
4 Vector fields
4.1 Derivations
The space C∞(M,R) of smooth functions onM is not only a vector space
but also a ring, with multiplication (fg)(p) := f(p)g(p). That this defines
a smooth function is clear from the fact that it is a composition of the
form

M
∆ // M ×M

f×g // R× R m // R .

Given a smooth map ϕ : M −→ N of manifolds, we obtain a natural
operation ϕ∗ : C∞(N,R) −→ C∞(M,R), given by f 7→ f ◦ ϕ. This is
called the pullback of functions, and defines a homomorphism of rings
since ∆ ◦ ϕ = (ϕ× ϕ) ◦∆.

The association M 7→ C∞(M,R) and ϕ 7→ ϕ∗ is therefore a con-
travariant functor from the category of manifolds to the category of rings,
and is the basis for algebraic geometry, the algebraic representation of
geometrical objects.

It is easy to see from this that any diffeomorphism ϕ : M −→M defines
an automorphism ϕ∗ of C∞(M,R), but actually all automorphisms are of
this form (Exercise!).

The concept of derivation of an algebra A is the infinitesimal version
of an automorphism of A. That is, if φt : A −→ A is a family of auto-
morphisms of A starting at Id, so that φt(ab) = φt(a)φt(b), then the map
a 7→ d

dt
|t=0φt(a) is a derivation.

Definition 4.1. A derivation of the R-algebra A is a R-linear map D :
A −→ A such that D(ab) = (Da)b + a(Db). The space of all derivations
is denoted Der(A).

If automorphisms of C∞(M,R) correspond to diffeomorphisms, then
it is natural to ask what derivations correspond to. We now show that
they correspond to vector fields.

The vector fields Γ∞(M,TM) form a vector space over R of infinite
dimension (unless M is a finite set). They also form a module over the
ring of smooth functions C∞(M,R) via pointwise multiplication: for f ∈
C∞(M,R) and X ∈ Γ∞(M,TM), fX : x 7→ f(x)X(x) is a smooth vector
field (why?)

The important property of vector fields which we are interested in is
that they act as R-derivations of the algebra of smooth functions. Locally,
it is clear that a vector fieldX =

∑
i
ai ∂

∂xi gives a derivation of the algebra
of smooth functions, via the formula X(f) =

∑
i
ai ∂f

∂xi , since

X(fg) =
∑

i

ai( ∂f
∂xi g + f ∂g

∂xi ) = X(f)g + fX(g).

We wish to verify that this local action extends to a well-defined global
derivation on C∞(M,R).
Definition 4.2. The differential of a function f ∈ C∞(M,R) is the func-
tion on TM given by composing Tf : TM → TR with the second projec-
tion p2 : TR = R× R→ R:

df = p2 ◦ Tf (79)
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Recall that if (U,ϕ) is a chart for M , then (TU,Dϕ) is a chart for
TM . More explicitly, if (x1, . . . , xn) is the coordinate system on U given
by ϕ, then the induced coordinate system on TU is (x1 ◦ π, . . . , xn ◦
π, dx1, . . . , dxn). Often, we omit the bundle projection π and we write ξi

for the differential dxi, and so the induced coordinates are (x1, . . . , xn, ξ1, . . . , xn).
Definition 4.3. Let X ∈ Γ(M,TM) be a vector field. Then we define

X(f) = df ◦X.

This is called the directional (or Lie) derivative of f along X.
In coordinates, if X =

∑
ai∂/∂xi, then X(f) =

∑
ai∂f/∂xi, coin-

ciding with the usual directional derivative mentioned above. This shows
that f 7→ X(f) has the derivation property (since it satisfies it locally),
but we can alternatively see that it is a derivation by using the property

d(fg) = fdg + gdf

of the differential of a product (here fdg is really π∗fdg).
Theorem 4.4. The map X 7→ (f 7→ X(f)) is an isomorphism

Γ(M,TM)→ Der(C∞(M,R)).

Proof. First we prove the result for an open set U ⊂ Rn. Let D be
a derivation of C∞(U,R) and define the smooth functions ai = D(xi).
Then we claim D =

∑
i
ai ∂

∂xi . We prove this by testing against smooth
functions. Any smooth function f on Rn may be written

f(x) = f(0) +
∑

i

xigi(x),

with gi(0) = ∂f
∂xi (0) (simply take gi(x) =

∫ 1
0

∂f
∂xi (tx)dt). Translating the

origin to y ∈ U , we obtain for any z ∈ U

f(z) = f(y) +
∑

i

(xi(z)− xi(y))gi(z), gi(y) = ∂f
∂xi (y).

