
GENERALIZED GEOMETRY: LECTURE 3

1. Derivations of Ω•(M).

Given a manifold M , consider the algebra of differential forms (Ω•(M),∧, d).
Note that Ω•(M) is Z-graded, and ∧ is an associative, graded commutative prod-
uct. Furthermore the de Rham differential d is a degree +1 derivation of the
algebra satisfying d ◦ d = 0, or equivalently [d, d] = 0 (this property is sometimes
expressed by saying that d is a homological vector field). Therefore, the algebra of
differential forms is a commutative differential graded algebra (cdga).

One consequence of the fact that d2 = 0 is that we get a cochain complex:

0 Ω0 ... Ωk−1 Ωk Ωk+1 ...d d d d d

and can therefore define de Rham cohomology groups (actually vector spaces)

Hk
dR(M) =

ker(d|Ωk)

im(d|Ωk−1)
.

The wedge product ∧ descends to a well-defined cup product on the level of coho-
mology, which we denote ∩; this makes (H•(M),∩) into a cga.

In the case that M is compact H•(M) is finite-dimensional. This follows from
the fact that (Ω•(M), d) is an elliptic complex.

1.1. An aside on differential operators. Let E and F be vector bundles over
M ; their spaces of sections, Γ(E),Γ(F ), are C∞(M,R)-modules. Given a function
f ∈ C∞(M,R), let mf : Γ(E) → Γ(E) to be the module endomorphism defined
by mf (s) = fs for s ∈ Γ(E).

Definition. Suppose
D : Γ(E)→ Γ(F )

is R-linear.

(i) D is a differential operator of order 0 if

[D,mf ] = 0, for all f ∈ C∞(M,R).

In other words, given s ∈ Γ(E), D(fs) = f(Ds), implying that D is a module
homomorphism (i.e. D is a vector bundle morphism E → F ). So

Diff0(E,F ) = HomV B(E,F ) = Γ(E∗ ⊗ F ),
1
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where Diff0(E,F ) denotes the C∞(M,R)-module of differential operators of
order 0.

(ii) D is a differential operator of order ≤ 1 if

[D,mf ] ∈ Diff0(E,F ), for all f ∈ C∞(M,R),

or equivalently

[[D,mf ],mg] = 0, for all f, g ∈ C∞(M,R).

Let Diff≤1(E,F ) denote the C∞(M,R)-module of differential operators of
order ≤ 1.

(iii) We inductively define the C∞(M,R)-module of differential operators of order
≤ k, Diff≤k(E,F ), to be the collection of R-linear morphisms D satisfying

[D,mf ] ∈ Diff≤k−1(E,F ), for all f ∈ C∞(M,R).

Remark. We get a filtration of modules

Diff0 ⊆ ... ⊆ Diff≤k−1 ⊆ Diff≤k ⊆ ...

Suppose D ∈ Diff≤1(E,F ), and f ∈ C∞(M,R). Then as we saw [D,mf ] is a
section of E∗ ⊗ F . Given D, we can define a map

ψ : C∞(M)→ Γ(E∗ ⊗ F ), f 7→ [D,mf ],

which is clearly R-linear. Furthermore, ψ is a derivation:

ψ(fg) = [D,mfg] = Dmfmg −mfmgD

= Dmfmg −mfDmg +mfDmg −mfmgD

= [D,mf ]mg +mf [D,mg]

= gψ(f) + fψ(g).

Therefore, the map ψ is of the form

ψ(f) = 〈σ(D), df〉,

for σ(D) ∈ Γ(T ⊗ E∗ ⊗ F ), the principal symbol of D. Note that we can write
down a local expression for D as follows

D =
∑
i

ai∂xi + b,

and
∑

i ai∂xi is the principal symbol.

Remark. For D ∈ Diff≤k(E,F ), we can still define the principal symbol σ(D),
which will now be a section of SkT ⊗ E∗ ⊗ F .
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1.2. The de Rham complex is an elliptic complex. Returning to the de
Rham complex, we note that

d : Ωk(M)→ Ωk+1(M)

is a differential operator of order 1:

d|Ωk ∈ Diff≤1(
∧k

T ∗,
∧k+1

T ∗).

