
In fact, vector fields provide all possible derivations of the algebra A = C∞(M,R):

Theorem 2.6. The map Γ∞(M,TM) −→ Der(C∞(M,R)) is an isomorphism.

Proof. First we prove the result for an open set U ⊂ Rn. Let D be a derivation of C∞(U,R) and define the

smooth functions ai = D(x i). Then we claim D =
∑

i a
i ∂
∂x i

. We prove this by testing against smooth functions.

Any smooth function f on Rn may be written

f (x) = f (0) +
∑
i

x igi(x),

with gi(0) = ∂f
∂x i

(0) (simply take gi(x) =
∫ 1

0
∂f
∂x i

(tx)dt). Translating the origin to y ∈ U, we obtain for any

z ∈ U
f (z) = f (y) +

∑
i

(x i(z)− x i(y))gi(z), gi(y) = ∂f
∂x i

(y).

Applying D, we obtain

Df (z) =
∑
i

(Dx i)gi(z)−
∑
i

(x i(z)− x i(y))Dgi(z).

Letting z approach y , we obtain

Df (y) =
∑
i

ai ∂f
∂x i

(y) = X(f )(y),

as required.

To prove the global result, let (Vi ⊂ Ui , ϕi) be a regular covering and θi the associated partition of unity.

Then for each i , θiD : f 7→ θiD(f ) is also a derivation of C∞(M,R). This derivation defines a unique derivation

Di of C∞(Ui ,R) such that Di(f |Ui ) = (θiDf )|Ui , since for any point p ∈ Ui , a given function g ∈ C∞(Ui ,R)

may be replaced with a function g̃ ∈ C∞(M,R) which agrees with g on a small neighbourhood of p, and we

define (Dig)(p) = θi(p)Dg̃(p). This definition is independent of g̃, since if h1 = h2 on an open set, Dh1 = Dh2

on that open set (let ψ = 1 in a neighbourhood of p and vanish outside Ui ; then h1 − h2 = (h1 − h2)(1 − ψ)

and applying D we obtain zero).

The derivation Di is then represented by a vector field Xi , which must vanish outside the support of θi .

Hence it may be extended by zero to a global vector field which we also call Xi . Finally we observe that for

X =
∑

i Xi , we have

X(f ) =
∑
i

Xi(f ) =
∑
i

Di(f ) = D(f ),

as required.

Since vector fields are derivations, we deduce that they have all the properties that derivationsdo, and we

also have a natural source of examples, coming from infinitesimal automorphisms of M.

Definition 15. For any algebra A, the derivations Der(A) form a Lie algebra via the bracket [X, Y ](f ) =

X(Y (f ))− Y (X(f )). For vector fields (A = C∞(M,R)), this bracket is called the Lie bracket.

Example 2.7. Let ϕt : be a smooth family of diffeomorphisms ofM with ϕ0 = Id. That is, let ϕ : (−ε, ε)×M −→
M be a smooth map and ϕt : M −→ M a diffeomorphism for each t. Then X(f )(p) = d

dt |t=0(ϕ∗t f )(p) defines a

smooth vector field. A better way of seeing that it is smooth is to rewrite it as follows: Let ∂
∂t be the coordinate

vector field on (−ε, ε) and observe X(f )(p) = ∂
∂t (ϕ∗f )(0, p).

In many cases, a smooth vector field may be expressed as above, i.e. as an infinitesimal automorphism of

M, but this is not always the case. In general, it gives rise to a “local 1-parameter group of diffeomorphisms”,

as follows:
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Definition 16. A local 1-parameter group of diffeomorphisms is an open set U ⊂ R ×M containing {0} ×M
and a smooth map

Φ :U −→ M

(t, x) 7→ ϕt(x)

such that R × {x} ∩ U is connected, ϕ0(x) = x for all x and if (t, x), (t + t ′, x), (t ′, ϕt(x)) are all in U then

ϕt ′(ϕt(x)) = ϕt+t ′(x) (note that this last fact indicates that ϕt are all diffeomorphisms, having inverses ϕ−t).

