
3.5 Intersection theory
The previous corollary allows us to make the following definition:
Definition 3.31. Let f : X −→ Y and g : Z −→ Y be smooth maps
with X and Z compact, and dimX+ dimZ = dimY . Then we define the
(mod 2) intersection number of f and g to be

I2(f, g) = #(Xf ′ ×g Z) (mod 2),

where f ′ : X −→ Y is any smooth map smoothly homotopic to f but
transverse to g.
Example 3.32. If C1, C2 are two distinct great circles on S2 then they
have two transverse intersection points, so I2(C1, C2) = 0 in Z2. Of course
we can shrink one of the circles to get a homotopic one which does not
intersect the other at all. This corresponds to the standard cobordism
from two points to the empty set.
Example 3.33. If (e1, e2, e3) is a basis for R3 we can consider the fol-
lowing two embeddings of S1 = R/2πZ into RP 2: ι1 : θ 7→ 〈cos(θ/2)e1 +
sin(θ/2)e2〉 and ι2 : θ 7→ 〈cos(θ/2)e2 + sin(θ/2)e3〉. These two embed-
ded submanifolds intersect transversally in a single point 〈e2〉, and hence
I2(ι1, ι2) = 1 in Z2. As a result, there is no way to deform ιi so that they
intersect transversally in zero points.
Example 3.34. Given a smooth map f : X −→ Y for X compact and
dimY = 2 dimX, we may consider the self-intersection I2(f, f). In the
previous examples we may check I2(C1, C1) = 0 and I2(ι1, ι1) = 1. Any
embedded S1 in an oriented surface has no self-intersection. If the surface
is nonorientable, the self-intersection may be nonzero.
Example 3.35. Let p ∈ S1. Then the identity map Id : S1 −→ S1 is
transverse to the inclusion ι : p −→ S1 with one point of intersection.
Hence the identity map is not (smoothly) homotopic to a constant map,
which would be transverse to ι with zero intersection. Using smooth
approximation, get that Id is not continuously homotopic to a constant
map, and also that S1 is not contractible.
Example 3.36. By the previous argument, any compact manifold is not
contractible.
Example 3.37. Consider SO(3) ∼= RP 3 and let ` ⊂ RP 3 be a line,
diffeomorphic to S1. This line corresponds to a path of rotations about
an axis by θ ∈ [0, π] radians. Let P ⊂ RP 3 be a plane intersecting ` in one
point. Since this is a transverse intersection in a single point, ` cannot
be deformed to a point (which would have zero intersection with P. This
shows that the path of rotations is not homotopic to a constant path.

If ι : θ 7→ ι(θ) is the embedding of S1, then traversing the path twice
via ι′ : θ 7→ ι(2θ), we obtain a map ι′ which is transverse to P but with
two intersection points. Hence it is possible that ι′ may be deformed so
as not to intersect P. Can it be done?
Example 3.38. Consider RP 4 and two transverse hyperplanes P1, P2
each an embedded copy of RP 3. These then intersect in P1 ∩ P2 = RP 2,
and since RP 2 is not null-homotopic, we cannot deform the planes to
remove all intersection.
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Intersection theory also allows us to define the degree of a map modulo
2. The degree measures how many generic preimages there are of a local
diffeomorphism.
Definition 3.39. Let f : M −→ N be a smooth map of manifolds of the
same dimension, and suppose M is compact and N connected. Let p ∈ N
be any point. Then we define deg2(f) = I2(f, p).
Example 3.40. Let f : S1 −→ S1 be given by z 7→ zk. Then deg2(f) = k
(mod 2).
Example 3.41. If p : C∪ {∞} −→ C∪ {∞} is a polynomial of degree k,
then as a map S2 −→ S2 we have deg2(p) = k (mod 2), and hence any
odd polynomial has at least one root. To get the fundamental theorem of
algebra, we must consider oriented cobordism

Even if submanifolds C,C′ do not intersect, it may be that there are
more sophisticated geometrical invariants which cause them to be “inter-
twined” in some way. One example of this is linking number.
Definition 3.42. Suppose that M,N ⊂ Rk+1 are compact embedded
submanifolds with dimM + dimN = k, and let us assume they are trans-
verse, meaning they do not intersect at all.

Then define λ : M ×N −→ Sk via

(x, y) 7→ x− y
|x− y| .