In order to see this, we need to check that for all f ∈ C∞(M,R) the commutator

[d,mf ] lies in HomV B(
∧k T ∗,∧k+1 T ∗): given ρ ∈ Ωk

[d,mf ]ρ = d(fρ)− fdρ = df ∧ ρ.
This verifies the claim since [d,mf ] = df∧ is indeed a homomorphism of bundles.
Now what is the principal symbol of d? First of all

σ(d) ∈ Γ(T ⊗ Hom(
∧k

T ∗,
∧k+1

T ∗))

= Hom(T ∗,Hom(
∧k

T ∗,
∧k+1

T ∗)).

And so given ξ ∈ Γ(T ∗),

〈σ(d), ξ〉 :
∧k

T ∗ →
∧k+1

T ∗, ρ 7→ ξ ∧ ρ.

Hence from (Ω•, d) we get a symbol sequence for every ξ ∈ Γ(T ∗)

... ∧k−1 T ∗
∧k T ∗ ∧k+1 T ∗ ...

ξ∧ ξ∧

For ξ 6= 0, this sequence is also known as the Koszul sequence.

Proposition. Given a ∈ V , a nonzero element of a finite dimensional vector
space (of dimension n), the Koszul sequence

0
∧0 V

∧1 V
∧2 V ...

∧n V 0
a∧ a∧ a∧

is exact. That is to say im(a∧) = ker(a∧).

Proof. The proof relies on the observation that for nonzero a, and ρ ∈
∧k V ,

a ∧ ρ = 0 if and only if ρ = a ∧ η for some η ∈
∧k−1 V . �

The above conclusion applies fibre-wise to the symbol sequence of the de Rham
complex, and we therefore say that the symbol sequence is exact. A differential
complex with exact symbol sequence is said to be elliptic. The fact that the de
Rham complex of a compact manifold is elliptic implies that its cohomology is
finite dimensional.
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1.3. Derivations et al. of (Ω•(M),∧). Let us now describe some derivations of
the cga (Ω•(M),∧). We have already seen that d is a derivation of degree 1:

d ∈ Der+1(Ω•).

Given any vector field, we can define a derivation of degree −1.

Definition. Let X ∈ Γ(T ) = X1(M) be a vector field on M . The interior
product

iX : Ωk → Ωk−1

is the unique degree −1 derivation of (Ω•(M),∧) such that for all f ∈ C∞(M,R)

(i) iXf = 0,
(ii) iX(df) = df(X) = X(f).

To compute its action on the rest of (Ω•(M),∧) we extend by the derivation rule:

iX(α ∧ β) = iX(α) ∧ β + (−1)|α|α ∧ iX(β).

Remark. It is also possible to give an invariant definition of iX as follows. Let
ρ ∈ Ωk+1, then

(iXρ)(X1, ..., Xk) = ρ(X,X1, ..., Xk).

We note the following proposition which follows from the invariant definition.

Proposition. i2X = 0.

Because the derivations of (Ω•(M),∧) form a graded Lie algebra (gLa): Der•(Ω•),
given any two derivations, we can use the Lie bracket on Der•(Ω•) to produce a
third one. As such, the derivations d and iX can be used to generate a new
derivation of degree 0

LX := [iX , d] = iXd− (−1)1diX = iXd+ diX ∈ Der0(Ω•).

Cartan’s magic formula identifies LX with the usual Lie derivative. That is to say,
given ρ ∈ Ωk,

LXρ =
d

dt

∣∣∣∣
t=0

(ϕX−t)
∗ρ,

where ϕXt is the flow of X. A simple calculation shows that [iX , LX ] = [LX , d] = 0,
so these derivations form a closed system.

Given two vector fields X, Y ∈ X1, let us try to combine the various derivations
they produce. First of all, [iX , iY ] = 0 since it is a derivation of degree −2, and
(Ω•(M),∧) is generated in degrees 0 and 1. Next, we have the following identity
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which is due to Cartan.

Proposition. (Cartan’s Formula) [LX , iY ] = i[X,Y ]Lie
, where [X, Y ]Lie de-

notes the Lie bracket of vector fields.
Proof. We only need to check that the two derivations agree on functions and their
differentials.

[LX , iY ]f = 0,

since it is a derivation of degree −1. And

[LX , iY ]df = LXY (f)− iYLXdf = iXd(Y f)− iY d(iXdf)

= XY f − Y Xf = [X, Y ]Lief. �

Finally, combining the above identities, we get [LX , LY ] = L[X,Y ]Lie
.

1.4. Aside on derived brackets. It turns out that the derivations of degree
−1 are equivalent to vector fields on M . To see this note that a derivation D ∈
Der−1(Ω•) has the following natural action on C∞(M):

f 7→ D(df)

which is a derivation since

D(d(fg)) = D(fdg + gdf) = fD(dg) + gD(df).

