GIT, Comments and questions

1. (Topology and Hilbert-Mumford) There was a question about what topology is used in the limit statement in the traditional statement of the Hilbert-Mumford criterion. Clearly we cannot interpret this as a statement about actual limits in the Zariski topology. Actually, the Hilbert-Mumford criterion is, in the ideal treatment, used for a reductive group action on a projective variety, where it is possible to extend any regular map from \mathbb{C}^* to a map from $\mathbb{C}P^1$ (c.f. the valuative criterion for properness). In this case there is a clear meaning to the limit condition: it is simply an evaluation at the point at infinity in the $\mathbb{C}P^1$.

In the case where G is acting on an affine variety, we may use the analytic topology and think of limits, or we may find a way of embedding the affine GIT quotient procedure into a projective one and use the procedure above, thereby avoiding the use of the analytic topology. We will see how this works later.

2. (Behaviour of H-M limits) Suppose that we have a linear representation V of G and that λ is a 1-PS for which

$$\lim_{z \to \infty} \lambda(z) \cdot v = w$$

for $v, w \in V$. When this happens, it may be that w is not in the same *G*-orbit as v. For example, for the \mathbb{C}^* action on \mathbb{C}^2 given by diag $(z^{-1}, 1)$, we have

$$\lim_{z \to \infty} \lambda(z) \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix},$$

and (0,1) is not in the same \mathbb{C}^* -orbit as (1,1).

However, such a limit point w could easily be in the orbit of v for the *G*-action: if we view the example above as a 1-PS of the $GL_2(\mathbb{C})$ -action on \mathbb{C}^2 , we see that the points are in the same orbit.

Nevertheless, the H-M criterion says that v is not stable, and this is clear because w is stabilized by the 1-PS λ , and so if w were in the same orbit as v, it would not have the same dimension as G.

- 3. (H-M and maximal tori) There was a question about how many 1-PS we actually need to check in practice. The example of binary quantics showed that checking a single 1-PS precludes highly degenerate roots at only one point in P^1 , whereas the condition must hold at all points. So in this sense, we must apply H-M to all 1-PS.
- 4. Algebraic group acting on affine variety with an orbit whose closure contains more than one closed orbit: consider the group of affine transformations of the plane (semidirect product of C* with C) acting via

$$\begin{pmatrix} 1 & \lambda \\ 0 & \mu \end{pmatrix}$$

The open dense orbit has closure containing infinitely many closed orbits.