
1 Manifolds

A manifold is a space which looks like Rn at small scales (i.e. “locally”), but which may be very different from

this at large scales (i.e. “globally”). In other words, manifolds are made up by gluing pieces of Rn together to

make a more complicated whole. We would like to make this precise.

1.1 Topological manifolds

Definition 1. A real, n-dimensional topological manifold is a Hausdorff, second countable topological space

which is locally homeomorphic to Rn.

Note: “Locally homeomorphic to Rn” simply means that each point p has an open neighbourhood U for

which we can find a homeomorphism ϕ : U −→ V to an open subset V ∈ Rn. Such a homeomorphism ϕ is

called a coordinate chart around p. A collection of charts which cover the manifold, i.e. whose union is the

whole space, is called an atlas.

We now give a bunch of examples of topological manifolds. The simplest is, technically, the empty set.

More simple examples include a countable set of points (with the discrete topology), and Rn itself, but there

are more:

Example 1.1 (Circle). Define the circle S1 = {z ∈ C : |z | = 1}. Then for any fixed point z ∈ S1, write it as

z = e2πic for a unique real number 0 ≤ c < 1, and define the map

νz : t 7→ e2πit . (1)

We note that νz maps the interval Ic = (c − 1
2 , c + 1

2 ) to the neighbourhood of z given by S1\{−z}, and it is

a homeomorphism. Then ϕz = νz |−1
Ic

is a local coordinate chart near z .

By taking products of coordinate charts, we obtain charts for the Cartesian product of manifolds. Hence

the Cartesian product is a manifold.

Example 1.2 (n-torus). S1×· · ·×S1 is a topological manifold (of dimension given by the number n of factors),

with charts {ϕz1 × · · · × ϕzn : zi ∈ S1}.

Example 1.3 (open subsets). Any open subset U ⊂ M of a topological manifold is also a topological manifold,

where the charts are simply restrictions ϕ|U of charts ϕ for M.

For example, the real n×n matrices Mat(n,R) form a vector space isomorphic to Rn2
, and contain an open

subset

GL(n,R) = {A ∈ Mat(n,R) : detA 6= 0}, (2)

known as the general linear group, which therefore forms a topological manifold.

Example 1.4 (Spheres). The n-sphere is defined as the subspace of unit vectors in Rn+1:

Sn = {(x0, . . . , xn) ∈ Rn+1 :
∑

x2
i = 1}.

Let N = (1, 0, . . . , 0) be the North pole and let S = (−1, 0, . . . , 0) be the South pole in Sn. Then we may write

Sn as the union Sn = UN ∪ US, where UN = Sn\{S} and US = Sn\{N} are equipped with coordinate charts

ϕN , ϕS into Rn, given by the “stereographic projections” from the points S,N respectively

ϕN : (x0, ~x) 7→ (1 + x0)−1~x, (3)

ϕS : (x0, ~x) 7→ (1− x0)−1~x. (4)

We have endowed the sphere Sn with a certain topology, but is it possible for another topological manifold S̃n to

be homotopic to Sn without being homeomorphic to it? The answer is no, and this is known as the topological
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Poincaré conjecture, and is usually stated as follows: any homotopy n-sphere is homeomorphic to the n-sphere.

It was proven for n > 4 by Smale, for n = 4 by Freedman, and for n = 3 is equivalent to the smooth Poincaré

conjecture which was proved by Hamilton-Perelman. In dimensions n = 1, 2 it is a consequence of the (easy)

classification of topological 1- and 2-manifolds.

Example 1.5 (Projective spaces). Let K = R or C. Then KP n is defined to be the space of lines through {0}
in Kn+1, and is called the projective space over K of dimension n.

More precisely, let X = Kn+1\{0} and define an equivalence relation on X via x ∼ y iff ∃λ ∈ K∗ = K\{0}
such that λx = y , i.e. x, y lie on the same line through the origin. Then

KP n = X/ ∼,

and it is equipped with the quotient topology.

The projection map π : X −→ KP n is an open map, since if U ⊂ X is open, then tU is also open ∀t ∈ K∗,
implying that ∪t∈K∗tU = π−1(π(U)) is open, implying π(U) is open. This immediately shows, by the way, that

KP n is second countable.