Then we define the (mod 2) linking number of M,N to be deg2(λ).
Example 3.43. Consider the standard Hopf link in R3. Then it is easy to
calculate that deg2(λ) = 1. On the other hand, the standard embedding of
disjoint circles (differing by a translation, say) has deg2(λ) = 0. Hence it is
impossible to deform the circles through embeddings of S1tS1 −→ R3, so
that they are unlinked. Why must we stay within the space of embeddings,
and not allow the circles to intersect?
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3.6 Partitions of unity and Whitney embedding
Partitions of unity allow us to go from local to global, i.e. to build a
global object on a manifold by building it on each open set of a cover,
smoothly tapering each local piece so it is compactly supported in each
open set, and then taking a sum over open sets. This is a very flexible
operation which uses the properties of smooth functions—it will not work
for complex manifolds, for example. Our main example of such a passage
from local to global is to build a global map from a manifold to RN which
is an embedding, a result first proved by Whitney.
Definition 3.44. A collection of subsets {Uα} of the topological space
M is called locally finite when each point x ∈M has a neighbourhood V
intersecting only finitely many of the Uα.
Definition 3.45. A covering {Vα} is a refinement of the covering {Uβ}
when each Vα is contained in some Uβ .
Lemma 3.46. Any open covering {Aα} of a topological manifold has a
countable, locally finite refinement {(Ui, ϕi)} by coordinate charts such
that ϕi(Ui) = B(0, 3) and {Vi = ϕ−1

i (B(0, 1))} is still a covering of M .
We will call such a cover a regular covering. In particular, any topolog-
ical manifold is paracompact (i.e. every open cover has a locally finite
refinement)

Proof. If M is compact, the proof is easy: choosing coordinates around
any point x ∈ M , we can translate and rescale to find a covering of M
by a refinement of the type desired, and choose a finite subcover, which
is obviously locally finite.

For a general manifold, we note that by second countability of M ,
there is a countable basis of coordinate neighbourhoods and each of these
charts is a countable union of open sets Pi with Pi compact. Hence M
has a countable basis {Pi} such that Pi is compact.

Using these, we may define an increasing sequence of compact sets
which exhausts M : let K1 = P 1, and

Ki+1 = P1 ∪ · · · ∪ Pr,

where r > 1 is the first integer with Ki ⊂ P1 ∪ · · · ∪ Pr.
Now note that M is the union of ring-shaped sets Ki\K◦i−1, each

of which is compact. If p ∈ Aα, then p ∈ Ki+1\K◦i for some i. Now
choose a coordinate neighbourhood (Up,α, ϕp,α) with Up,α ⊂ Ki+2\K◦i−1
and ϕp,α(Up,α) = B(0, 3) and define Vp,α = ϕ−1(B(0, 1)).

Letting p, α vary, these neighbourhoods cover the compact setKi+1\K◦i
without leaving the band Ki+2\K◦i−1. Choose a finite subcover Vi,k for
each i. Then (Ui,k, ϕi,k) is the desired locally finite refinement.

Definition 3.47. A smooth partition of unity is a collection of smooth
non-negative functions {fα : M −→ R} such that

i) {suppfα = f−1
α (R\{0})} is locally finite,

ii)
∑

α
fα(x) = 1 ∀x ∈M , hence the name.
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A partition of unity is subordinate to an open cover {Ui} when ∀α, suppfα ⊂
Ui for some i.
Theorem 3.48. Given a regular covering {(Ui, ϕi)} of a manifold, there
exists a partition of unity {fi} subordinate to it with fi > 0 on Vi and
suppfi ⊂ ϕ−1

i (B(0, 2)).

Proof. A bump function is a smooth non-negative real-valued function g̃
on Rn with g̃(x) = 1 for ||x|| ≤ 1 and g̃(x) = 0 for ||x|| ≥ 2. For instance,
take

g̃(x) = h(2− ||x||)
h(2− ||x||) + h(||x||+ 1) ,

for h(t) given by e−1/t for t > 0 and 0 for t < 0.
Having this bump function, we can produce non-negative bump func-

tions on the manifold gi = g̃◦ϕi which have support suppgi ⊂ ϕ−1
i (B(0, 2))

and take the value +1 on Vi. Finally we define our partition of unity via

fi = gi∑
j
gj
, i = 1, 2, . . . .

