Reading: Hatcher §2.2.

Exercise 1. Hatcher, Section 2.2 Exercises 8, 10, 20, 21, 22.

Exercise 2. Let *E* be a double complex, meaning that *E* is a $\mathbb{Z} \times \mathbb{Z}$ graded vector space,

$$E = \bigoplus_{(i,j)\in\mathbb{Z}\times\mathbb{Z}} E^{i,j}$$

equipped with two operators $\partial, \bar{\partial}$ of degrees (1,0) and (0,1) respectively, such that $\partial^2 = \bar{\partial}^2 = 0$ and $\partial \bar{\partial} = \bar{\partial} \partial$.

1. Produce from E another $\mathbb{Z} \times \mathbb{Z}$ graded vector space E_1 , by taking $\bar{\partial}$ cohomology:

$$E_1^{i,j} = \frac{\ker \bar{\partial}|_{E^{i,j}}}{\bar{\partial}(E^{i,j-1})}.$$

Prove that both $\partial, \bar{\partial}$ induce maps $\partial_1, \bar{\partial}_1$ of degree (1, 0), (0, 1) respectively on E_1 , that $\bar{\partial}_1 = 0$, and that $\partial_1^2 = 0$.

2. Produce from E_1 another $\mathbb{Z} \times \mathbb{Z}$ graded vector space E_2 , by taking ∂_1 cohomology:

$$E_2^{i,j} = \frac{\ker \partial_1|_{E_1^{i,j}}}{\partial_1(E_1^{i-1,j})}.$$

As before, the map induced by ∂_1 is zero, but prove that the following procedure defines a well-defined map $\partial_2 : E_2 \to E_2$ of degree (2, -1):

Let
$$a \in E^{i,j}$$
 be such that $\bar{\partial}a = 0$ and $\partial a = \bar{\partial}b$. Then $\partial b \in E^{i+2,j-1}$

$$\begin{array}{c}
\stackrel{\circ}{\overline{b}} & 1 \\
\stackrel{\circ}{\overline{b}} & 1 \\
\stackrel{\circ}{\overline{b}} & \stackrel{\circ}{\overline{b}} \\
\stackrel{\circ}{\overline{b}} & 1 \\
\stackrel{\circ}{\overline{b}} & \stackrel{\circ}{\overline{b}} \\
\stackrel{\circ}{\overline{b}} & \stackrel{\circ}{\overline{b}} \\
\end{array}$$

Finish by proving that $\partial_2^2 = 0$.