To show KP n is Hausdorff (which we must do, since Hausdorff is preserved by subspaces and products, but

not quotients), we would like to show that the diagonal in KP n×KP n is closed. We show this by showing that

the graph of the equivalence relation is closed in X × X (this, together with the openness of π, gives us the

result). This graph is simply

Γ∼ = {(x, y) ∈ X ×X : x ∼ y},

and we notice that Γ∼ is actually the common zero set of the following continuous functions

fi j(x, y) = (xiyj − xjyi) i 6= j.

An atlas for KP n is given by the open sets Ui = π(Ũi), where

Ũi = {(x0, . . . , xn) ∈ X : xi 6= 0},

and these are equipped with charts to Kn given by

ϕi([x0, . . . , xn]) = x−1
i (x0, . . . , xi−1, xi+1, . . . , xn), (5)

which are indeed invertible by (y1, . . . , yn) 7→ (y1, . . . , yi , 1, yi+1, . . . , yn).

Sometimes one finds it useful to simply use the “coordinates” (x0, . . . , xn) for KP n, with the understanding

that the xi are well-defined only up to overall rescaling. This is called using “projective coordinates” and in this

case a point in KP n is denoted by [x0 : · · · : xn].

Example 1.6 (Connected sum). Let p ∈ M and q ∈ N be points in topological manifolds and let (U,ϕ) and

(V, ψ) be charts around p, q such that ϕ(p) = 0 and ψ(q) = 0.

Choose ε small enough so that B(0, 2ε) ⊂ ϕ(U) and B(0, 2ε) ⊂ ϕ(V ), and define the map of annuli

φ :B(0, 2ε)\B(0, ε) −→ B(0, 2ε)\B(0, ε) (6)

x 7→ 2ε2

|x |2 x. (7)

This is a homeomorphism of the annulus to itself, exchanging the boundaries. Now we define a new topological

manifold, called the connected sum M]N, as the quotient X/ ∼, where

X = (M\ϕ−1(B(0, ε))) t (N\ψ−1(B(0, ε))),

and we define an identification x ∼ ψ−1φϕ(x) for x ∈ ϕ−1(B(0, 2ε)). If AM and AN are atlases for M,N

respectively, then a new atlas for the connect sum is simply

AM |M\ϕ−1(B(0,ε))
∪ AN |N\ψ−1(B(0,ε))

2



Two important remarks concerning the connect sum: first, the connect sum of a sphere with itself is

homeomorphic to the same sphere:

Sn]Sn ∼= Sn.

Second, by taking repeated connect sums of T 2 and RP 2, we may obtain all compact 2-dimensional manifolds.

Example 1.7. Let F be a topological space. A fiber bundle with fiber F is a triple (E, p,B), where E,B are

topological spaces called the “total space” and “base”, respectively, and p : E −→ B is a continuous surjective

map called the “projection map”, such that, for each point b ∈ B, there is a neighbourhood U of b and a

homeomorphism

Φ : p−1U −→ U × F,

such that pU ◦ Φ = p, where pU : U × F −→ U is the usual projection. The submanifold p−1(b) ∼= F is called

the “fiber over b”.

When B, F are topological manifolds, then clearly E becomes one as well. We will often encounter such

manifolds.

1.2 Smooth manifolds

Given coordinate charts (Ui , ϕi) and (Uj , ϕj) on a topological manifold, if we compare coordinates on the

intersection Ui j = Ui ∩ Uj , we see that the map

ϕj ◦ ϕ−1
i |ϕi (Ui j ) : ϕi(Ui j) −→ ϕj(Ui j)

is a homeomorphism, simply because it is a composition of homeomorphisms. We can say this another way:

topological manifolds are glued together by homeomorphisms.

This means that we may be able to differentiate a function in one coordinate chart but not in another, i.e.

there is no way to make sense of calculus on topological manifolds. This is why we introduce smooth manifolds,

which is simply a topological manifold where the gluing maps are required to be smooth.

First we recall the notion of a smooth map of finite-dimensional vector spaces.

Remark 1 (Aside on smooth maps of vector spaces). Let U ⊂ V be an open set in a finite-dimensional vector

space, and let f : U −→ W be a function with values in another vector space W . The function f is said to be

differentiable at p ∈ U if there exists a linear map Df (p) : V −→ W such that

lim
||x ||→0

||f (p + x)− f (p)−Df (p)(x)||
||x || = 0.

