
Now we investigate the measure of the critical values of a map f : M −→ N where dimM = dimN. Of

course the set of critical points need not have measure zero, but we shall see that because the values of f on

the critical set do not vary much, the set of critical values will have measure zero.

Theorem 3.11 (Equidimensional Sard). Let f : M −→ N be a C1 map of n-manifolds, and let C ⊂ M be the

set of critical points. Then f (C) has measure zero.

Proof. It suffices to show result for the unit cube. Let f : In −→ Rn a C1 map and let C ⊂ In be the set of

critical points.

Since f ∈ C1(In,Rn), we have that the linear approximation to f at x ∈ In, namely

f l inx (y) = f (x) + f∗(x)(y − x),

approximates f to second order, i.e. there is a positive function b(ε) with b → 0 as ε→ 0 such that

||f (y)− f l inx (y)|| ≤ b(|y − x |)||y − x ||.

Of course f is still Lipschitz so that

||f (y)− f (x)|| ≤ a||y − x || ∀x, y ∈ In

Since f is Lipschitz, we know that ||y − x || < ε implies ||f (y)− f (x)|| < aε. But if x is a critical point, then

f l inx has image contained in a hyperplane Px , which is of lower dimension and hence measure zero. This means

the distance of f (y) to Px is less than εb(ε).

Therefore f (y) lies in the cube centered at f (x) of edge aε, but if we choose the cube to have a face parallel

to Px , then the edge perpendicular to Px can be shortened to only 2εbε. Therefore f (y) is in a region of volume

(aε)n−12εb(ε).

Now partition In into hn cubes each of edge h−1. Any such cube containing a critical point x is certainly

contained in a ball around x of radius r = h−1
√
n. The image of this ball then has volume ≤ (ar)n−12rb(r) =

Arnb(r) for A = 2an−1. The total volume of all the images is then less than

hnArnb(r) = Ann/2b(r).

Note that A and n are fixed, while r = h−1
√
n is determined by the number h of cubes. By increasing the

number of cubes, we may decrease their radius arbitrarily, and hence the above total volume, as required.

The argument above will not work for dimN < dimM; we need more control on the function f . In particular,

one can find a C1 function from I2 −→ R which fails to have critical values of measure zero (hint: C+C = [0, 2]

where C is the Cantor set). As a result, Sard’s theorem in general requires more differentiability of f .

Theorem 3.12 (Big Sard’s theorem). Let f : M −→ N be a Ck map of manifolds of dimensionm, n, respectively.

Let C be the set of critical points, i.e. points x ∈ U with

rank Df (x) < n.

Then f (C) has measure zero if k > m
n − 1.

Do not give proof in class, no time. As before, it suffices to show for f : Im −→ Rn.

Define C1 ⊂ C to be the set of points x for which Df (x) = 0. Define Ci ⊂ Ci−1 to be the set of points x for which

Dj f (x) = 0 for all j ≤ i . So we have a descending sequence of closed sets:

C ⊃ C1 ⊃ C2 ⊃ · · · ⊃ Ck .

We will show that f (C) has measure zero by showing

1. f (Ck) has measure zero,
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2. each successive difference f (Ci\Ci+1) has measure zero for i ≥ 1,

3. f (C\C1) has measure zero.

Step 1: For x ∈ Ck , Taylor’s theorem gives the estimate

f (x + t) = f (x) + R(x, t), with ||R(x, t)|| ≤ c ||t||k+1,

where c depends only on Im and f , and t sufficiently small.

If we now subdivide Im into hm cubes with edge h−1, suppose that x sits in a specific cube I1. Then any point in I1
may be written as x + t with ||t|| ≤ h−1√m. As a result, f (I1) lies in a cube of edge ah−(k+1), where a = 2cm(k+1)/2 is

independent of the cube size. There are at most hm such cubes, with total volume less than

hm(ah−(k+1))n = anhm−(k+1)n.

Assuming that k > m
n
− 1, this tends to 0 as we increase the number of cubes.

