Morse theory of the Grassmannian

Recall that Gr(2,4) is the Grassmannian of 2-dimensional complex linear subspaces $\Lambda \subset \mathbb{C}^4$. We have a natural Hermitian inner product on \mathbb{C}^4 given by

$$\langle x, y \rangle = x \cdot \overline{y} = \sum x_i \overline{y_i}. \tag{1}$$

Due date: Friday Nov 22, 2013

The symmetry group of this inner product is the unitary group

$$U(4) = \{ X \in GL(4, \mathbb{C}) : XX^* = 1 \},$$
(2)

where $X^* = \overline{X}^{\top}$.

Exercise 1. Prove that U(4) acts transitively on Gr(2,4) and determine the stabilizer subgroup associated to the point $\Lambda_0 = Span(e_1, e_2)$.

The Lie algebra of U(4), i.e. the tangent space at the identity element, is the real vector space (of what dimension?) of skew-adjoint matrices

$$\mathfrak{u}(4) = \{ X \in \text{End}(\mathbb{C}^4) : A + A^* = 0 \}.$$
 (3)

This is called a Lie algebra because the commutator $[A_1, A_2]$ of two elements of $\mathfrak{u}(4)$ is also in $\mathfrak{u}(4)$. There is a natural embedding of Gr(2,4) inside $\mathfrak{u}(4)$ which goes as follows:

Any $\Lambda \in Gr(2,4)$ has an orthogonal complement Λ^{\perp} using the Hermitian inner product, and from the decomposition of any element $x \in \mathbb{C}^4$ as $x = x_{\Lambda} + x_{\Lambda^{\perp}}$ with $x_{\Lambda} \in \Lambda$ and $x_{\Lambda^{\perp}} \in \Lambda^{\perp}$, we can define a projection operator $P_{\Lambda} : \mathbb{C}^4 \to \Lambda$ by

$$P_{\Lambda}: x \mapsto x_{\Lambda}.$$
 (4)

Exercise 2. Prove that $\iota : \Lambda \mapsto iP_{\Lambda}$ is an embedding of Gr(2,4) into $\mathfrak{u}(4)$, and that for $g \in U(4)$, we have

$$\iota(g \cdot \Lambda) = g\iota(\Lambda)g^{-1},\tag{5}$$

where on the left hand side we have the usual action of g on a subspace of \mathbb{C}^4 and on the right hand side we have the conjugation action of U(4) on $\mathfrak{u}(4)$, known as the adjoint action. Conclude that $\iota(\operatorname{Gr}(2,4))$ consists of a single adjoint orbit \mathcal{O} and describe the point $\iota(\Lambda_0)$ in this orbit.

Let $\mathfrak{h} \subset \mathfrak{u}(4)$ be the diagonal skew-adjoint matrices (a 4-dimensional real subspace). Elements in \mathfrak{h} with distinct eigenvalues are called *regular* elements of \mathfrak{h} , and the others are called *singular*. Regular elements have the following nice property: any element of $\mathfrak{u}(4)$ which commutes with a regular diagonal element must itself be diagonal.

Exercise 3. Let $\mathfrak{h} \subset \mathfrak{u}(4)$ be the diagonal matrices (a 4-dimensional real subspace). Determine the intersection of $Gr(2,4) \cong \mathcal{O}$ with \mathfrak{h} .

ent 4 Due date: Friday Nov 22, 2013

The real Lie algebra $\mathfrak{u}(4)$ has a Euclidean inner product

$$\langle A, B \rangle = \text{Tr}(AB^*) = -\text{Tr}(AB).$$
 (6)

This inner product is invariant under the adjoint action of U(4), and also satisfies

$$\langle [A, B], C \rangle + \langle B, [A, C] \rangle = 0,$$

for all $A, B, C \in \mathfrak{u}(4)$. We define a Morse function on the Grassmannian as follows: Choose real numbers $a_1 > \cdots > a_4$, so that $Z = \operatorname{diag}(ia_1, \ldots ia_4)$ is a regular element in \mathfrak{h} . Then we define

$$f(\Lambda) = \langle \iota(\Lambda), Z \rangle. \tag{7}$$

Exercise 4. Prove that f is the restriction of the square of the distance function on $\mathfrak{u}(4)$ to the adjoint orbit $\mathcal{O} \cong \operatorname{Gr}(2,4)$: use the polarization identity to prove that

$$f(\Lambda) = -\frac{1}{2}||\iota(\Lambda) - Z||^2 + C,\tag{8}$$

for some constant C independent of Λ .

Exercise 5. Use the above results to determine the critical points of f; a fact which will be useful is the following: the tangent space to \mathcal{O} at a point $X \in \mathcal{O}$, translated to the origin of $\mathfrak{u}(4)$, coincides with the image of the infinitesimal adjoint action:

$$T_X \mathcal{O} = \{ [X, Y] : Y \in \mathfrak{u}(4) \}. \tag{9}$$

Bonus 1. Determine the Morse indices of the critical points of f.

Bonus 2. Determine the descending manifolds of f.