We now investigate the embedding of arbitrary smooth manifolds as
regular submanifolds of Rk. We shall first show by a straightforward
argument that any smooth manifold may be embedded in some RN for
some sufficiently large N . We will then explain how to cut down on N and
approach the optimalN = 2 dimM which Whitney showed (we shall reach
2 dimM + 1 and possibly at the end of the course, show N = 2 dimM .)
Theorem 3.49 (Compact Whitney embedding in RN ). Any compact
manifold may be embedded in RN for sufficiently large N .

Proof. Let {(Ui ⊃ Vi, ϕi)}ki=1 be a finite regular covering, which exists by
compactness. Choose a partition of unity {f1, . . . , fk} as in Theorem 3.48
and define the following “zoom-in” maps M −→ RdimM :

ϕ̃i(x) =
{
fi(x)ϕi(x) x ∈ Ui,
0 x /∈ Ui.

Then define a map Φ : M −→ Rk(dimM+1) which zooms simultaneously
into all neighbourhoods, with extra information to guarantee injectivity:

Φ(x) = (ϕ̃1(x), . . . , ϕ̃k(x), f1(x), . . . , fk(x)).

Note that Φ(x) = Φ(x′) implies that for some i, fi(x) = fi(x′) 6= 0 and
hence x, x′ ∈ Ui. This then implies that ϕi(x) = ϕi(x′), implying x = x′.
Hence Φ is injective.

We now check that DΦ is injective, which will show that it is an
injective immersion. At any point x the differential sends v ∈ TxM to the
following vector in RdimM × · · · × RdimM × R× · · · × R.

(Df1(v)ϕ1(x)+f1(x)Dϕ1(v), . . . , Dfk(v)ϕk(x)+fk(x)Dϕ1(v), Df1(v), . . . , Dfk(v)

But this vector cannot be zero. Hence we see that Φ is an immersion.

36



But an injective immersion from a compact space must be an embed-
ding: view Φ as a bijection onto its image. We must show that Φ−1 is
continuous, i.e. that Φ takes closed sets to closed sets. If K ⊂M is closed,
it is also compact and hence Φ(K) must be compact, hence closed (since
the target is Hausdorff).

Theorem 3.50 (Compact Whitney embedding in R2n+1). Any compact
n-manifold may be embedded in R2n+1.

Proof. Begin with an embedding Φ : M −→ RN and assume N > 2n+ 1.
We then show that by projecting onto a hyperplane it is possible to obtain
an embedding to RN−1.

A vector v ∈ SN−1 ⊂ RN defines a hyperplane (the orthogonal com-
plement) and let Pv : RN −→ RN−1 be the orthogonal projection to this
hyperplane. We show that the set of v for which Φv = Pv ◦ Φ fails to be
an embedding is a set of measure zero, hence that it is possible to choose
v for which Φv is an embedding.

Φv fails to be an embedding exactly when Φv is not injective or DΦv
is not injective at some point. Let us consider the two failures separately:

If v is in the image of the map β1 : (M ×M)\∆M −→ SN−1 given by

β1(p1, p2) = Φ(p2)− Φ(p1)
||Φ(p2)− Φ(p1)|| ,

then Φv will fail to be injective. Note however that β1 maps a 2n-
dimensional manifold to a N − 1-manifold, and if N > 2n+ 1 then baby
Sard’s theorem implies the image has measure zero.

The immersion condition is a local one, which we may analyze in
a chart (U,ϕ). Φv will fail to be an immersion in U precisely when v
coincides with a vector in the normalized image of D(Φ ◦ ϕ−1) where

Φ ◦ ϕ−1 : ϕ(U) ⊂ Rn −→ RN .

Hence we have a map (letting N(w) = ||w||)

D(Φ ◦ ϕ−1)
N ◦D(Φ ◦ ϕ−1) : U × Sn−1 −→ SN−1.

The image has measure zero as long as 2n− 1 < N − 1, which is certainly
true since 2n < N − 1. Taking union over countably many charts, we see
that immersion fails on a set of measure zero in SN−1.

Hence we see that Φv fails to be an embedding for a set of v ∈ SN−1

of measure zero. Hence we may reduce N all the way to N = 2n+ 1.