Step 2: For each x ∈ Ci\Ci+1, i ≥ 1, there is a i + 1th partial ∂ i+1fj/∂xs1 · · · ∂xsi+1 which is nonzero at x . Therefore the

function

w(x) = ∂k fj/∂xs2 · · · ∂xsi+1

vanishes at x but its partial derivative ∂w/∂xs1 does not. WLOG suppose s1 = 1, the first coordinate. Then the map

h(x) = (w(x), x2, . . . , xm)

is a local diffeomorphism by the inverse function theorem (of class Ck) which sends a neighbourhood V of x to an open

set V ′. Note that h(Ci ∩ V ) ⊂ {0} × Rm−1. Now if we restrict f ◦ h−1 to {0} × Rm−1 ∩ V ′, we obtain a map g whose

critical points include h(Ci ∩ V ). Hence we may prove by induction on m that g(h(Ci ∩ V )) = f (Ci ∩ V ) has measure

zero. Cover by countably many such neighbourhoods V .

Step 3: Let x ∈ C\C1. Then there is some partial derivative, wlog ∂f1/∂x1, which is nonzero at x . the map

h(x) = (f1(x), x2, . . . , xm)

is a local diffeomorphism from a neighbourhood V of x to an open set V ′ (of class Ck). Then g = f ◦ h−1 has critical

points h(V ∩C), and has critical values f (V ∩C). The map g sends hyperplanes {t}×Rm−1 to hyperplanes {t}×Rn−1,

call the restriction map gt . A point in {t} × Rm−1 is critical for gt if and only if it is critical for g, since the Jacobian of

g is  
1 0

∗ ∂git
∂xj

!
By induction on m, the set of critical values for gt has measure zero in {t} × Rn−1. By Fubini, the whole set g(C ′)

(which is measurable, since it is the countable union of compact subsets (critical values not necessarily closed, but critical

points are closed and hence a countable union of compact subsets, which implies the same of the critical values.) is then

measure zero. To show this consequence of Fubini directly, use the following argument:

First note that for any covering of [a, b] by intervals, we may extract a finite subcovering of intervals whose total

length is ≤ 2|b− a|. Why? First choose a minimal subcovering {I1, . . . , Ip}, numbered according to their left endpoints.

Then the total overlap is at most the length of [a, b]. Therefore the total length is at most 2|b − a|.
Now let B ⊂ Rn be compact, so that we may assume B ⊂ Rn−1 × [a, b]. We prove that if B ∩ Pc has measure zero

in the hyperplane Pc = {xn = c}, for any constant c ∈ [a, b], then it has measure zero in Rn.

If B∩Pc has measure zero, we can find a covering by open sets Ric ⊂ Pc with total volume < ε. For sufficiently small

αc , the sets Ric× [c−αc , c+αc ] cover B∩
S
z∈[c−αc ,c+αc ] Pz (since B is compact). As we vary c, the sets [c−αc , c+αc ]

form a covering of [a, b], and we extract a finite subcover {Ij} of total length ≤ 2|b − a|.
Let Rij be the set Ric for Ij = [c−αc , c+αc ]. Then the sets Rij × Ij form a cover of B with total volume ≤ 2ε|b−a|.

We can make this arbitrarily small, so that B has measure zero.
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We now proceed with the first step towards showing that transversality is generic.

Theorem 3.13 (Transversality theorem). Let F : X × S −→ Y and g : Z −→ Y be smooth maps of manifolds

where only X has boundary. Suppose that F and ∂F are transverse to g. Then for almost every s ∈ S,

fs = F (·, s) and ∂fs are transverse to g.

Proof. The fiber product W = (X×S)×Y Z is a regular submanifold (with boundary) of X×S×Z and projects

to S via the usual projection map π. We show that any s ∈ S which is a regular value for both the projection

map π : W −→ S and its boundary map ∂π gives rise to a fs which is transverse to g. Then by Sard’s theorem

the s which fail to be regular in this way form a set of measure zero.

Suppose that s ∈ S is a regular value for π. Suppose that fs(x) = g(z) = y and we now show that fs is

transverse to g there. Since F (x, s) = g(z) and F is transverse to g, we know that

imDF(x,s) + imDgz = TyY.

Therefore, for any a ∈ TyY , there exists b = (w, e) ∈ T (X × S) with DF(x,s)b − a in the image of Dgz . But

since Dπ is surjective, there exists (w ′, e, c ′) ∈ T(x,y ,z)W . Hence we observe that

(Dfs)(w − w ′)− a = DF(x,s)[(w, e)− (w ′, e)]− a = (DF(x,s)b − a)−DF(x,s)(w ′, e),

where both terms on the right hand side lie in imDgz .

Precisely the same argument (with X replaced with ∂X and F replaced with ∂F ) shows that if s is regular

for ∂π then ∂fs is transverse to g. This gives the result.

The previous result immediately shows that transversal maps to Rn are generic, since for any smooth map

f : M −→ Rn we may produce a family of maps

F : M × Rn −→ Rn

via F (x, s) = f (x) + s. This new map F is clearly a submersion and hence is transverse to any smooth map

g : Z −→ Rn. For arbitrary target manifolds, we will imitate this argument, but we will require a (weak) version

of Whitney’s embedding theorem for manifolds into Rn.

3.3 Whitney embedding

We now investigate the embedding of arbitrary smooth manifolds as regular submanifolds of Rk . We shall

first show by a straightforward argument that any smooth manifold may be embedded in some RN for some

sufficiently large N. We will then explain how to cut down on N and approach the optimal N = 2 dimM which

Whitney showed (we shall reach 2 dimM + 1 and possibly at the end of the course, show N = 2 dimM.)

Theorem 3.14 (Compact Whitney embedding in RN). Any compact manifold may be embedded in RN for

sufficiently large N.

Proof. Let {(Ui ⊃ Vi , ϕi)}ki=1 be a finite regular covering, which exists by compactness. Choose a partition of

unity {f1, . . . , fk} as in Theorem 1.19 and define the following “zoom-in” maps M −→ RdimM :

ϕ̃i(x) =

{
fi(x)ϕi(x) x ∈ Ui ,
0 x /∈ Ui .

Then define a map Φ : M −→ Rk(dimM+1) which zooms simultaneously into all neighbourhoods, with extra

information to guarantee injectivity:

Φ(x) = (ϕ̃1(x), . . . , ϕ̃k(x), f1(x), . . . , fk(x)).
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Note that Φ(x) = Φ(x ′) implies that for some i , fi(x) = fi(x
′) 6= 0 and hence x, x ′ ∈ Ui . This then implies that

ϕi(x) = ϕi(x
′), implying x = x ′. Hence Φ is injective.

We now check that DΦ is injective, which will show that it is an injective immersion. At any point x the

differential sends v ∈ TxM to the following vector in RdimM × · · · × RdimM × R× · · · × R.

(Df1(v)ϕ1(x) + f1(x)Dϕ1(v), . . . , Dfk(v)ϕk(x) + fk(x)Dϕ1(v), Df1(v), . . . , Dfk(v)

But this vector cannot be zero. Hence we see that Φ is an immersion.

But an injective immersion from a compact space must be an embedding: view Φ as a bijection onto its

image. We must show that Φ−1 is continuous, i.e. that Φ takes closed sets to closed sets. If K ⊂ M is closed,

it is also compact and hence Φ(K) must be compact, hence closed (since the target is Hausdorff).

Theorem 3.15 (Compact Whitney embedding in R2n+1). Any compact n-manifold may be embedded in R2n+1.

Proof. Begin with an embedding Φ : M −→ RN and assume N > 2n + 1. We then show that by projecting

onto a hyperplane it is possible to obtain an embedding to RN−1.

A vector v ∈ SN−1 ⊂ RN defines a hyperplane (the orthogonal complement) and let Pv : RN −→ RN−1 be

the orthogonal projection to this hyperplane. We show that the set of v for which Φv = Pv ◦ Φ fails to be an

embedding is a set of measure zero, hence that it is possible to choose v for which Φv is an embedding.

Φv fails to be an embedding exactly when Φv is not injective or DΦv is not injective at some point. Let us

consider the two failures separately:

If v is in the image of the map β1 : (M ×M)\∆M −→ SN−1 given by

β1(p1, p2) =
Φ(p2)−Φ(p1)

||Φ(p2)−Φ(p1)|| ,

then Φv will fail to be injective. Note however that β1 maps a 2n-dimensional manifold to a N − 1-manifold,

and if N > 2n + 1 then baby Sard’s theorem implies the image has measure zero.

The immersion condition is a local one, which we may analyze in a chart (U,ϕ). Φv will fail to be an

immersion in U precisely when v coincides with a vector in the normalized image of D(Φ ◦ ϕ−1) where

Φ ◦ ϕ−1 : ϕ(U) ⊂ Rn −→ RN .

Hence we have a map (letting N(w) = ||w ||)

D(Φ ◦ ϕ−1)

N ◦D(Φ ◦ ϕ−1)
: U × Sn−1 −→ SN−1.

The image has measure zero as long as 2n− 1 < N − 1, which is certainly true since 2n < N − 1. Taking union

over countably many charts, we see that immersion fails on a set of measure zero in SN−1.

Hence we see that Φv fails to be an embedding for a set of v ∈ SN−1 of measure zero. Hence we may

reduce N all the way to N = 2n + 1.

Corollary 3.16. We see from the proof that if we do not require injectivity but only that the manifold be

immersed in RN , then we can take N = 2n instead of 2n + 1.
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We now use Whitney embedding to prove genericity of transversality for all target manifolds, not just Rn.

We do this by embedding the manifold M into RN , translating it, and projecting back onto M.

If Y ⊂ RN is an embedded submanifold, the normal space at y ∈ Y is defined by NyY = {v ∈ RN : v⊥TyY }.
The collection of all normal spaces of all points in Y is called the normal bundle:

NY = {(y , v) ∈ Y × RN : v ∈ NyY }.

This is an embedded submanifold of RN ×RN of dimension N, and it has a projection map π : (y , v) 7→ y such

that (NY, π, Y ) is a vector bundle. We may take advantage of the embedding in RN to define a smooth map

E : NY −→ RN via

E(x, v) = x + v .

Definition 24. A tubular neighbourhood of the embedded submanifold Y ⊂ RN is a neighbourhood U of Y in

RN that is the diffeomorphic image under E of an open subset V ⊂ NY of the form

V = {(y , v) ∈ NY : |v | < δ(y)},

for some positive continuous function δ : M −→ R.

If U ⊂ RN is such a tubular neighbourhood of Y , then there does exist a positive continuous function

ε : Y −→ R such that Uε = {x ∈ RN : ∃y ∈ Y with |x − y | < ε(y)} is contained in U. This is simply

ε(y) = sup{r : B(y , r) ⊂ U}.

Theorem 3.17 (Tubular neighbourhood theorem). Every embedded submanifold of RN has a tubular neigh-

bourhood.

Corollary 3.18. Let X be a manifold with boundary and f : X −→ Y be a smooth map to a manifold Y . Then

there is an open ball S = B(0, 1) ⊂ RN and a smooth map F : X × S −→ Y such that F (x, 0) = f (x) and for

fixed x , the map fx : s 7→ F (x, s) is a submersion S −→ Y . In particular, F and ∂F are submersions.

Proof. Embed Y in RN , and let S = B(0, 1) ⊂ RN . Then use the tubular neighbourhood to define

F (y , s) = (π ◦ E−1)(f (y) + ε(y)s),

The transversality theorem then guarantees that given any smooth g : Z −→ Y , for almost all s ∈ S the

maps fs , ∂fs are transverse to g. We improve this slightly to show that fs may be chosen to be homotopic to f .

Corollary 3.19 (Transverse deformation of maps). Given any smooth maps f : X −→ Y , g : Z −→ Y , where

only X has boundary, there exists a smooth map f ′ : X −→ Y homotopic to f with f ′, ∂f ′ both transverse to g.

Proof. Let S, F be as in the previous corollary. Away from a set of measure zero in S, the functions fs , ∂fs
are transverse to g, by the transversality theorem. But these fs are all homotopic to f via the homotopy

X × [0, 1] −→ Y given by

(x, t) 7→ F (x, ts).

The last theorem we shall prove concerning transversality is a very useful extension result which is essential

for intersection theory:

Theorem 3.20 (Transverse deformation of homotopies). Let X be a manifold with boundary and f : X −→ Y

a smooth map to a manifold Y . Suppose that ∂f is transverse to the closed map g : Z −→ Y . Then there

exists a map f ′ : X −→ Y , homotopic to f and with ∂f ′ = ∂f , such that f ′ is transverse to g.
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Proof. First observe that since ∂f is transverse to g on ∂X, f is also transverse to g there, and furthermore

since g is closed, f is transverse to g in a neighbourhood U of ∂X. (if x ∈ ∂X but x not in f −1(g(Z)) then

since the latter set is closed, we obtain a neighbourhood of x for which f is transverse to g. If x ∈ ∂X and

x ∈ f −1(g(Z)), then transversality at x implies transversality near x .)

Now choose a smooth function γ : X −→ [0, 1] which is 1 outside U but 0 on a neighbourhood of ∂X.

(why does γ exist? exercise.) Then set τ = γ2, so that dτ(x) = 0 wherever τ(x) = 0. Recall the map

F : X × S −→ Y we used in proving the transversality homotopy theorem 3.19 and modify it via

F ′(x, s) = F (x, τ(x)s).

Then F ′ and ∂F ′ are transverse to g, and we can pick s so that f ′ : x 7→ F ′(x, s) and ∂f ′ are transverse to g.

Finally, if x is in the neighbourhood of ∂X for which τ = 0, then f ′(x) = F (x, 0) = f (x).

Corollary 3.21. if f : X −→ Y and f ′ : X −→ Y are homotopic smooth maps of manifolds, each transverse to

the closed map g : Z −→ Y , then the fiber products W = Xf×gZ and W ′ = Xf ′×gZ are cobordant.

Proof. if F : X × [0, 1] −→ Y is the homotopy between {f , f ′}, then by the previous theorem, we may find

a (homotopic) homotopy F ′ : X × [0, 1] −→ Y which is transverse to g. Hence the fiber product U =

(X × [0, 1])F ′×gZ is the cobordism with boundary W tW ′.
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3.4 Intersection theory

The previous corollary allows us to make the following definition:

Definition 25. Let f : X −→ Y and g : Z −→ Y be smooth maps with X compact, g closed, and dimX +

dimZ = dim Y . Then we define the (mod 2) intersection number of f and g to be

I2(f , g) = ](Xf ′ ×g Z) (mod 2),

where f ′ : X −→ Y is any smooth map smoothly homotopic to f but transverse to g, and where we assume

the fiber product to consist of a finite number of points (this is always guaranteed, e.g. if g is proper, or if g is

a closed embedding).

Example 3.22. If C1, C2 are two distinct great circles on S2 then they have two transverse intersection points,

so I2(C1, C2) = 0 in Z2. Of course we can shrink one of the circles to get a homotopic one which does not

intersect the other at all. This corresponds to the standard cobordism from two points to the empty set.

Example 3.23. If (e1, e2, e3) is a basis for R3 we can consider the following two embeddings of S1 = R/2πZ
into RP 2: ι1 : θ 7→ 〈cos(θ/2)e1 + sin(θ/2)e2〉 and ι2 : θ 7→ 〈cos(θ/2)e2 + sin(θ/2)e3〉. These two embedded

submanifolds intersect transversally in a single point 〈e2〉, and hence I2(ι1, ι2) = 1 in Z2. As a result, there is

no way to deform ιi so that they intersect transversally in zero points. In particular, RP 2 has a noncontractible

loop.

Example 3.24. Given a smooth map f : X −→ Y for X compact and dim Y = 2 dimX, we may consider

the self-intersection I2(f , f ). In the previous examples we may check I2(C1, C1) = 0 and I2(ι1, ι1) = 1. Any

embedded S1 in an oriented surface has no self-intersection. If the surface is nonorientable, the self-intersection

may be nonzero.

Example 3.25. Let p ∈ S1. Then the identity map Id : S1 −→ S1 is transverse to the inclusion ι : p −→ S1

with one point of intersection. Hence the identity map is not (smoothly) homotopic to a constant map, which

would be transverse to ι with zero intersection. Using smooth approximation, get that Id is not continuously

homotopic to a constant map, and also that S1 is not contractible.

Example 3.26. By the previous argument, any compact manifold is not contractible.

Example 3.27. Consider SO(3) ∼= RP 3 and let ` ⊂ RP 3 be a line, diffeomorphic to S1. This line corresponds

to a path of rotations about an axis by θ ∈ [0, π] radians. Let P ⊂ RP 3 be a plane intersecting ` in one point.

Since this is a transverse intersection in a single point, ` cannot be deformed to a point (which would have zero

intersection with P. This shows that the path of rotations is not homotopic to a constant path.

If ι : θ 7→ ι(θ) is the embedding of S1, then traversing the path twice via ι′ : θ 7→ ι(2θ), we obtain a map

ι′ which is transverse to P but with two intersection points. Hence it is possible that ι′ may be deformed so as

not to intersect P. Can it be done?

Example 3.28. Consider RP 4 and two transverse hyperplanes P1, P2 each an embedded copy of RP 3. These

then intersect in P1 ∩ P2 = RP 2, and since RP 2 is not null-cobordant, we cannot deform the planes to remove

all intersection.

Intersection theory also allows us to define the degree of a map modulo 2. The degree measures how many

generic preimages there are of a local diffeomorphism.

Definition 26. Let f : M −→ N be a smooth map of manifolds of the same dimension, and suppose M is

compact and N connected. Let p ∈ N be any point. Then we define deg2(f ) = I2(f , p).

Example 3.29. Let f : S1 −→ S1 be given by z 7→ zk . Then deg2(f ) = k (mod 2).
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