Then the local existence and uniqueness of solutions to systems of ODE implies that every smooth vector

field X ∈ Γ∞(M,TM) gives rise to a local 1-parameter group of diffeomorphisms (U,Φ) such that the curve

γx : t 7→ ϕt(x) is such that (γx)∗(
d
dt ) = X(γx(t)) (this means that γx is an integral curve or “trajectory” of

the “dynamical system” defined by X). Furthermore, if (U ′,Φ′) are another such data, then Φ = Φ′ on U ∩U ′.

Definition 17. A vector field X ∈ Γ∞(M,TM) is called complete when it has a local 1-parameter group of

diffeomorphisms with U = R×M.

Theorem 2.8. If M is compact, then every smooth vector field is complete. Similarly any compactly-supported

vector field is complete.

Example 2.9. The vector field X = x2 ∂
∂x on R is not complete. For initial condition x0, have integral curve

γ(t) = x0(1− tx0)−1, which gives Φ(t, x0) = x0(1− tx0)−1, which is well-defined on {1− tx > 0}.

Remark 3. If φt and ψt are families of automorphisms of A with φ0 = ψ0 = Id, then they correspond

to derivations X = d
dt |t=0φt and Y = d

dt |t=0ψt , and the family of automorphisms γt = φtψtφ
−1
t ψ−1

t has
d
dt |t=0γt = 0 and d2

dt2 |t=0γt = [X, Y ].
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2.3 Local structure of smooth maps

In some ways, smooth manifolds are easier to produce or find than general topological manifolds, because of

the fact that smooth maps have linear approximations. Therefore smooth maps often behave like linear maps

of vector spaces, and we may gain inspiration from vector space constructions (e.g. subspace, kernel, image,

cokernel) to produce new examples of manifolds.

In charts (U,ϕ), (V, ψ) for the smooth manifolds M,N, a smooth map f : M −→ N is represented by a

smooth map ψ ◦ f ◦ ϕ−1 ∈ C∞(ϕ(U),Rn). We shall give a general local classification of such maps, based on

the behaviour of the derivative. The fundamental result which provides information about the map based on its

derivative is the inverse function theorem.

Theorem 2.10 (Inverse function theorem). Let U ⊂ Rm an open set and f : U −→ Rm a smooth map such

that Df (p) is an invertible linear operator. Then there is a neighbourhood V ⊂ U of p such that f (V ) is open

and f : V −→ f (V ) is a diffeomorphism. furthermore, D(f −1)(f (p)) = (Df (p))−1.

Proof not given in class – this is the standard proof seen in first analysis course. Without loss of generality, as-

sume that U contains the origin, that f (0) = 0 and that Df (p) = Id (for this, replace f by (Df (0))−1 ◦ f . We

are trying to invert f , so solve the equation y = f (x) uniquely for x . Define g so that f (x) = x + g(x). Hence

g(x) is the nonlinear part of f .

The claim is that if y is in a sufficiently small neighbourhood of the origin, then the map hy : x 7→ y − g(x)

is a contraction mapping on some closed ball; it then has a unique fixed point φ(y) by the Banach fixed point

theorem (Look it up!), and so y − g(φ(y)) = φ(y), i.e. φ is an inverse for f .

Why is hy a contraction mapping? Note that Dhy (0) = 0 and hence there is a ball B(0, r) where ||Dhy || ≤ 1
2 .

This then implies (mean value theorem) that for x, x ′ ∈ B(0, r),

||hy (x)− hy (x ′)|| ≤ 1
2 ||x − x

′||.

Therefore hy does look like a contraction, we just have to make sure it’s operating on a complete metric space.

Let’s estimate the size of hy (x):

||hy (x)|| ≤ ||hy (x)− hy (0)||+ ||hy (0)|| ≤ 1
2 ||x ||+ ||y ||.

Therefore by taking y ∈ B(0, r2 ), the map hy is a contraction mapping on B(0, r). Let φ(y) be the unique fixed

point of hy guaranteed by the contraction mapping theorem.

