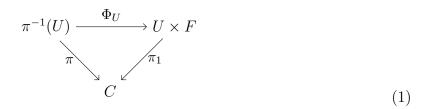
Generalized Complex Geometry Lecture 5

October 14, 2015

Topics of this weeks seminar: Gauss-Manin, S^1 -bundles, g-structures.

Definition 1. A Fiber bundle $X \xrightarrow{\pi} S$ has a fiber F, a total space X and a smooth projection π which is surjective and locally trivial:



where $U \subset S$ is an open neighborhood. This way we obtain gluing data

$$\Phi_V \circ \Phi_U^{-1}: \quad (U \cap V) \times F \longrightarrow (U \cap V) \times F$$
$$(x, p) \longmapsto (x, \Phi_{UV}(x))$$
(2)

where $\Phi_{UV}(x): F \to F$ is a diffeomorphism.

This gives us a family of diffeomorphisms, parameterized by $x \in U \cap V$. We say that the Fiber bundle has the structure group $G \subset \text{Diff}(F)$ when the gluing maps lie in G.

Example 2.

1. $F = \mathbb{C}^n$

$$\Phi_{UV}(x) \in GL_n \Rightarrow structure \ group \ GL_n(\mathbb{C})$$
(3)

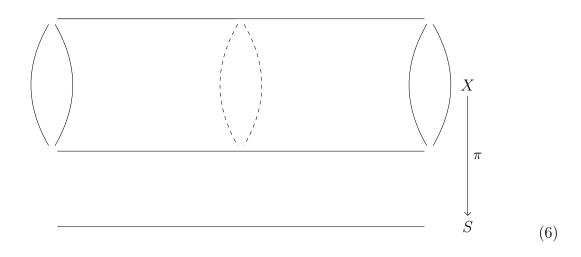
2. $F = \mathbb{R}^n$

$$\Phi_{UV}(x) \in Aff(\mathbb{R}^n) \quad Affine \ Bundle \tag{4}$$

3. F = G Lie group

$$\Phi_{UV}(x) \ lie \ in \ G \curvearrowright G \ by \ left \ multiplication \tag{5}$$

Therefore X is a <u>principal G-Bundle</u>. Call it so because there is a residual right action of <u>G on every fiber</u>, making each fiber a principal homogeneous space or torsion of G.



The Fiber bundle has a foliation

$$TX \supset F = \ker(\pi_*)$$
 clearly involutive
= $\operatorname{vert}(X)$ vertical tangent bundle (7)
= $T_{X/S}$ relative tangent bundle

$$0 \longrightarrow T_{X/S} \longrightarrow T_X \xrightarrow{\pi_*} \pi^* T_X \longrightarrow 0$$

$$\widehat{\theta} \qquad \nabla \qquad (8)$$

Definition 3. A connection on the fiber bundle $X \xrightarrow{\pi} S$ is a choice of splitting of Eq. 8. The image $\nabla(\pi^*T_S) = H$ is called the <u>horizontal distribution</u>.

Remark 4. Splitting $\nabla \Rightarrow T_X = T_{X/S} \oplus H \Rightarrow proj. \ \theta : T_X \to T_{X/S}$ We can view the connection ∇ as $\theta \in \Omega^1_X(T_{X/S})$.

H may not be involutive, we can then measures the failure of being involutive.

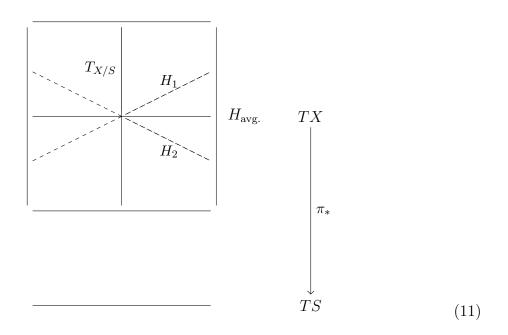
Definition 5. The <u>Curvature</u> of ∇ is for $X, Y \in C^{\infty}(X, \pi^*TS)$

$$F(X,Y) = \theta\left(\left[\nabla(X),\nabla(Y)\right]\right) \tag{9}$$

$$\Rightarrow F \in \Gamma(X, \Lambda^2 \pi^* T^* S \otimes T_{X/S}) = \Gamma(X, \Lambda^2 H^* \otimes V)$$
(10)

We study now the deRahm complex of the fiber bundle $X \xrightarrow{\pi} S$ by choosing a connection ∇ . It is always possible to do this C^{∞} since there exists a local splitting and splittings

can be averaged.



