Now we investigate the measure of the critical values of a map f : M — N where dim M = dim N. Of
course the set of critical points need not have measure zero, but we shall see that because the values of f on
the critical set do not vary much, the set of critical values will have measure zero.

Theorem 3.11 (Equidimensional Sard). Let f : M — N be a C* map of n-manifolds, and let C C M be the
set of critical points. Then f(C) has measure zero.

Proof. It suffices to show result for the unit cube. Let f : /7 — R” a C! map and let C C /" be the set of
critical points.
Since f € C1(/",R"), we have that the linear approximation to f at x € /", namely

£"(y) = F() + L0y = x),
approximates f to second order, i.e. there is a positive function b(e) with b — 0 as € — 0 such that
() = KD < b(ly = xDIly = x]].
Of course f is still Lipschitz so that
IF(y) = FOIll < ally = x| vx,y € 1"

Since f is Lipschitz, we know that ||y — x|| < € implies ||f(y) — f(x)|| < ae. But if x is a critical point, then
£lin has image contained in a hyperplane Py, which is of lower dimension and hence measure zero. This means
the distance of f(y) to P is less than eb(e).

Therefore f(y) lies in the cube centered at f(x) of edge ae, but if we choose the cube to have a face parallel
to P, then the edge perpendicular to Py can be shortened to only 2ebe. Therefore f(y) is in a region of volume
(a€)"~12¢b(e).

Now partition /" into h” cubes each of edge h™1. Any such cube containing a critical point x is certainly
contained in a ball around x of radius r = h=*y/n. The image of this ball then has volume < (ar)"~'2rb(r) =
Ar"b(r) for A=2a""1. The total volume of all the images is then less than

h"Ar"b(r) = An"2b(r).

Note that A and n are fixed, while r = h™1y/n is determined by the number h of cubes. By increasing the
number of cubes, we may decrease their radius arbitrarily, and hence the above total volume, as required. [

The argument above will not work for dim N < dim M; we need more control on the function f. In particular,
one can find a C! function from /2 — R which fails to have critical values of measure zero (hint: C+C = [0, 2]
where C is the Cantor set). As a result, Sard’s theorem in general requires more differentiability of f.

Theorem 3.12 (Big Sard's theorem). Let f : M — N be a CX map of manifolds of dimension m, n, respectively.
Let C be the set of critical points, i.e. points x € U with

rank Df(x) < n.

Then f(C) has measure zero if k > 7 — 1.

Do not give proof in class, no time. As before, it suffices to show for f : /" — R".
~ Define C1 C C to be the set of points x for which Df(x) = 0. Define C; C Cj-1 to be the set of points x for which
D’f(x) =0 for all j < i. So we have a descending sequence of closed sets:

COCiDC DD Ck.

We will show that f(C) has measure zero by showing

1. f(Cx) has measure zero,
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2. each successive difference f(Ci\Cj+1) has measure zero for i > 1,

3. f(C\C1) has measure zero.

Step 1: For x € Ci, Taylor's theorem gives the estimate
f(x+1) = f(x)+ R(x,t), with [|R(x,t)|| < c|[t]|**,

where ¢ depends only on /"™ and 7, and t sufficiently small.

If we now subdivide /™ into h™ cubes with edge h™!, suppose that x sits in a specific cube /1. Then any point in /1
may be written as x + t with ||t]| < h™*v/m. As a result, f(/1) lies in a cube of edge ah™**V where a = 2cm*+9/2 js
independent of the cube size. There are at most h™ such cubes, with total volume less than

hm(ah—(k+l))n — anhm—(k-%-l)n'

Assuming that k > & — 1, this tends to 0 as we increase the number of cubes.
Step 2: For each x € C\Ci11, i > 1, there is a i + 1" partial 8'*'f;/0xs, - - - Oxs,,, Which is nonzero at x. Therefore the
function

w(x) = 8% /0xs, -+ Oxs,.,

vanishes at x but its partial derivative Ow/0xs, does not. WLOG suppose s1 = 1, the first coordinate. Then the map
h(x) = (w(x), %, ..., Xm)

is a local diffeomorphism by the inverse function theorem (of class C¥) which sends a neighbourhood V' of x to an open
set V. Note that h(C;NV) C {0} x R™ . Now if we restrict f o h™! to {0} x R"" ' NV, we obtain a map g whose
critical points include h(C; NV). Hence we may prove by induction on m that g(h(C; nV)) = f(C; NV) has measure
zero. Cover by countably many such neighbourhoods V.