Therefore, D defines a vector field X on M such that iX = D. As a result, the
Cartan formula above can actually be thought of as a definition of the Lie bracket
for vector fields. Given vector fields X and Y , we can define [X, Y ]Lie to be the
vector field induced by [LX , iY ] = [[iX , d], iY ]. This is an example of the derived
bracket construction, in which given a differential graded Lie algebra (L, [ , ], D),
we define the derived bracket on L to be the bilinear map:

L× L 3 (a, b) 7→ [Da, b].

In the present case, the differential in question is given by bracketing with d, i.e.
a 7→ [a, d]. This shows that there is a kind of duality between the de Rham
differential d and the Lie bracket on vector fields: just as d can be defined in terms
of the Lie bracket:

dω(X0, ..., Xk) =
∑
i

(−1)iXiω(X0, ..., X̂i, ..., Xk)

+
∑
i<j

(−1)i+jω([Xi, Xj]Lie, ..., X̂i, ..., X̂j, ...),
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so too can the Lie bracket be defined in terms of the de Rham differential via
Cartan’s formula.

1.5. The Schouten bracket. The Lie bracket on X1 can be extended to a bracket
on multivector fields X•(M) = ⊕k≥0Γ(

∧k T ).

Definition. The Schouten bracket on multivector fields is defined to be the
bilinear map

[ , ] : Xp+1 × Xq+1 → Xp+q+1

satisfying

(i) [f, g] = 0 and [X, f ] = X(f) for functions f, g and vector field X,
(ii)

[X1 ∧ ... ∧Xk, Y1 ∧ ... ∧ Yl] =∑
i,j

(−1)i+j[Xi, Yj]Lie ∧X1 ∧ ... ∧ X̂i ∧ ... ∧Xk ∧ Y1 ∧ ... ∧ Ŷj ∧ ... ∧ Yl

where Xi and Yj are vector fields.

Example.

[X∧Y,X ∧ Y ]

= [X,X] ∧ Y ∧ Y − [X, Y ] ∧ Y ∧X − [Y,X] ∧X ∧ Y + [Y, Y ] ∧X ∧X
= 2[X, Y ] ∧X ∧ Y.

Notice that this vanishes precisely when [X, Y ] is in the span of X and Y , or
equivalently, when 〈X, Y 〉 is involutive.

Note that the Schouten bracket cannot be a graded Lie bracket since it does not
respect the degrees of multivector fields. However, if we shift the grading on X•

to X•+1 then the Schouten bracket does respect this new grading. In this grading,
smooth functions lie in degree −1 and vector fields lie in degree 0. With respect to
this grading, the Schouten bracket becomes a graded Lie bracket on multivector
fields, meaning that it is

(i) graded antisymmetric:

[P,Q] = −(−1)pq[Q,P ], for P ∈ Xp+1, Q ∈ Xq+1,

(ii) and satisfies the graded Jacobi identity:

(−1)pr[P, [Q,R]] + (−1)qp[Q, [R,P ]] + (−1)rq[R, [P,Q]] = 0,

for P ∈ Xp+1, Q ∈ Xq+1, R ∈ Xr+1.
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Multivector fields with the original grading and the wedge product (X•,∧) form
a cga, and the Schouten bracket satisfies a Liebniz rule involving both gradings on
multivector fields:

[P,Q ∧R] = [P,Q] ∧R + (−1)pqQ ∧ [P,R]

where P ∈ Xp+1 and Q ∈ Xq. This fact can be expressed by saying that the adjoint
action of multivector fields

P 7→ adP = [P, ]

gives a homomorphism of graded Lie algebras from (X•+1, [ , ]) to the algebra of
derivations with respect to the unshifted grading Der•(X•,∧).

Remark. (X•(+1), [ , ],∧) is an example of a Gerstenhaber algebra.

Just as the usual Lie bracket turned out to be a derived bracket, so too is the
Schouten bracket.

Proposition. Let P ∈ Xp+1, Q ∈ Xq+1, then [P,Q] is a derived bracket.
Proof. A multivector P = X1 ∧ ... ∧ Xp+1 acts on a differential form ρ ∈ Ω• by
interior multiplication, iP , defined by

iP (ρ) = iXp+1iXp ...iX2iX1ρ.