The main point is:

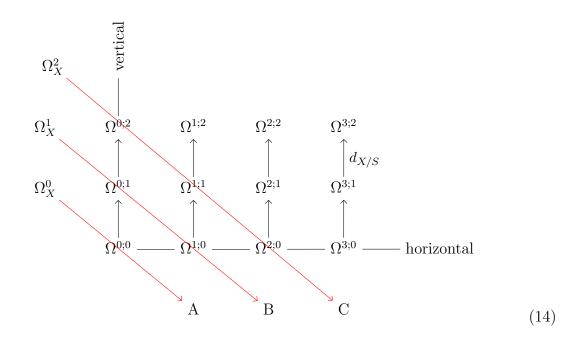
$$T_X = V \oplus H$$

$$T_X^* = V^* \oplus H^*$$
(12)

$$\Lambda^{k}T_{k}^{*} = \bigoplus_{p+q=k} \left(\Lambda^{p}V^{*} \otimes \Lambda^{q}H^{*}\right)$$
$$= \bigoplus_{p+q=k} \left(\underbrace{\Lambda^{p}T_{X/S}^{*} \otimes \Lambda^{q}\pi^{*}T_{S}^{*}}_{\text{a section of this is }\Omega^{q,p}}\right)$$
(13)

q is the horizontal and p is the vertical component.

<u>Key calculation</u>: How does $d: \Omega_X^k \to \Omega_X^{k+1}$ decompose into components?



Let
$$\omega \in \Omega^{p;q}$$
.

$$d(w)(h_1, ..., h_p, v_1, ..., v_q) = d_{X/S}\omega$$
(15)

Test the $\Omega^{p;q+1}$ component:

1. vertical component:

$$\Omega^{k} \supset \Omega^{p;q} \xrightarrow{d} \Omega^{k+1} \xrightarrow{p} \Omega^{p;q+1}$$

$$d_{X/S}$$
(16)

Inspect for:

(a) p = 0

This is the foliated deRahm Complex (F, d_F) .

(b) p = 1 (one horizontal leg)

$$\Gamma^{\infty}(H^*) \xrightarrow{\nabla^{\text{Bott}}} \Omega^1_{X/S}(H^*) \xrightarrow{d^{\nabla^{\text{Bott}}}} \Omega^2_{X/S}(H^*)$$
(18)

Bott connection on ${\cal N}_F$

(c) p = 2 (two horizontal legs)

$$\Gamma^{\infty}(\Lambda^2 H^*) \xrightarrow{d^{\nabla^{\text{Bott}}}} \Omega^1_{X/S}(\Lambda^2 H^*) \xrightarrow{d^{\nabla^{\text{Bott}}}} \Omega^2_{X/S}(\Lambda^2 H^*)$$
(19)

induced from Bott connection

2. horizontal component:

$$\Omega^{p;q} \xrightarrow{d^{\nabla}} \Omega^{p+1;q} \tag{20}$$

this will depend on
$$\nabla$$
.

3.

$$\Omega^{p;q} \xrightarrow{F} \Omega^{p+2;q-1}$$

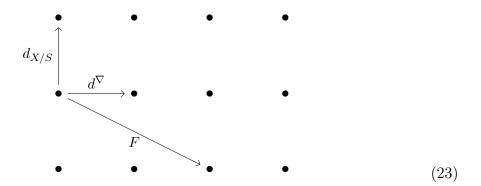
$$F \in \Lambda^2 H^* \otimes V$$
(21)

4. Observe that all other components vanish:

$$(d \underbrace{\omega}_{\in \Omega^{0;1}})(h_1, h_2) = \underbrace{h_1 \omega(h_2)}_{=0} - \underbrace{h_2 \omega(h_1)}_{=0} - \omega([h_1, h_2])$$
$$= \omega(F(h_1, h_2))$$
(22)

$$(d\omega)(h_1, h_2, h_3) = 0$$

There are three parts of the derivative



decomposition of \boldsymbol{d}

We can consider the following 5 compositions.