Step 3: Let x € C\Ci. Then there is some partial derivative, wlog 8f; /0xi1, which is nonzero at x. the map

h(X) :(fl(X),XQ ..... Xm)

is a local diffeomorphism from a neighbourhood V' of x to an open set V' (of class C¥). Then g = f o h™! has critical
points h(V N C), and has critical values f(V N C). The map g sends hyperplanes {t} x R™! to hyperplanes {t} x R"*,
call the restriction map g:. A point in {t} x R™ ! is critical for g; if and only if it is critical for g, since the Jacobian of

gis
1 0
a9
* an

By induction on m, the set of critical values for g: has measure zero in {t} x R""!. By Fubini, the whole set g(C’)
(which is measurable, since it is the countable union of compact subsets (critical values not necessarily closed, but critical
points are closed and hence a countable union of compact subsets, which implies the same of the critical values.) is then
measure zero. To show this consequence of Fubini directly, use the following argument:

First note that for any covering of [a, b] by intervals, we may extract a finite subcovering of intervals whose total
length is < 2|b— a|. Why? First choose a minimal subcovering {/1, ..., I»}, numbered according to their left endpoints.
Then the total overlap is at most the length of [a, b]. Therefore the total length is at most 2|b — al.

Now let B C R" be compact, so that we may assume B C R"! x [a, b]. We prove that if BN P. has measure zero
in the hyperplane P. = {x" = ¢}, for any constant ¢ € [a, b], then it has measure zero in R".

If BN P. has measure zero, we can find a covering by open sets R. C P with total volume < €. For sufficiently small
ac, the sets RL x [c —a, c+a.] cover BNU.¢lc—ac.ctaq Pr (since B is compact). As we vary c, the sets [c —ac, c+ac]
form a covering of [a, b], and we extract a finite subcover {/;} of total length < 2|b — a|.

Let R be the set RL for /; = [c — ctc, c+ac]. Then the sets R} x /; form a cover of B with total volume < 2¢|b— al.
We can make this arbitrarily small, so that B has measure zero. O
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We now proceed with the first step towards showing that transversality is generic.

Theorem 3.13 (Transversality theorem). Let F: X xS — Y and g : Z — Y be smooth maps of manifolds
where only X has boundary. Suppose that F and OF are transverse to g. Then for almost every s € S,
fo = F(-,s) and Of, are transverse to g.

Proof. The fiber product W = (X x S) Xy Z is a regular submanifold (with boundary) of X x S x Z and projects
to S via the usual projection map . We show that any s € S which is a regular value for both the projection
map 7 : W — S and its boundary map O7 gives rise to a fs which is transverse to g. Then by Sard's theorem
the s which fail to be regular in this way form a set of measure zero.

Suppose that s € S is a regular value for m. Suppose that f;(x) = g(z) = y and we now show that f; is
transverse to g there. Since F(x,s) = g(z) and F is transverse to g, we know that

imDF sy +imDg, = T,Y.

Therefore, for any a € T,Y, there exists b = (w, e) € T(X x S) with DF, )b — a in the image of Dg,. But
since D is surjective, there exists (W', e, ¢’) € T, »W. Hence we observe that

(Df)(w —w') —a= DFgl(w,e) = (W, e)] —a= (DF.sb—a) — DF 5 (W', e),

where both terms on the right hand side lie in imDg,.
Precisely the same argument (with X replaced with 8X and F replaced with 8F) shows that if s is regular
for Om then Of is transverse to g. This gives the result. O

The previous result immediately shows that transversal maps to R” are generic, since for any smooth map
f: M — R” we may produce a family of maps

F:MxR"—R"

via F(x,s) = f(x) +s. This new map F is clearly a submersion and hence is transverse to any smooth map
g : Z — R". For arbitrary target manifolds, we will imitate this argument, but we will require a (weak) version
of Whitney's embedding theorem for manifolds into R”.

3.3 Whitney embedding

We now investigate the embedding of arbitrary smooth manifolds as regular submanifolds of R¥. We shall
first show by a straightforward argument that any smooth manifold may be embedded in some RN for some
sufficiently large N. We will then explain how to cut down on N and approach the optimal N = 2dim M which
Whitney showed (we shall reach 2dim M + 1 and possibly at the end of the course, show N = 2dim M.)

Theorem 3.14 (Compact Whitney embedding in RN). Any compact manifold may be embedded in RN for
sufficiently large N.

Proof. Let {(U; DV, @i)}le be a finite regular covering, which exists by compactness. Choose a partition of
unity {f1, ..., f } as in Theorem and define the following “zoom-in" maps M —; R4mM:

. filx)i(x)  xeU,
Z=10 x ¢ U,

Then define a map ® : M — RKEMM+1) which zooms simultaneously into all neighbourhoods, with extra
information to guarantee injectivity:



Note that ®(x) = d(x’) implies that for some i, fi(x) = fi(x’) # 0 and hence x, x’ € U;. This then implies that
Yi(x) = @i(x), implying x = x’. Hence ® is injective.

We now check that D® is injective, which will show that it is an injective immersion. At any point x the
differential sends v € T, M to the following vector in RIMM x ... x RIMM x R x ... x R.

(DA (V)e1(x) + A(x)De1(v), ..., Df(V)or(x) + fi(x) Doy (v), DA(v), ..., Dfi(v)

But this vector cannot be zero. Hence we see that ® is an immersion.

But an injective immersion from a compact space must be an embedding: view ® as a bijection onto its
image. We must show that ®~! is continuous, i.e. that ® takes closed sets to closed sets. If K C M is closed,
it is also compact and hence ®(K) must be compact, hence closed (since the target is Hausdorff). O

Theorem 3.15 (Compact Whitney embedding in R?"+1). Any compact n-manifold may be embedded in R?" 1.

Proof. Begin with an embedding ® : M — RN and assume N > 2n+ 1. We then show that by projecting
onto a hyperplane it is possible to obtain an embedding to RV-1.

A vector v € SV=1 RN defines a hyperplane (the orthogonal complement) and let P, : RN — RN=1 be
the orthogonal projection to this hyperplane. We show that the set of v for which ®, = P, o ® fails to be an
embedding is a set of measure zero, hence that it is possible to choose v for which ®, is an embedding.

@, fails to be an embedding exactly when ®, is not injective or D®, is not injective at some point. Let us
consider the two failures separately:

If v is in the image of the map B; : (M x M)\Ap — SV=1 given by

_ ®(p2) — P(p)
BrlPr2) = 11 () — ()]

then @, will fail to be injective. Note however that 3; maps a 2n-dimensional manifold to a N — 1-manifold,
and if N > 2n+ 1 then baby Sard’s theorem implies the image has measure zero.

The immersion condition is a local one, which we may analyze in a chart (U, ). &, will fail to be an
immersion in U precisely when v coincides with a vector in the normalized image of D(® o ¢p~1) where

dopl:ipl)cR" — RV
Hence we have a map (letting N(w) = ||w|])

D(®op™?)

. n—1 N—1
—/\/OD(CDO(p’l)-UXS — SV

The image has measure zero as long as 2n—1 < N — 1, which is certainly true since 2n < N — 1. Taking union
over countably many charts, we see that immersion fails on a set of measure zero in SN=1.

Hence we see that @, fails to be an embedding for a set of v € SV~1 of measure zero. Hence we may
reduce N all the way to N =2n+ 1. ]

Corollary 3.16. We see from the proof that if we do not require injectivity but only that the manifold be
immersed in RN, then we can take N = 2n instead of 2n + 1.
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We now use Whitney embedding to prove genericity of transversality for all target manifolds, not just R”.
We do this by embedding the manifold M into R", translating it, and projecting back onto M.