Note that this is not a derivation. Then

i[P,Q] = (−1)pq[[iP , d], iQ],

where the brackets on the right are commutators of operators on the de Rham
complex. �

We end the discussion of Schouten brackets with an application to Poisson ge-
ometry. Let Π ∈ X2 be a bivector field. This determines a bracket on smooth
functions as follows:

{ , } : C∞(M)× C∞(M)→ C∞(M), (f, g) 7→ iΠ(df ∧ dg).

This bracket is clearly R-bilinear and antisymmetric. Furthermore, this bracket
satisfies a Leibniz rule:

{fg, h} = iΠ(d(fg) ∧ dh) = iΠ(fdg ∧ dh+ gdf ∧ dh) = f{g, h}+ g{f, h}.

Therefore, this defines a Poisson bracket if and only if it satisfies the Jacobi iden-
tity. This condition can be stated in terms of the Schouten bracket.

Proposition. { , } is a Poisson bracket if and only if [Π,Π] = 0.
Proof. First of all,

[Π,Π] = 0 ⇐⇒ i[Π,Π](df ∧ dg ∧ dh) = 0 for all f, g, h ∈ C∞(M),
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and so we need only show that the right hand side is equivalent to the Jacobi
identity. To do this we will make use of the derived bracket formulation of the
Schouten bracket.

i[Π,Π](df ∧ dg ∧ dh) = −[[iΠ, d], iΠ]df ∧ dg ∧ dh
= −(iΠdiΠ − diΠiΠ − iΠiΠd+ iΠdiΠ)df ∧ dg ∧ dh
= −2iΠdiΠ(df ∧ dg ∧ dh)

= −2iΠd({f, g}dh+ {g, h}df + {h, f}dg)

= −2({{f, g}, h}+ {{g, h}, f}+ {{h, f}, g}). �

1.6. Back to derivations of (Ω•(M),∧). Let X ∈ X1 and ω ∈ Ωk. We can
define the interior product by K = ω ⊗X as follows:

iK : Ωp → Ωp+k−1, ρ 7→ ω ∧ iX(ρ).

As can be checked, this defines a derivation of degree k − 1. And by extending
linearly we can define the interior product by any element in Ωk(T ) = Γ(

∧k T ∗⊗T ).
This defines a morphism of modules

i : Ωk(T )→ Derk−1(Ω•),

and hence a collection of new derivations of the de Rham complex.

Note that when k = 1, Ω1(T ) = Γ(T ∗⊗ T ) = End(T ), which has a tensorial Lie
bracket, namely, the commutator bracket. This can be generalized to a tensorial
graded Lie bracket on Ω•+1(T ), known as the Nijenhuis-Richardson bracket:

[ , ]∧ : Ωp+1(T )× Ωq+1(T )→ Ωp+q+1(T ),

(K,L) 7→ iKL− (−1)pqiLK.

This bracket satisfies the property that [iK , iL] = i[K,L]∧ .

Note that when k = 0, Ω0(T ) = Γ(T ) = X1, which has the Lie bracket. This can
be generalized to a graded Lie bracket on Ω•(T ), known as the Frölicher-Nijenhuis
bracket. To define this, we first define the Lie derivative along K ∈ Ωk(T ) as
follows:

LK = [iK , d].

This is a degree k derivation. Then the Frölicher-Nijenhuis bracket of K ∈ Ωk(T ),
and L ∈ Ωl(T ) is the unique element [K,L] ∈ Ωk+l(T ) such that

[LK , LL] = L[K,L].

Note that being an extension of the usual Lie bracket, the Frölicher-Nijenhuis
bracket involves taking derivatives. This bracket satisfies the following identity,
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analogous to Cartan’s formula:

[LK , iL] = i[K,L] − (−1)klLiLK .

Furthermore, the adjoint action with respect to this bracket defines a morphism
of graded Lie algebras

ad : (Ω•(T ), [ , ])→ Der•(Ω•,∧).

Remark. The Frölicher-Nijenhuis bracket is important in complex geometry as
it is involved in checking that an almost complex structure is integrable (and hence
defines a complex structure). If J ∈ Ω1(T ) is an almost complex structure, then
[J, J ] ∈ Ω2(T ) is the Nijenhuis tensor of J . The Newlander-Nirenberg theorem
states that an almost complex structure J is integrable if and only if [J, J ] = 0.

