
Having the constant rank theorem in hand, we may also apply it to study manifolds with boundary. The

following two results illustrate how this may easily be done.

Proposition 2.16. Let M be a smooth n-manifold and f : M −→ R a smooth real-valued function, and let a, b,

with a < b, be regular values of f . Then f −1([a, b]) is a cobordism between the n − 1-manifolds f −1(a) and

f −1(b).

Proof. The pre-image f −1((a, b)) is an open subset of M and hence a submanifold of M. Since p is regular for

all p ∈ f −1(a), we may (by the constant rank theorem) find charts such that f is given near p by the linear map

(x1, . . . , xm) 7→ xm.

Possibly replacing xm by −xm, we therefore obtain a chart near p for f −1([a, b]) into Hm, as required. Proceed

similarly for p ∈ f −1(b).

Example 2.17. Using f : Rn −→ R given by (x1, . . . , xn) 7→
∑
x2
i , this gives a simple proof for the fact that

the closed unit ball B(0, 1) = f −1([−1, 1]) is a manifold with boundary.

Example 2.18. Consider the C∞ function f : R3 −→ R given by (x, y , z) 7→ x2 + y2 − z2. Both +1 and −1

are regular values for this map, with pre-images given by 1- and 2-sheeted hyperboloids, respectively. Hence

f −1([−1, 1]) is a cobordism between hyperboloids of 1 and 2 sheets. In other words, it defines a cobordism

between the disjoint union of two closed disks and the closed cylinder (each of which has boundary S1 t S1).

Does this cobordism tell us something about the cobordism class of a connected sum?

Proposition 2.19. Let f : M −→ N be a smooth map from a manifold with boundary to the manifold

N. Suppose that q ∈ N is a regular value of f and also of f |∂M . Then the pre-image f −1(q) is a regular

submanifold with boundary (i.e. locally modeled on Rk ⊂ Rn or the inclusion Hk ⊂ Hn given by (x1, . . . xk) 7→
(0, . . . , 0, x1, . . . xk).) Furthermore, the boundary of f −1(q) is simply its intersection with ∂M.

Proof. If p ∈ f −1(q) is not in ∂M, then as before f −1(q) is a regular submanifold in a neighbourhood of p.

Therefore suppose p ∈ ∂M ∩ f −1(q). Pick charts ϕ,ψ so that ϕ(p) = 0 and ψ(q) = 0, and ψf ϕ−1 is a map

U ⊂ Hm −→ Rn. Extend this to a smooth function f̃ defined in an open set Ũ ⊂ Rm containing U. Shrinking

Ũ if necessary, we may assume f̃ is regular on Ũ. Hence f̃ −1(0) is a regular submanifold of Rm of dimension

m − n.

Now consider the real-valued function π : f̃ −1(0) −→ R given by the restriction of (x1, . . . , xm) 7→ xm.

0 ∈ R must be a regular value of π, since if not, then the tangent space to f̃ −1(0) at 0 would lie completely in

xm = 0, which contradicts the fact that q is a regular point for f |∂M .

Hence, by Proposition 2.16, we have expressed f −1(q), in a neighbourhood of p, as a regular submanifold

with boundary given by {ϕ−1(x) : x ∈ f̃ −1(0) and π(x) ≥ 0}, as required.

One important use of the above result is in a proof of the Brouwer fixed point theorem. But in order to use

it, we need to know that most values are regular values, i.e. that regular values are generic. This is a result of

transversality theory, known as Sard’s theorem [next section].

Corollary 2.20. Let M be a compact manifold with boundary. There is no smooth map f : M −→ ∂M leaving

∂M pointwise fixed. Such a map is called a smooth retraction of M onto its boundary.

Proof. Such a map f must have a regular value by Sard’s theorem, let this value be y ∈ ∂M. Then y is obviously

a regular value for f |∂M = Id as well, so that f −1(y) must be a compact 1-manifold with boundary given by

f −1(y) ∩ ∂M, which is simply the point y itself. Since there is no compact 1-manifold with a single boundary

point, we have a contradiction.

For example, this shows that the identity map Sn −→ Sn may not be extended to a smooth map f :

B(0, 1) −→ Sn.
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Corollary 2.21. Every smooth map of the closed n-ball to itself has a fixed point.

Proof. Let Dn = B(0, 1). If g : Dn −→ Dn had no fixed points, then define the function f : Dn −→ Sn−1 as

follows: let f (x) be the point nearer to x on the line joining x and g(x).

This map is smooth, since f (x) = x + tu, where

u = ||x − g(x)||−1(x − g(x)),

and t is the positive solution to the quadratic equation (x + tu) · (x + tu) = 1, which has positive discriminant

b2 − 4ac = 4(1− |x |2 + (x · u)2). Such a smooth map is therefore impossible by the previous corollary.