Corollary 3.51. We see from the proof that if we do not require injectivity
but only that the manifold be immersed in RN , then we can take N = 2n
instead of 2n+ 1.
Theorem 3.52 (noncompact Whitney embedding in R2n+1). Any smooth
n-manifold may be embedded in R2n+1 (or immersed in R2n).
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Proof. We saw that any manifold may be written as a countable union of
increasing compact sets M = ∪Ki, and that a regular covering {(Ui,k ⊃
Vi,k, ϕi,k)} of M can be chosen so that for fixed i, {Vi,k}k is a finite cover
of Ki+1\K◦i and each Ui,k is contained in Ki+2\K◦i−1.

This means that we can expressM as the union of 3 open setsW0,W1,W2,
where

Wj =
⋃

i≡j(mod3)

(∪kUi,k).

Each of the sets Ri = ∪kUi,k may be injectively immersed in R2n+1 by the
argument for compact manifolds, since they have a finite regular cover.
Call these injective immersions Φi : Ri −→ R2n+1. The image Φi(Ri) is
bounded since all the charts are, by some radius ri. The open sets Ri, i ≡
j(mod3) for fixed j are disjoint, and by translating each Φi, i ≡ j(mod3)
by an appropriate constant, we can ensure that their images in R2n+1 are
disjoint as well.

Let Φ′i = Φi+(2(ri−1 +ri−2 + · · · )+ri)−→e 1. Then Ψj = ∪i≡j(mod3)Φ′i :
Wj −→ R2n+1 is an embedding.

Now that we have injective immersions Ψ0,Ψ1,Ψ2 of W0,W1,W2 in
R2n+1, we may use the original argument for compact manifolds: Take the
partition of unity subordinate to Ui,k and resum it, obtaining a 3-element
partition of unity {f1, f2, f3}, with fj =

∑
i≡j(mod3)

∑
k
fi,k. Then the

map
Ψ = (f1Ψ1, f2Ψ2, f3Ψ3, f1, f2, f3)

is an injective immersion of M into R6n+3. To see that it is in fact an
embedding, note that any closed set C ⊂ M may be written as a union
of closed sets C = C1 ∪C2 ∪C3, where Cj = ∪i≡j(mod3)(C ∩Ki+1\K◦i ) is
a disjoint union of compact sets. Ψ is injective, hence Cj is mapped to a
disjoint union of compact sets, hence a closed set. Then Ψ(C) is a union
of 3 closed sets, hence closed, as required.

Using projection to hyperplanes we may again reduce to R2n+1, but if
we exclude all hyperplanes perpendicular to Span((e1, 0, 0, 0, 0, 0), (0, e1, 0, 0, 0, 0), (0, 0, e1, 0, 0, 0)),
we obtain an injective immersion Ψ′ which is proper, meaning that inverse
images of compact sets are compact. This space of forbidden planes has
measure zero as long as N − 1 > 3, so that we may reduce to 2n + 1 for
n > 1. We leave as an exercise the n = 1 case (or see Bredon for a slightly
different proof).

The fact that the resulting injective immersion Ψ′ is proper implies
that it is an embedding, by the closed map lemma, as follows.

Lemma 3.53 (Closed map lemma for proper maps). Let f : X −→ Y
be a proper continuous map of topological manifolds. Then f is a closed
map.

Proof. Let K ⊂ X be closed; we show that f(K) contains all its limit
points and hence is closed. Let y ∈ Y be a limit point for f(K). Choose
a precompact neighbourhood U of y, so that y is also a limit point of
f(K) ∩ U . Since f is proper, f−1(U) is compact, and hence K ∩ f−1(U)
is compact as well. But then by continuity, f(K ∩ f−1(U)) = f(K) ∩
U is compact, implying it is closed. Hence y ∈ f(K) ∩ U ⊂ f(K), as
required.
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We now use Whitney embedding to prove the existence of tubular
neighbourhoods for submanifolds of RN , a key point in proving genericity
of transversality. Tubular neighbourhoods also exist for submanifolds of
any manifold, but we leave this corollary for the reader.

If Y ⊂ RN is an embedded submanifold, the normal space at y ∈ Y
is defined by NyY = {v ∈ RN : v⊥TyY }. The collection of all normal
spaces of all points in Y is called the normal bundle:

NY = {(y, v) ∈ Y × RN : v ∈ NyY }.

Proposition 3.54. NY ⊂ RN × RN is an embedded submanifold of di-
mension N .