Implications from these equations:

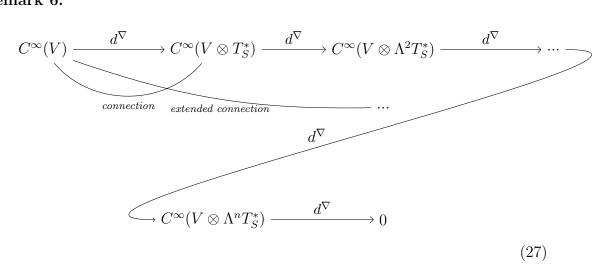
1. There are vertical cohomology groupis (Foliated deRahm groups) (∞ -dimensional due to the failure of $d_{X/S}$ being elliptic), but modules over $C^{\infty}(S)$. So $H^q_{X/S}(\pi^*\Omega^0_S)$ = sections of the vector bundle over S: $H^q_{X/S} \otimes \Lambda^p T^*_S$ 2. $(-1)^k d^{\nabla}$ is a <u>chain map</u>. Therefore d^{∇} induces a map on the cohomology

The Gauss-Manin connection (and it's natrual extension to $\Omega^k_S)$

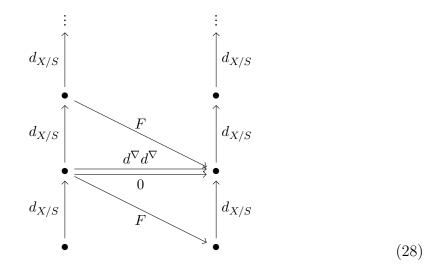
$$H^{q}(\Omega^{\bullet}_{X/S}, d_{X/S}) = \Gamma\left(H^{q}_{X/S}\right) \xrightarrow{\left(d^{\nabla}\right)_{*}} \Gamma\left(H^{q}_{X/S} \otimes T^{*}_{S}\right)$$
(26)

This is a connection on the vector bundle $H^q_{X/S} \longrightarrow S$. The Leibniz rule follows from the Leibniz rule of d.

Remark 6.



3. $d^{\nabla} \circ d^{\nabla} = 0$ in the foliated cohomology. Hence the Gauss-Manin connection is flat.



F defines a chain homotopy between the chain maps $(d^{\nabla})^2$ and 0. Therefore it is the same on H^{\bullet} .

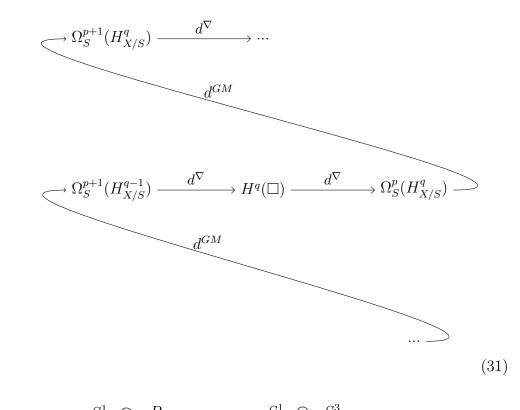
Remark 7. The Gauss-Manin connection is independent of the choice of ∇ .

Another approach to defining it without ∇ :

$$\Omega_X^{\bullet} = (F_0^{\bullet}, d) \supset \underbrace{(F_1^{\bullet}, d)}_{\langle \Omega_S^1 \rangle} \supset (F_2^{\bullet}, d) \supset \dots \supset (F_n^{\bullet}, d)$$
(29)

The deRahm complex on a fiber bundle is filtered. We have a Gauss-Manin connection on the vertical qth cohomology.

This is a short exact sequence (SES) of complexes. This gives us:



 $\begin{array}{cccc} \underline{\operatorname{Principal}\ S^{1}\operatorname{-bundles:}} & S^{1} & \frown \ P & S^{1} & \frown \ S^{3} \\ & & & & & \\ & & & \\ &$

The gluing data for gluing $\{U_i\}$ of M is

$$g_{ij}: U_i \cap U_j \to U(1) \cong S^1$$

$$g_{ij}g_{jk}g_{ki} = 1$$
(32)

The gluing data gives us a class $\{g_{ij}\} \in \check{H}^1(M, C_{S^1}^\infty)$ of smooth functions to S^1 on each $U_i \cap U_j$.

Locally constant integer functions:

$$\mathbb{Z} \longrightarrow C^{\infty}_{\mathbb{R}} \xrightarrow{e^{2\pi i \bullet}} C^{\infty}_{S^1}$$
(33)

$$\check{H}^1\left(C^{\infty}_{S^1}\right) \longrightarrow H^2_M(\mathbb{Z}) \tag{34}$$

Hence to each $\{g_{ij}\}$ S^1 -principal bundle we can associate a class $\delta(g) = c_1(P) \in H^2(M, \mathbb{Z})$, the first Chern class of P. It classifies the principal S^1 -bundle.

