ∂f are transverse to g. Then the fiber product
K ×M L is a manifold with boundary equal to ∂K ×M L.

3.1 Stability
Transversality is a stable condition. In other words, if transversality holds,
it will continue to hold for any sufficiently small perturbation (of the
submanifolds or maps involved). Not only is transversality stable, it is
actually generic, meaning that even if it does not hold, it can be made to
hold by a small perturbation. In a sense, stability says that transversal
maps form an open set, and genericity says that this open set is dense in
the space of maps. To make this precise, we would introduce a topology
on the space of maps, something which we leave for another course.
Definition 3.9. We call a smooth map

F : M × [0, 1]→ N (58)

a smooth homotopy from f0 to f1, where ft = F◦jt and jt : M →M×[0, 1]
is the embedding x 7→ (x, t).
Definition 3.10. A property of a smooth map f : M −→ N is stable
under perturbations when for any smooth homotopy ft with f0 = f ,
there exists an ε > 0 such that the property holds for all ft with t < ε.
Proposition 3.11. If M is compact, then the property of f : M → N
being an immersion (or submersion) is stable under perturbations.

Proof. If ft, t ∈ [0, 1] is a smooth homotopy of the immersion f0, then in
any chart around the point p ∈M , the derivative Df0(p) has am×m sub-
matrix with nonvanishing determinant, for m = dimM . By continuity,
this m × m submatrix must have nonvanishing determinant in a neigh-
bourhood around (p, 0) ∈ M × [0, 1]. We can cover M × {0} by a finite
number of such neighbourhoods, since M is compact. Choose ε such that
M × [0, ε) is contained in the union of these intervals, giving the result.
The proof for submersions is identical.
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Corollary 3.12. If K is compact and f : K → M is transverse to the
closed submanifold L ⊂M (this just means that f is transverse to the em-
bedding ι : L → M), then the transversality is stable under perturbations
of f .

Proof. Let F : K× [0, 1]→M be a homotopy with f0 = f . We show that
K has an open cover by neighbourhoods in which ft is transverse for t in
a small interval; we then use compactness to obtain a uniform interval.

First the points which do not intersect L: F−1(M \ L) is open in
K × [0, 1] and contains (K \ f−1(L))× {0}. So, for each p ∈ K \ f−1(L),
there is a neighbourhood Up ⊂ K of p and an interval Ip = [0, εp) such
that F (Up × Ip) ∩ L = ∅.

Now, the points which do intersect L: L is a submanifold, so for each
p ∈ f−1(L), we can find a neighbourhood V ⊂ M containing f(p) and a
submersion ψ : V → Rl cutting out L ∩ V . Transversality of f and L is
then the statement that ψf is a submersion at p. This implies there is a
neighbourhood Ũp of (p, 0) inK×[0, 1] where ψft is a submersion. Choose
an open subset (containing (p, 0)) of the form Up × Ip, for Ip = [0, εp).

By compactness of K, choose a finite subcover of {Up}p∈K ; the small-
est εp in the resulting subcover gives the required interval in which ft

remains transverse to L.

Remark 3.13. Transversality of two maps f : M → N , g : M ′ → N can
be expressed in terms of the transversality of f × g : M ×M ′ → N ×N to
the diagonal ∆N ⊂ N×N . So, ifM andM ′ are compact, we get stability
for transversality of f, g under perturbations of both f and g.
Remark 3.14. Local diffeomorphism and embedding are also stable
properties.
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