Proof. Given y ∈ Y , choose coordinates (u1, . . . uN ) in a neighbourhood
U ⊂ RN of y so that Y ∩ U = {un+1 = · · · = uN = 0}. Define Φ :
U × RN −→ RN−n × Rn via

Φ(x, v) = (un+1(x), . . . , uN (x), 〈v, ∂
∂u1 |x〉, . . . , 〈v, ∂

∂un
|x〉),

so that Φ−1(0) is precisely NY ∩ (U × RN ). We then show that 0 is a
regular value: observe that, writing v in terms of its components vj ∂

∂xj

in the standard basis for RN ,

〈v, ∂
∂ui
|x〉 = 〈vj ∂

∂xj
, ∂x

k

∂ui
(u(x)) ∂

∂xk
|x〉 =

N∑
j=1

vj ∂x
j

∂ui
(u(x))

Therefore the Jacobian of Φ is the ((N − n) + n)× (N +N) matrix

DΦ(x) =
(

∂uj

∂xi
(x) 0
∗ ∂xj

∂ui
(u(x))

)
The N rows of this matrix are linearly independent, proving Φ is a sub-
mersion.

The normal bundleNY contains Y ∼= Y ×{0} as a regular submanifold,
and is equipped with a smooth map π : NY −→ Y sending (y, v) 7→ y.
The map π is a surjective submersion and is the bundle projection. The
vector spaces π−1(y) for y ∈ Y are called the fibers of the bundle and NY
is an example of a vector bundle.

We may take advantage of the embedding in RN to define a smooth
map E : NY −→ RN via

E(x, v) = x+ v.

Definition 3.55. A tubular neighbourhood of the embedded submanifold
Y ⊂ RN is a neighbourhood U of Y in RN that is the diffeomorphic image
under E of an open subset V ⊂ NY of the form

V = {(y, v) ∈ NY : |v| < δ(y)},

for some positive continuous function δ : M −→ R.
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If U ⊂ RN is such a tubular neighbourhood of Y , then there does exist
a positive continuous function ε : Y −→ R such that Uε = {x ∈ RN :
∃y ∈ Y with |x− y| < ε(y)} is contained in U . This is simply

ε(y) = sup{r : B(y, r) ⊂ U},

which is continuous since ∀ε > 0, ∃x ∈ U for which ε(y) ≤ |x− y|+ ε. For
any other y′ ∈ Y , this is ≤ |y − y′| + |x − y′| + ε. Since |x − y′| ≤ ε(y′),
we have |ε(y)− ε(y′)| ≤ |y − y′|+ ε.
Theorem 3.56 (Tubular neighbourhood theorem). Every regular sub-
manifold of RN has a tubular neighbourhood.

Proof. First we show that E is a local diffeomorphism near y ∈ Y ⊂ NY .
if ι is the embedding of Y in RN , and ι′ : Y −→ NY is the embedding in
the normal bundle, then E ◦ι′ = ι, hence we have DE ◦Dι′ = Dι, showing
that the image of DE(y) contains TyY . Now if ι is the embedding of NyY
in RN , and ι′ : NyY −→ NY is the embedding in the normal bundle,
then E ◦ ι′ = ι. Hence we see that the image of DE(y) contains NyY , and
hence the image is all of TyRN . Hence E is a diffeomorphism on some
neighbourhood

Vδ(y) = {(y′, v′) ∈ NY : |y′ − y| < δ, |v′| < δ}, δ > 0.

Now for y ∈ Y let r(y) = sup{δ : E|Vδ(y) is a diffeomorphism} if this is
≤ 1 and let r(y) = 1 otherwise. The function r(y) is continuous, since if
|y − y′| < r(y), then Vδ(y′) ⊂ Vr(y)(y) for δ = r(y)− |y − y′|. This means
that r(y′) ≥ δ, i.e. r(y)−r(y′) ≤ |y−y′|. Switching y and y′, this remains
true, hence |r(y)− r(y′)| ≤ |y − y′|, yielding continuity.

Finally, let V = {(y, v) ∈ NY : |v| < 1
2r(y)}. We show that E

is injective on V . Suppose (y, v), (y′, v′) ∈ V are such that E(y, v) =
E(y′, v′), and suppose wlog r(y′) ≤ r(y). Then since y + v = y′ + v′, we
have

|y − y′| = |v − v′| ≤ |v|+ |v′| ≤ 1
2r(y) + 1

2r(y
′) ≤ r(y).

Hence y, y′ are in Vr(y)(y), on which E is a diffeomorphism. The required
tubular neighbourhood is then U = E(V ).
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