To see that φ is continuous (and hence f is a homeomorphism), we compute

||φ(y)− φ(y ′)|| = ||hy (φ(y))− hy ′(φ(y ′))||
≤ ||g(φ(y))− g(φ(y ′))||+ ||y − y ′||
≤ 1

2 ||φ(y)− φ(y ′)||+ ||y − y ′||,

so that we have ||φ(y)− φ(y ′)|| ≤ 2||y − y ′′||, as required.

To see that φ is differentiable, we guess the derivative (Df )−1 and compute. Let x = φ(y) and x ′ = φ(y ′).

For this to make sense we must have chosen r small enough so that Df is nonsingular on B(0, r), which is not

a problem.

||φ(y)− φ(y ′)− (Df (x))−1(y − y ′)|| = ||x − x ′ − (Df (x))−1(f (x)− f (x ′))||
≤ ||(Df (x))−1||||(Df (x))(x − x ′)− (f (x)− f (x ′))||
≤ o(||x − x ′||), using differentiability of f

≤ o(||y − y ′||), using continuity of φ.

Now that we have shown φ is differentiable with derivative (Df )−1, we use the fact that Df is C∞ and

inversion is C∞, implying that Dφ is C∞ and hence φ also.
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This theorem immediately provides us with a local normal form for a smooth map with Df (p) invertible: we

may choose coordinates on sufficiently small neighbourhoods of p, f (p) so that f is represented by the identity

map Rn −→ Rn.

In fact, the inverse function theorem leads to a normal form theorem for a more general class of maps:

Theorem 2.11 (Constant rank theorem). If f : M −→ N is a smooth map of manifolds of dimension m, n

respectively, and if T f has constrant rank k in some open set U ⊂ M then for each point p ∈ U there are charts

(U,ϕ) and (V, ψ) containing p, f (p) such that

ψ ◦ f ◦ ϕ−1 : (x1, . . . , xm) 7→ (x1, . . . , xk , 0, . . . , 0).

Proof. Begin by choosing coordinates near p, f (p) on M and N. Since rk (T f ) = k at p, there is a k × k
minor of Df (p) with nonzero determinant. Reorder the coordinates on Rm and Rn so that this minor is top

left, and translate coordinates so that f (0) = 0. label the coordinates (x1, . . . , xk , y1, . . . ym−k) on V and

(u1, . . . uk , v1, . . . , vn−k) on W .

Then we may write f (x, y) = (Q(x, y), R(x, y)), where Q is the projection to u = (u1, . . . , uk) and R

is the projection to v . with ∂Q
∂x nonsingular. First we wish to put Q into normal form. Consider the map

φ(x, y) = (Q(x, y), y), which has derivative

Dφ =

(
∂Q
∂x

∂Q
∂y

0 1

)
As a result we see Dφ(0) is nonsingular and hence there exists a local inverse φ−1(x, y) = (A(x, y), B(x, y)).

Since it’s an inverse this means (x, y) = φ(φ−1(x, y)) = (Q(A,B), B), which implies that B(x, y) = y .

Then f ◦ φ−1 : (x, y) 7→ (x, R̃ = R(A, y)), and must still be of rank k . Since its derivative is

D(f ◦ φ−1) =

(
Ik×k 0
∂R̃
∂x

∂R̃
∂y

)

and since we know that T f must have rank k in a neighbourhood of p, we conclude that ∂R̃
∂y = 0 in a

neighbourhood of p, meaning that R̃ is a function S(x) only of the variables x .

f ◦ φ−1 : (x, y) 7→ (x, S(x)).

We now postcompose by the diffeomorphism σ : (u, v) 7→ (u, v − S(u)), to obtain

σ ◦ f ◦ φ−1 : (x, y) 7→ (x, 0),

as required.

Some special cases of the above theorem have special names:

local immersion: (x1, . . . , xm) 7→ (x1, . . . , xm, 0, . . . , 0)

local submersion: (x1, . . . , xm) 7→ (x1, . . . , xk)

local diffeomorphism: (x1, . . . , xm) 7→ (x1, . . . , xm)

Definition 18. A smooth map f : M −→ N is called a submersion when T f (p) is surjective at all points p ∈ M,

and is called an immersion when T f (p) is injective at all points p ∈ M.

