Due date: November 19, 2009

Please contact me if there are any errors.

Exercise 1. A smooth map $f : X \longrightarrow Y$ is said to be transverse to an embedded submanifold $Z \subset Y$ when f is transverse to the inclusion map $\iota : Z \hookrightarrow Y$. Assuming X is compact and Z closed, show that the transversality of f to Z is stable under perturbations of f.

Exercise 2. Let M, N be embedded submanifolds of a manifold X, and suppose that their intersection $M \cap N$ is an embedded submanifold. Then M, N are said to have *clean* intersection when, for each $p \in M \cap N$, we have $T_p(M \cap N) = T_pM \cap T_pN$.

- i) Can the intersection of embedded submanifolds be transverse but not clean? Can it be clean but not transverse? Give examples or proofs as necessary.
- ii) If K, K' are cleanly intersecting submanifolds of X, of codimension k, k' respectively, show that there is a neighbourhood U of any point p ∈ K ∩ K', and coordinates x¹,..., xⁿ on U such that K ∩ U = {x¹ = ··· = x^k = 0} and L ∩ U = {x^j = ··· = x^{j+k'-1} = 0}, for some j ≤ k + 1.
- iii) Let M, N intersect cleanly in X, and let $g: G \longrightarrow M$ and $h: H \longrightarrow N$ be submersions. Is $G \times_X H := G_{\iota_M \circ g} \times_{\iota_N \circ h} H$ an embedded submanifold of $G \times H$? (here ι_M, ι_N are the inclusions). Justify your claim.

Exercise 3.

Compute the mod 2 self-intersection number of the zero section $X \longrightarrow TX$ for the manifolds $X \in \{S^1, S^2, \mathbb{R}P^2\}$. Deduce that every smooth vector field on $\mathbb{R}P^2$ must have a zero.

Exercise 4. Let X be compact and $f : X \longrightarrow Y$ smooth with dim $X = \dim Y$ and Y connected. Recall that the mod 2 degree of f is defined in terms of the mod 2 intersection number as follows: deg₂(f) = $I_2(f, \iota)$, where $\iota : y \mapsto Y$ is the inclusion map of a point $y \in Y$.

- i) Prove that $\deg_2(f)$ is independent of the point $y \in Y$.
- ii) If Y is non-compact, prove that $deg_2(f) = 0$.
- iii) A map f : X → Y is called *essential* when it is not homotopic to a constant map. Prove that if deg₂(f) = 1, then f is essential.
- iv) Give example of a smooth surjective map $f: S^2 \longrightarrow S^2$ with deg₂(f) = 0.
- v) Can there exist a smooth map $f: S^2 \longrightarrow T^2$ with $\deg_2(f) = 1$? [Hint: consider two embedded circles C_1, C_2 in T^2 intersecting transversally at a single point.] Can there exist a smooth map of $\deg_2(f) = 1$ in the opposite direction? In each case, give proofs.

Exercise 5. Let (x, y, z) be the standard coordinates on \mathbb{R}^3 and consider the 1-form $\theta = dx + ydz \in \Omega^1(\mathbb{R}^3)$. Does there exist a smooth immersion f from a neighbourhood of the origin in \mathbb{R}^2 to \mathbb{R}^3 such that $f^*\theta = 0$? [Hint: see illustration on course webpage.] What if, instead, $\theta = xdx + ydy + zdz$? Justify this result also.

Exercise 6. Consider S^n and its two stereographic coordinate charts φ_S, φ_N to \mathbb{R}^n . Using standard coordinates on \mathbb{R}^n , write down the coordinate expressions for a smooth, nowhere-vanishing *n*-form on S^n .