Applying D, we obtain

Df(z) =
∑

i

(Dxi)gi(z)−
∑

i

(xi(z)− xi(y))Dgi(z).

Letting z approach y, we obtain

Df(y) =
∑

i

ai ∂f
∂xi (y) = X(f)(y),

as required.
To prove the global result, let (Vi ⊂ Ui, ϕi) be a regular covering and θi

an associated partition of unity. Then for each i, θiD : f 7→ θiD(f) is also
a derivation of C∞(M,R). This derivation defines a unique derivation
Di of C∞(Ui,R) such that Di(f |Ui ) = (θiDf)|Ui , since for any point
p ∈ Ui, a given function g ∈ C∞(Ui,R) may be replaced with a function
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g̃ ∈ C∞(M,R) which agrees with g on a small neighbourhood of p, and we
define (Dig)(p) = θi(p)Dg̃(p). This definition is independent of g̃, since if
h1 = h2 on an open set W , Dh1 = Dh2 on that open set (let ψ = 1 in a
neighbourhood of p and vanish outsideW ; then h1−h2 = (h1−h2)(1−ψ)
and applying D we obtain zero in W ).

The derivation Di is then represented by a vector field Xi, which must
vanish outside the support of θi. Hence it may be extended by zero to
a global vector field which we also call Xi. Finally we observe that for
X =

∑
i
Xi, we have

X(f) =
∑

i

Xi(f) =
∑

i

Di(f) = D(f),

4.2 Flows
Since vector fields are derivations, we have a natural source of examples,
coming from infinitesimal automorphisms of M :
Example 4.5. Let ϕt : be a smooth family of maps M → M with
ϕ0 = Id. That is, let ϕ : (−ε, ε)×M −→ M be smooth with ϕ ◦ j0 = id,
for jt(x) = (t, x). Then X(f)(p) = d

dt
|t=0(ϕ∗t f)(p) defines a smooth vector

field. A better way of seeing it is to rewrite it as follows: Let ∂
∂t

be the
coordinate vector field on (−ε, ε) and observe

X(f) = ∂
∂t

(ϕ∗f) ◦ j0.

Remark 4.6. A better way of describing the vector field from Exam-
ple 4.5 is to note that the pullback of Tϕ by j0 is a bundle map from
j∗0TU to TM over the identity map M → M , and then X is simply the
image of j∗0 ∂

∂t
under j∗0Tϕ, or informally

X = ϕ∗|t=0( ∂
∂t

) (80)

Essentially, a smooth vector field may always be expressed in this
way, i.e. as the derivative of a family of automorphisms of M . The only
caveat is that ε must be allowed to vary along the manifold M if it is
noncompact. This gives rise to the notion of a “local 1-parameter group
of diffeomorphisms”, as follows:
Definition 4.7. A local 1-parameter group of diffeomorphisms is an open
set U ⊂ R×M containing {0} ×M and a smooth map

Φ :U −→M

(t, x) 7→ ϕt(x)

such that R× {x} ∩ U is connected, ϕ0(x) = x for all x and if (t, x), (t+
t′, x), (t′, ϕt(x)) are all in U then ϕt′ (ϕt(x)) = ϕt+t′ (x).

The derivative (80) of this family of diffeomorphisms is a vector field
X, and we say that Φ is the flow of X.

Then the local existence and uniqueness of solutions to systems of
ODE implies that every smooth vector field X ∈ Γ(M,TM) gives rise to
a local 1-parameter group of diffeomorphisms (U,Φ) such that the curve
γx : t 7→ ϕt(x) satisfies (γx)∗( d

dt
) = X(γx(t)) (this means that γx is an

integral curve or “trajectory” of the “dynamical system” defined by X).
Furthermore, if (U ′,Φ′) are another such data, then Φ = Φ′ on U ∩ U ′.
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Remark 4.8. We can rephrase the system of ODEs as the initial value
problem

Φ∗ ∂
∂t

= X,

Φ ◦ j0 = idM .

This makes it very clear that 80 holds. In fact, the existence and unique-
ness theorem is slightly more general, in that it allows the vector field
to depend on time, so that X may be defined on R × X with vanish-
ing first projection Tp1(X) = 0, and Φ may then be extended to a map
Φ̃ : U → R × M with the property Φ̃∗ ∂

∂t
= ∂

∂t
+ X and Φ̃ ◦ j0 = j0.

Uniqueness is then the statement that if X = 0 then Φ̃ must be the
identity.
Definition 4.9. A vector field X ∈ Γ(M,TM) is called complete when it
generates a global 1-parameter group of diffeomorphisms, i.e. U = R×M
in the above discussion.