Here we choose any norm1 || · || on U, V since such norms are all equivalent for finite-dimensional vector spaces.

For infinite-dimensional vector spaces, the topology is highly sensitive to which norm is chosen, but we will work

in finite dimensions.

Given linear coordinates (x1, . . . , xn) on V , and (y1, . . . , ym) on W , we may express f in terms of its m

components fj = yj ◦ f , and then the linear map Df (p) may be written as an m× n matrix, called the Jacobian

matrix of f at p.

Df (p) =


∂f1
∂x1

· · · ∂f1
∂xn

...
...

∂fm
∂x1

· · · ∂fm
∂xn

 (8)

We say that f is differentiable on U when it is differentiable at all p ∈ U and we say it is continuously differentiable

when

Df : U −→ Hom(V,W )

1A norm on a vector space V is a map | · | : V −→ R such that ||av || = |a|||v || for a ∈ R, ||v || = 0 iff v = 0, and satisfying the

triangle inequality.
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is continuous. The vector space of continuously differentiable functions on U with values inW is called C1(U,W ).

The first derivative Df is also a map from U to a vector space (Hom(V,W )), therefore if its derivative

exists, we obtain a map

D2f : U −→ Hom(V,Hom(V,W )),

and so on. The vector space of k times continuously differentiable functions on U with values in W is called

Ck(U,W ). We are most interested in C∞ or “smooth” maps, all of whose derivatives exist; the space of these

is denoted C∞(U,W ), and hence we have

C∞(U,W ) =
⋂
k

Ck(U,W ).

Note: for a C2 function, D2f actually has values in a smaller subspace of V ∗⊗V ∗⊗W , namely in S2V ∗⊗W ,

since “mixed partials are equal”.

After this aside, we can define a smooth manifold.

Definition 2. A smooth manifold is a topological manifold equipped with an equivalence class of smooth atlases,

explained below.

Definition 3. An atlas A = {Ui , ϕi} for a topological manifold is called smooth when all gluing maps

ϕj ◦ ϕ−1
i |ϕi (Ui j ) : ϕi(Ui j) −→ ϕj(Ui j)

are smooth maps, i.e. lie in C∞(ϕi(Ui j),Rn). Two atlases A,A′ are equivalent if A ∪ A′ is itself a smooth

atlas.

Note: Instead of requiring an atlas to be smooth, we could ask for it to be Ck , or real-analytic, or even

holomorphic (this makes sense for a 2n-dimensional topological manifold when we identify R2n ∼= Cn.

We may now verify that all the examples from section 1.1 are actually smooth manifolds:

Example 1.8 (Circle). For Example 1.1, only two charts, e.g. ϕ±1, suffice to define an atlas, and we have

ϕ−1 ◦ ϕ−1
1 =

{
t + 1 − 1

2 < t < 0

t 0 < t < 1
2 ,

which is clearly C∞. In fact all the charts ϕz are smoothly compatible. Hence the circle is a smooth manifold.

The Cartesian product of smooth manifolds inherits a natural smooth structure from taking the Cartesian

product of smooth atlases. Hence the n-torus, for example, equipped with the atlas we described in Example 1.2,

is smooth. Example 1.3 is clearly defining a smooth manifold, since the restriction of a smooth map to an open

set is always smooth.

Example 1.9 (Spheres). The charts for the n-sphere given in Example 1.4 form a smooth atlas, since

ϕN ◦ ϕ−1
S : ~z 7→ 1−x0

1+x0
~z = (1−x0)2

|~x |2 ~z = |~z |−2~z,

which is smooth on Rn\{0}, as required.

Example 1.10 (Projective spaces). The charts for projective spaces given in Example 1.5 form a smooth atlas,

since

ϕ1 ◦ ϕ−1
0 (z1, . . . , zn) = (z−1

1 , z−1
1 z2, . . . , z

−1
1 zn), (9)

which is smooth on Rn\{z1 = 0}, as required, and similarly for all ϕi , ϕj .

The connected sum in Example 1.6 is clearly smooth since φ was chosen to be a smooth map.
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