As a fiber bundle:

$$0 \longrightarrow T_{P/M} \longrightarrow TP \xrightarrow{\pi_*} \pi^* TM \longrightarrow 0$$
(35)

Here $T_{P/M}$ has rank 1.

Since we have a S^1 action on P, $T_{P/M}$ has a global choice of basis ∂_{θ} , a vector field generator.

$$T_{P/M} \cong \underline{\mathbb{R}}\partial_{\theta} = \mathbb{R} \times P \longrightarrow P \tag{36}$$

 $\underline{\mathbb{R}}\partial_{\theta}$ is the trivial line bundle generated by ∂_{θ} .

$$0 \longrightarrow \underbrace{\mathbb{R}}_{\theta} \longrightarrow TP \xrightarrow{\pi_{*}} \pi^{*}TM \longrightarrow 0$$

$$\widehat{\theta} \qquad \nabla \qquad (37)$$

These vector bundles are S^1 -equivalent (the S^1 action in P extends to all of TP). Earlier we have studied TP by choosing the splitting from above.

Definition 8. A <u>Principal</u> connection is an inveriant splitting of the sequence (preserving S^1 symmetry).

The curvature of ∇ is

$$F(X,Y) = -\theta\left(\left[\nabla X,\nabla Y\right]\right) \in \mathbb{R}$$
(38)

This gives us a function on P which is invariant under S^1 , so it is also a function on M.

$$\Rightarrow F \in \Omega^2(M, \mathbb{R}) \qquad \text{i.e. } X, Y \in \mathfrak{X}(M) \tag{39}$$

$$[\nabla X, \nabla Y] = \underbrace{[X, Y]}_{\text{horizontal part}} + \underbrace{F(X, Y)\partial_{\theta}}_{\text{vertical part}}$$
(40)
$$[X, Y] = \pi_* [\nabla X, \nabla Y] = [\pi_* \nabla X, \pi_* \nabla Y] = [X, Y]$$

Conclusion 9. Once a principal connection ∇ is chosen

$$TP = TM \oplus \underline{\mathbb{R}}\partial_{\theta} \tag{41}$$

and the bracket on S^1 -invariant tangent vector fields is

$$\left[\nabla(X) + f\partial_{\theta}, \nabla(Y) + g\partial_{\theta}\right] = \nabla\left(\left[X, Y\right]\right) + \left[\left(L_X g - L_Y f\right) + F(X, Y)\right]\partial_{\theta}$$
(42)

<u>Refine this as follows:</u> Quotient by S^1 and obtain an exact sequence of vector bundles on M.

$$0 \longrightarrow \underline{\mathbb{R}} \longrightarrow \underbrace{\stackrel{dim(M)+1}{TP}_{/S^{1}}}_{A} \xrightarrow{\pi_{*}} \underbrace{\stackrel{rank=dim(M)}{\pi^{*}TM}}_{\nabla} \longrightarrow 0$$

$$(43)$$

Sections of these bundles on M are S^1 -invariant sections on P. The principal connection is a splitting ∇ of the sequence over M (automatically S^1 -invariant). The key object for studying S^1 -invariant geometry of P is $A = TP/S^1$, called the Atiyah algebroid of P.

$$0 \longrightarrow \mathbb{R} \longrightarrow A \xrightarrow{\pi_*} \pi^* TM \longrightarrow 0$$

$$\overleftarrow{\nabla} \qquad (44)$$

The splitting ∇ implies that $A = TM \oplus \mathbb{R}$, the curvature is $F \in \Omega^2(M, \mathbb{R})$ and the bracket on S^1 -invariant tangent vector fields is

$$[X + f, Y + g] = [X, Y] + (L_X g - L_Y f) + F(X, Y)$$
(45)

Theorem 10. The Atiyah algebroid inherits a Lie bracket on it's sections which is, upon a splitting ∇ with a curvature F, given by Eq. 45.

In this way we get a family of Lie brackets

$$\left(TMi \oplus \underline{\mathbb{R}}, [,]_F\right) \tag{46}$$

Remark 11. If this derives from $S^1 \to P \\ \downarrow \\ M$, then $\frac{[F]}{2\pi} = c_1(P)$ will be integral. Never-

the less, the construction works for any closed 2-form F.