2. Foliations

Let M be a smooth manifold. Recall that a distribution D is a subbundle of the
tangent bundle of M , and that a distribution is involutive if [D,D] ⊆ D, meaning
that given sections X, Y ∈ Γ(D), we have that [X, Y ] ∈ Γ(D). For a simple exam-
ple of a distribution of rank k consider Rn, with D given by the span of the first
k coordinate vector fields: ∂x1 , ..., ∂xk . The Frobenius theorem says that locally
all involutive distributions look like this example. In the rank 1 case this can be
stated as follows:

Proposition. If X is a vector field which is non-zero at p ∈M , then there exist
coordinates x1, ..., xn such that X = ∂x1 near p.
Proof. First choose coordinates y1, ..., yn centred at p with Xp(y1) 6= 0. As such the
submanifold defined by y1 = 0 is transverse to X near p. Denote this codimension
1 submanifold by N . There exists a neighbourhood U of p such that for all q ∈ U
there is a unique point q̄ ∈ N such that the flow of X takes q̄ to q. Let x1(q)
denote the time of flow from q̄ to q, and for i > 1, let xi(q) = yi(q̄). These give
coordinates on U . Furthermore, by construction, the integral curves of X have the
form γ(t) = (t, x2, ..., xn) and so in these coordinates X = ∂x1 as required. �

Generalizing this to k vectors, we get the following theorem of Frobenius:

Theorem. (Frobenius) Let X1, ..., Xm be vector fields on M which are linearly
independent at a point p ∈ M , and suppose that [Xi, Xj] ∈ span(X1, ..., Xm) for
all i, j. Then there exist coordinates x1, ..., xm, xm+1, ..., xn such that

span(X1, ..., Xm) = span(∂x1 , ..., ∂xm).
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Remark. These coordinates give a foliation chart for the distribution spanned by
the Xi; they put the distribution in a standard local form.
Proof. The key step in the proof is to construct a collection of m linearly indepen-
dent commuting vector fields with the same span as the Xi. Once this is achieved,
the proof reduces to a generalized version of the above proposition. We sketch the
main idea of the construction of these commuting vector fields in the case that
m = 2.

Let X and Y be two linearly independent vector fields. By the above proposition
we can find coordinates such that

X = ∂1, Y =
n∑
i=1

ai∂i.

Without loss of generality, we can assume that a1 = 0 (subtract a1X from Y does
not affect the span). Then

[X, Y ] =
n∑
i=2

(∂1ai)∂i.

By assumption [X, Y ] ∈ span(X, Y ) but cannot have any component along X.
Hence [X, Y ] = λY . We want to modify Y so that λ = 0, so let us replace Y by
eφY and solve the following equation

0 = [X, eφY ] = X(eφ)Y + eφ[X, Y ] = (X(φ) + λ)eφY.

Therefore we need X(φ) + λ = 0. This is solved by letting

φ(x1, ..., xn) =

∫ x1

0

−λ(t, x2, ..., xn)dt. �

2.1. Equivalent formulation of Frobenius. The Frobenius theorem essentially
says that distributions have foliation charts if and only if they are involutive. There
are two main ways of describing involutive distributions. The first is the descrip-
tion we saw above, namely, a distribution F is involutive if and only if [F, F ] ⊆ F .
The second description involves differential forms. If F is a distribution of corank
k, then it is locally defined by k 1-forms θ1, ..., θk ∈ Ω1(M) (these give a basis for
the annihilator of F ). These generate an ideal I ⊆ (Ω•,∧) (this is the ideal of all
forms annihilating F ). Then we have

Proposition. F is involutive if and only if dI ⊆ I (i.e. I is a differential ideal).

Example Let k = 1, so that I is locally generated by a single non-vanishing
1-form θ. Involutivity requires that dθ ∈ 〈θ〉, so dθ = θ ∧ α for some 1-form α, or
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equivalently θ ∧ dθ = 0.

Proof. We give the proof in the case k = 1. Integrability means that if iXθ =
iY θ = 0, then i[X,Y ]θ = 0. But

i[X,Y ]θ = [LX , iY ]θ = −iY iXdθ.
Now we can locally decompose T ∗ = 〈θ〉 ⊕C so that Ω2 = (〈θ〉 ⊗C)⊕∧2C. Then
if X and Y kill θ, they must lie in C∗, and hence X ∧ Y ∈ ∧2C∗. Integrability of
θ therefore means that for all X ∧ Y ∈ ∧2C∗, iY iXdθ = 0. But this means that dθ
must lie entirely in 〈θ〉 ⊗ C. �


