Due date: **December 3, 2009** (in class) I realize that the time available is short, but these questions provide a good study of the last module we covered in class, and will be useful for the final exam. Please contact me if there are any errors.

Exercise 1. Let *z* be the standard complex coordinate on \mathbb{C} , i.e. z = x + iy, and form the complex differential form $\frac{dz}{z}$. Where is this well-defined? Decompose it into real and imaginary parts. Are these closed forms? Compute the integrals

$$\int_{S^1} \iota^* \mu,$$

for $\iota: S^1 \longrightarrow \mathbb{C}$ the standard inclusion and μ the real or imaginary part of $\frac{dz}{z}$. Explain, using Stokes' theorem, why the value of the integral does not depend on the radius of the circle.

Exercise 2. Let $\varphi : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ be given by

$$(r, \phi, \theta) \mapsto (r \sin \phi \cos \theta, r \sin \phi \sin \theta, r \cos \phi),$$

where (r, ϕ, θ) are standard Cartesian coordinates on \mathbb{R}^3 .

- Compute $\varphi^* dx$, $\varphi^* dy$, $\varphi^* dz$ where (x, y, z) are Cartesian coordinates for \mathbb{R}^3 .
- Compute $\varphi^*(dx \wedge dy \wedge dz)$.
- For any vector field X, define ι_X to be the unique degree −1 (i.e. it reduces degree by 1) derivation (i.e. ι_X(α∧β) = ι_X(α)∧β+(−1)^{|α|}α∧ι_X(β)) of the algebra of differential forms such that i_X(f) = 0 and i_Xdf = X(f) for f ∈ Ω⁰(M). Compute the integral

$$\int_{S_r^2}\iota_X(dx\wedge dy\wedge dz),$$

for the vector field $X = \varphi_* \frac{\partial}{\partial r}$, where S_r^2 is the sphere of radius r.

Exercise 3. Compute the de Rham cohomology groups (Using Mayer-Vietoris if necessary) of the following spaces, for all degrees.

- $\mathbb{R}^3 \{p\}$, for $p \in \mathbb{R}^3$ a point.
- $\mathbb{R}^3 \{p_1 \cup p_2\}$ where p_i are distinct points?
- $\mathbb{R}^3 \{\ell_1 \cup \ell_2\}$ where ℓ_i are non-intersecting lines?
- $\mathbb{R}^3 \{\ell_1 \cup \ell_2\}$, assuming that l_1 intersects l_2 in exactly one point?

This question is an easier version of the one John Nash asked in class in the movie "A Beautiful Mind".