We omit the proof of the following theorem, though it is not difficult
to show that if [0, ω) is the maximal interval on which a trajectory γ is
defined for non-negative times, and if the image γ([0, ω)) has compact
closure in M , then ω must be infinity.
Theorem 4.10. If M is compact, then every smooth vector field is com-
plete.
Example 4.11. The vector field X = x2 ∂

∂x
on R is not complete. For

initial condition x0, have integral curve γ(t) = x0(1− tx0)−1, which gives
Φ(t, x0) = x0(1− tx0)−1, which is well-defined on {1− tx > 0}.

4.3 Commuting flows
Given two derivations D1, D2 of an algebra, the commutator [D1, D2]
is another derivation. In fact, if D1 and D2 arise from families of au-
tomorphisms ϕt, ψt respectively (with ϕ0 = ψ0 = id), then the family
of automorphisms ϕtψtϕ

−1
t ψ−1

t has zero first derivative but has second
derivative given by [D1, D2]. This explains why derivations, or infinitesi-
mal symmetries, always have the structure of a Lie algebra.

Using the correspondence between Γ(M,TM) and Der(C∞(M,R)),
we see that vector fields are endowed with a Lie bracket, given simply by
their commutator when viewed as derivations.
Example 4.12. Let X =

∑
αi∂i and Y =

∑
βi∂i be vector fields in

coordinates. Then the Lie bracket [X,Y ] =
∑

γi∂i, where

γi = X(Y (xi))− Y (X(xi))
= X(βi)− Y (αi)

=
∑

(αk∂kβi − βk∂kαi).
(81)

The usefulness of the Lie bracket is clear from the fact that if X,Y
are vector fields generating flows ϕt, ψs respectively, then it follows that
[X,Y ] coincides with the time derivative of the family of vector fields
(Tϕ−t)◦Y ◦ϕt) at t = 0, and if [X,Y ] = 0, then this guarantees (ϕt)∗Y =
Y , and therefore that ϕt commutes with ψs.
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Lemma 4.13. If Φ is the flow of X, then Φ∗X = X, i.e. (ϕt)∗X = X
over the appropriate domain.

Proof. Let a : R × R → R be the sum, and let pA denote the projection
A×B → A. Then the 1-parameter group property may be written as the
following identity4 of maps R1 ×R2 ×M →M (we label the factors of R
to keep track of order):

Φ ◦ (a× idM ) = Φ ◦ (pR1 ,Φ ◦ pR2×M )

Then we simply differentiate and apply both sides to the vector field ∂/∂t2:

Φ∗(∂/∂t) = Φ∗(Φ∗(∂/∂t)),

yielding X = Φ∗X, as required.

The fact that the diffeomorphisms ϕt preserve X automatically imply
that they commute with the flows generated by X; this is no surprise, as
we have ϕtϕt′ = ϕt+t′ . Now we compute the way the flow of X acts on a
different vector field Y .
Lemma 4.14. Let Φ be the flow of X. If [X,Y ] = 0 for a vector field Y ,
then Φ∗Y = Y , i.e. (ϕt)∗Y = Y for all t.

Proof. Extend Φ to Φ̃ = (pR,Φ) : U → R×M . Then we have

Φ̃∗∂t = ∂t +X,

and also ϕt = pM ◦ Φ̃ ◦ jt. At t = 0, it is clear that Φ̃∗Y = Y , since
ϕ0 = idM . So, we would like to compute [∂t, Φ̃∗Y ], which measures the
time derivative of (ϕt)∗Y :

[∂t, Φ̃∗Y ] = [Φ̃∗∂t −X, Φ̃∗Y ],

but we may use the fact that Φ̃∗X = X, from the previous Lemma. Hence
we have

[∂t, Φ̃∗Y ] = Φ∗[∂t, Y ]− Φ∗[X,Y ], (82)
where we have used the fact that diffeomorphisms preserve Lie brackets.
Since Y is time-independent, the first term vanishes, and we obtain the
result.

Remark 4.15. Equation 82 has independent interest, as it expresses the
Lie bracket of vector fields as the derivative of the action of the flow of
one vector field on the other. To be precise, restricting Equation 82 to
the t = 0 slice, we obtain

d
dt
|t=0(ϕt)∗Y = −[X,Y ].

Finally, since ϕt preserves Y , it will commute with any flow generated
by Y , yielding the following result.
Theorem 4.16. If X,Y are vector fields generating flows ϕt, ψs, then
[X,Y ] = 0 if and only if ϕtψs = ψsϕt for all s, t.

4We also use the notation (f, g) for maps f : A→ B and g : A→ C to mean ∆ ◦ (f × g),
where ∆ : A→ A×A is the diagonal embedding.
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