Theorem 2.22 (Brouwer fixed point theorem). Any continuous self-map of Dn has a fixed point.

Not given in class, won’t use it in class. The Weierstrass approximation theorem says that any continuous func-

tion on [0, 1] can be uniformly approximated by a polynomial function in the supremum norm ||f ||∞ = supx∈[0,1] |f (x)|.
In other words, the polynomials are dense in the continuous functions with respect to the supremum norm. The

Stone-Weierstrass is a generalization, stating that for any compact Hausdorff space X, if A is a subalgebra of

C0(X,R) such that A separates points (∀x, y , ∃f ∈ A : f (x) 6= f (y)) and contains a nonzero constant function,

then A is dense in C0.

Given this result, approximate a given continuous self-map g of Dn by a polynomial function p′ so that

||p′ − g||∞ < ε on Dn. To ensure p′ sends Dn into itself, rescale it via

p = (1 + ε)−1p′.

Then clearly p is a Dn self-map while ||p − g||∞ < 2ε. If g had no fixed point, then |g(x) − x | must have a

minimum value µ on Dn, and by choosing 2ε = µ we guarantee that for each x ,

|p(x)− x | ≥ |g(x)− x | − |g(x)− p(x)| > µ− µ = 0.

Hence p has no fixed point. Such a smooth function can’t exist and hence we obtain the result.
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3 Transversality

We shall now continue to use the inverse and constant rank theorems to produce more manifolds, except now

these shall be cut out only locally by functions. We shall ask when the intersection of two submanifolds yields

a submanifold. You should think that intersecting a given submanifold with another is the local imposing of a

certain number of constraints.

Two subspaces K,L ⊂ V of a vector space V are called transversal when K +L = V , i.e. every vector in V

may be written as a (possibly non-unique) linear combination of vectors in K and L. In this situation one can

easily see that

dim V = dimK + dimL− dimK ∩ L.

We may apply this to submanifolds as follows:

Definition 22. Let K,L ⊂ M be regular submanifolds such that every point p ∈ K ∩ L satisfies

TpK + TpL = TpM.

Then K,L are said to be transverse submanifolds and we write K ∩| L.

Note: at this point, we have not defined the tangent bundle of a manifold, but we may understand tangent

spaces locally, in each chart. We may make sense of this as follows: Let k : K −→ M and l : L −→ M be the

inclusion maps. Then we may consider TpK,TpL to be the images of the derivatives of k and l , in charts for

K,L,M. Transversality then requires that these images span Rm, where m = dimM.

Proposition 3.1. If K,L ⊂ M are transverse regular submanifolds then K ∩ L is also a regular submanifold, of

dimension dimK + dimL− dimM.

Proof. Let p ∈ K ∩ L. Then there is a neighbourhood U of p for which K ∩ U = f −1(0) for 0 a regular value

of a function f : U −→ Rk and L ∩ U = g−1(0) for 0 a regular value of a function g : L ∩ U −→ Rl , where K

and L have codimension k, l respectively.

Now note that K ∩ L ∩ U = (f , g)−1(0), where (f , g) : K ∩ L ∩ U −→ Rk+l . But 0 is a regular value for

(f , g), since ker T (f , g) = ker T f ∩ ker Tg = TpK ∩ TpL, which has codimension k + l by the transversality

assumption. Hence the rank of T (f , g) must be k + l , just because the rank of a linear map is always given by

the codimension of its kernel.

Example 3.2 (Exotic spheres). Consider the following intersections in C5\0:

S7
k = {z2

1 + z2
2 + z2

3 + z3
4 + z6k−1

5 = 0} ∩ {|z1|2 + |z2|2 + |z3|2 + |z4|2 + |z5|2 = 1}.

This is a transverse intersection, and for k = 1, . . . , 28 the intersection is a smooth manifold homeomorphic to

S7. These exotic 7-spheres were constructed by Brieskorn and represent each of the 28 diffeomorphism classes

on S7.

We may choose to phrase the previous transversality result in a slightly different way, in terms of the

embedding maps k, l for K,L in M. Specifically, we say the maps k, l are transverse in the sense that ∀a ∈
K, b ∈ L such that k(a) = l(b) = p, we have im(Tk(a)) + im(T l(b)) = TpM. The advantage of this approach

is that it makes sense for any maps, not necessarily embeddings.

Definition 23. Two maps f : K −→ M, g : L −→ M of manifolds are called transverse when T f (TaK) +

Tg(TbL) = TpM for all a, b, p such that f (a) = g(b) = p.

21