For linear maps A : V −→ W , we obtain new vector spaces as subspaces ker(A) ⊂ V and im(A) ⊂ W . The

same thing occurs for smooth maps, assuming that they satisfy the conditions of the theorem above.

17



Definition 19. An embedded submanifold (sometimes called regular submanifold) of dimension k in an n-

manifold M is a subspace S ⊂ M such that ∀s ∈ S, there exists a chart (U,ϕ) for M, containing s, and

with

S ∩ U = ϕ−1(xk+1 = · · · = xn = 0).

In other words, the inclusion S ⊂ M is locally isomorphic to the vector space inclusion Rk ⊂ Rn.

Of course, the remaining coordinates {x1, . . . , xk} define a smooth manifold structure on S itself, justifying

the terminology.

Proposition 2.12 (analog of kernel). If f : M −→ N is a smooth map of manifolds, and if T f (p) has constant

rank on M, then for any q ∈ f (M), the inverse image f −1(q) ⊂ M is an embedded submanifold.

Proof. Let x ∈ f −1(q). Then there exist charts ψ,ϕ such that ψ◦f ◦ϕ−1 : (x1, . . . , xm) 7→ (x1, . . . , xk , 0, . . . , 0)

and f −1(q) ∩ U = {x1 = · · · = xk = 0}. Hence we obtain that f −1(q) is a codimension k embedded

submanifold.

Example 2.13. Let f : Rn −→ R be given by (x1, . . . , xn) 7→
∑
x2
i . Then Df (x) = (2x1, . . . , 2xn), which has

rank 1 at all points in Rn\{0}. Hence since f −1(q) contains {0} iff q = 0, we see that f −1(q) is an embedded

submanifold for all q 6= 0. Exercise: show that this manifold structure is compatible with that obtained in

Example 1.9.

If T f has maximal rank at a point p ∈ M, this is a special case, because then it will have maximal rank in a

neighbourhood of p, and the local normal form will hold.

Definition 20. A point p ∈ M for which T f (p) has maximal rank is called a regular point. Otherwise it is called

a critical point. Values q ∈ N for which f −1(q) are all regular points are called regular values (including points

for which f −1(q) = ∅). Other values are called critical values. Warning: even if q is a critical value, f −1(q)

may contain regular points.

Proposition 2.14 (maximal rank special case). If f : M −→ N is a smooth map of manifolds and q ∈ N is a

regular value, then f −1(q) is an embedded submanifold of M.

Proof. Since the rank is maximal along f −1(q), it must be maximal in an open neighbourhood U ⊂ M containing

f −1(q), and hence f : U −→ N is of constant rank.

Warning: An immersion locally defines an embedded submanifold. But globally, it may not be injective, and

it also may not be a homeomorphism onto its image (examples: figure 8 embedding of S1 in R2 and number 9

immersion of R in R2.)

Definition 21. If f is an injective immersion which is a homeomorphism onto its image (when the image is

equipped with subspace topology), then we call f an embedding

Proposition 2.15. If f : M −→ N is an embedding, then f (M) is a regular submanifold.

Proof. Let f : M −→ N be an embedding. Then for all m ∈ M, we have charts (U,ϕ), (V, ψ) where

ψ ◦ f ◦ ϕ−1 : (x1, . . . , xm) 7→ (x1, . . . , xm, 0, . . . , 0). If f (U) = f (M) ∩ V , we’re done. To make sure that some

other piece of M doesn’t get sent into the neighbourhood, use the fact that f x(U) is open in the subspace

topology. This means we can find a smaller open set V ′ ⊂ V such that V ′∩ f (M) = f (U). Then we can restrict

the charts (V ′, ψ|V ′), (U ′ = f −1(V ′), ϕU ′) so that we see the embedding.

Remark 4. If ι : M −→ N is an embedding of M into N, then Tι : TM −→ TN is also an embedding, and

hence T kι : T kM −→ T kN are all embeddings.
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