Setting:

$$\left(M, F \in \Omega^2(M, \mathbb{R}), dF = 0\right) \rightsquigarrow \left(A = TM \oplus \underline{\mathbb{R}}, [\ ,\]_F\right)$$
(47)

We can work with A as we would with a usual tangent bundle.

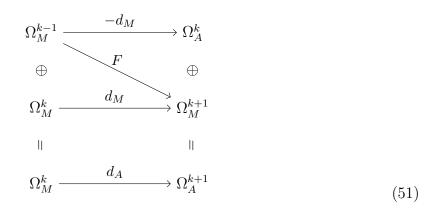
Example 12. A has a deRahm complex

$$A = TM \oplus \underline{\mathbb{R}} \quad \Rightarrow \quad A^* = T^*M \oplus \underline{\mathbb{R}}$$
$$\Lambda^k A^* = \Lambda^{k-1} T^* M \oplus \Lambda^k T^* M \tag{48}$$

So a k-form $\varphi \in \Lambda^k A^*$ has the general form

where $\theta \in \Omega^1(P)$ is the connection 1-form. The differential operator is:

$$d_A: \Gamma(\Lambda^k A^*) \longrightarrow \Gamma(\Lambda^{k+1} A^*) d\varphi = d\theta \wedge \alpha - \theta \wedge d\alpha + d\beta$$
(50)



So

$$d_A = \begin{pmatrix} -d_M & 0\\ F & d_M \end{pmatrix} \tag{52}$$

What structures could we now study?

Example 13. Let Σ be a 2-manifold and $\omega \in \Omega_{\Sigma}^2$ be a closed 2-form $d\omega = 0$, then

$$A = T\Sigma \oplus \mathbb{R} \tag{53}$$

has rank 3. One can study

- 1. co-rank 1 distributions, e.g. co-rank 1 subbundles $F \subset A$
- 2. involutivity $[F,F]_{\omega} \subset F$

As before we can encode such distributions in

$$\mu = \mu_0 + \mu_1 \tag{54}$$

where $\mu \in \Omega^1_A = \Omega^0_M \oplus \Omega^1_M$, such that

$$\mu \wedge d\mu = 0 \tag{55}$$
$$\Leftrightarrow (\mu_0 + \mu_1) \wedge d (\mu_0 + \mu_1) = 0$$

simplyfy: $\omega = 0$

$$\Leftrightarrow \mu_0 \wedge d\mu_1 + \mu_1 \wedge d\mu_0 + \underbrace{\mu_1 \wedge d\mu_1}_{dim=2 \Rightarrow =0} = 0$$

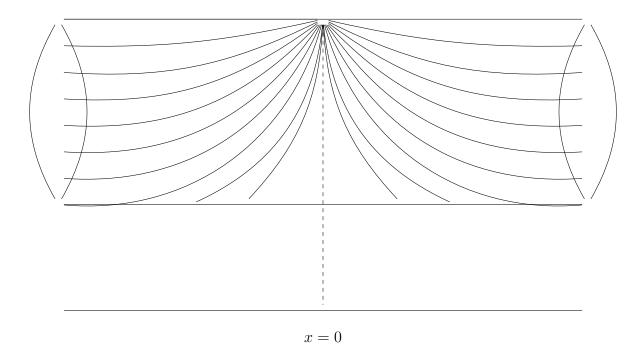
$$\Leftrightarrow d(\mu_0 \wedge \mu_1) = 0$$
(56)

Require that $\mu \neq 0$ anywhere. $\Leftrightarrow \mu_0 + \mu_1 \neq 0$ anywhere. $\mu_0 \wedge \mu_1$ is a closed 1-form on Σ , but it could have zeros with violating the previous statement.

Example 14. Consider (\mathbb{R}^2, x, y) and $\mu = f(x) + dx$. For example $\mu = x + dx$. Then clearly $d(\mu_0 \wedge \mu_1) = 0$. "Upstairs" we have

$$\mu = x \wedge d\theta + dx \tag{57}$$

This is a usual foliation on $S^1 \times \mathbb{R}^2_{x,y}$ as $\mu \wedge d\mu = 0$.



(58)

Problem 15. Find an interesting genetic foliation on a surface Σ , for example one with $gGV \neq 0$.