1 Extensions

Let U, W be finite-dimensional vector spaces. An extension of W by U is a vector space V, together with linear maps α, β such that

$$0 \longrightarrow U \xrightarrow{\alpha} V \xrightarrow{\beta} W \longrightarrow 0 \tag{1}$$

Due date: September 26, 2013

is an exact sequence of linear maps, meaning that the kernel of each map is equal to the image of the previous map in the sequence.

Exercise 1. A splitting s of the sequence (1) is a map $s: W \to V$ such that $\beta s = \mathbf{1}_W$.

- a) Prove that such a splitting exists.
- b) Prove that a splitting s induces a map $t: V \to U$ such that $s\beta + \alpha t = \mathbf{1}_V$. As a result, show that $t\alpha = \mathbf{1}_U$ and that this gives an isomorphism between V and $U \oplus W$.
- c) Prove that the set of splittings of (1) is an affine space modeled on $\operatorname{Hom}(W, U)$. Recall that an affine space A modeled on a vector space V is a set A of "points" together with a transitive and faithful action of the group (V, +) of "translations". Essentially, A is a copy of V without a distinguished origin.

Exercise 2. Let X, Y be finite-dimensional vector spaces and let $R \in \text{Hom}(X, Y)$. As described in class, this gives rise to two exact sequences

$$0 \longrightarrow \operatorname{Ker} R \longrightarrow X \longrightarrow \operatorname{Im} R \longrightarrow 0 \tag{2}$$

$$0 \longrightarrow \operatorname{Im} R \longrightarrow Y \longrightarrow \operatorname{Cok} R \longrightarrow 0 , \tag{3}$$

where $\operatorname{Cok} R$ is the cokernel of R, defined by the quotient $Y/\operatorname{Im} R$. Prove that if bases for $\operatorname{Ker} R$, $\operatorname{Im} R$, and $\operatorname{Cok} R$ are chosen, and if splittings of (2) and (3) are chosen, then this defines bases for X and Y, and that relative to these bases, R has a matrix with a block form given by

$$R = \begin{pmatrix} \mathbf{1}_{r \times r} & 0 \\ 0 & 0 \end{pmatrix},\tag{4}$$

where r is the rank of R and $\mathbf{1}_{r \times r}$ is an identity matrix of size r.

Exercise 3. Let (V, α, β) and (V', α', β') be two extensions of W by U. A morphism of extensions from V to V' is a linear map $\psi : V \to V'$ rendering the following diagram commutative.

$$U \xrightarrow{\alpha} V \xrightarrow{\psi} W \tag{5}$$

- a) Prove that any such morphism is an isomorphism.
- b) Prove that any two extensions of W by U are isomorphic.
- c) Choose bases for W and U, and concatenate to form a basis for the trivial extension $V = U \oplus W$. Describe the matrix of a general automorphism of the extension V.

2 Koszul sequences

Let V be a vector space of dimension n, and fix $\xi \in V^* \setminus \{0\}$. Then ξ defines an operator e_{ξ} on $\wedge^{\bullet}V^*$ defined by

$$e_{\xi}(\sigma) = \xi \wedge \sigma. \tag{6}$$

Due date: September 26, 2013

Note that e_{ξ} sends $\wedge^k V^*$ to $\wedge^{k+1} V^*$; in other words it is an operator of degree +1.

Now choose $v \in V$ and define an operator i_v on $\wedge^{\bullet}V^*$ as follows: on \wedge^0V^* it is zero, and on \wedge^1V^* it is given by the pairing between V and V^* , so that for $\alpha \in \wedge^1V^* = V^*$, we have

$$i_v \alpha = \alpha(v). \tag{7}$$

To complete the definition of i_v , we require that it is a graded derivation of $\wedge^{\bullet}V^*$, which means that it satisfies the following Leibniz rule:

$$i_v(\alpha \wedge \beta) = (i_v \alpha) \wedge \beta + (-1)^\alpha \alpha \wedge i_v \beta. \tag{8}$$

The operator defined in this way is called "the interior product by v" and is of degree -1.

Exercise 4.

a) Prove that the following sequence is an exact sequence:

$$0 \longrightarrow \wedge^{0} V^{*} \xrightarrow{e_{\xi}} \wedge^{1} V^{*} \xrightarrow{e_{\xi}} \cdots \xrightarrow{e_{\xi}} \wedge^{n-1} V^{*} \xrightarrow{e_{\xi}} \wedge^{n} V^{*} \longrightarrow 0.$$
 (9)

- b) Prove that $i_v i_v = 0$.
- c) Prove that the following sequence is an exact sequence:

$$0 \longleftarrow \wedge^{0} V^{*} \stackrel{\longleftarrow}{\longleftarrow} \wedge^{1} V^{*} \stackrel{\longleftarrow}{\longleftarrow} \cdots \stackrel{\longleftarrow}{\longleftarrow} \wedge^{n-1} V^{*} \stackrel{\longleftarrow}{\longleftarrow} \wedge^{n} V^{*} \longleftarrow 0 . \tag{10}$$

- d) Compute the operator $i_v e_{\xi} + e_{\xi} i_v$. It should be an operator of degree 0, of course.
- e) Fix ξ and v as above, but with $\xi(v) = 1$. Prove that any k-form $\alpha \in \wedge^k V^*$ can be decomposed as follows:

$$\alpha = \xi \wedge \beta + \gamma, \tag{11}$$

for a unique pair (β, γ) such that $i_v \beta = i_v \gamma = 0$.