If Y ¢ R is an embedded submanifold, the normal space at y € Y is defined by NY ={ve RN viT, Y}
The collection of all normal spaces of all points in Y is called the normal bundle:

NY ={(y,v) €Y xRN : veN,Y}

This is an embedded submanifold of RY x RN of dimension N, and it has a projection map 7 : (y, v) — y such
that (NY,,Y) is a vector bundle. We may take advantage of the embedding in RV to define a smooth map
E:NY — RN via

E(x,v)=x+v.

Definition 24. A tubular neighbourhood of the embedded submanifold Y C RV is a neighbourhood U of Y in
RN that is the diffeomorphic image under E of an open subset VV C NY of the form

V=A{ly.v) e NY : |v| <é()},
for some positive continuous function 6 : M — R.

If U c RN is such a tubular neighbourhood of Y, then there does exist a positive continuous function
€:Y — R such that U, = {x € RN : 3y € Y with |x — y| < €(y)} is contained in U. This is simply

e(y) =sup{r : B(y,r) C U}.

Theorem 3.17 (Tubular neighbourhood theorem). Every embedded submanifold of RN has a tubular neigh-
bourhood.

Corollary 3.18. Let X be a manifold with boundary and f : X — Y be a smooth map to a manifold Y. Then
there is an open ball S = B(0,1) C RN and a smooth map F : X x S — Y such that F(x,0) = f(x) and for
fixed x, the map fy, : s — F(x,s) is a submersion S — Y. In particular, F and OF are submersions.

Proof. Embed Y in RV, and let S = B(0,1) C RN. Then use the tubular neighbourhood to define

Fly.s) = (mo ET)(F(y) +e(y)s),
O

The transversality theorem then guarantees that given any smooth g : Z — Y/, for almost all s € S the
maps fs, Ofs are transverse to g. We improve this slightly to show that £, may be chosen to be homotopic to f.

Corollary 3.19 (Transverse deformation of maps). Given any smooth mapsf : X — Y ,g: Z — Y, where
only X has boundary, there exists a smooth map ' : X — Y homotopic to f with f', 8f' both transverse to g.

Proof. Let S, F be as in the previous corollary. Away from a set of measure zero in S, the functions £, Ofs
are transverse to g, by the transversality theorem. But these f; are all homotopic to f via the homotopy
X x [0,1] — Y given by

(x,t) = F(x, ts).

O

The last theorem we shall prove concerning transversality is a very useful extension result which is essential
for intersection theory:

Theorem 3.20 (Transverse deformation of homotopies). Let X be a manifold with boundary and f : X — Y
a smooth map to a manifold Y. Suppose that Of is transverse to the closed map g : Z — Y. Then there
exists a map ' : X — Y, homotopic to f and with 0f' = 8f, such that f' is transverse to g.
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Proof. First observe that since Of is transverse to g on 08X, f is also transverse to g there, and furthermore
since g is closed, f is transverse to g in a neighbourhood U of 8X. (if x € 8X but x not in f~1(g(Z)) then
since the latter set is closed, we obtain a neighbourhood of x for which f is transverse to g. If x € 60X and
x € f~1(g(2)), then transversality at x implies transversality near x.)

Now choose a smooth function v : X — [0, 1] which is 1 outside U but 0 on a neighbourhood of 8X.
(why does vy exist? exercise.) Then set T = 72, so that d7(x) = 0 wherever 7(x) = 0. Recall the map
F: X xS —Y we used in proving the transversality homotopy theorem and modify it via

F'(x,s) = F(x, 7(x)s).

Then F’ and OF’ are transverse to g, and we can pick s so that ' : x — F'(x,s) and Of" are transverse to g.
Finally, if x is in the neighbourhood of X for which 7 = 0, then f'(x) = F(x,0) = f(x). O

Corollary 3.21. iff: X — Y and f' : X — Y are homotopic smooth maps of manifolds, each transverse to
the closed map g : Z — Y, then the fiber products W = X¢xgZ and W' = X x gZ are cobordant.

Proof. if F : X x [0,1] — Y is the homotopy between {f, f’}, then by the previous theorem, we may find
a (homotopic) homotopy F' : X x [0,1] — Y which is transverse to g. Hence the fiber product U =
(X x [0,1])px4Z is the cobordism with boundary W LI W'. O
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3.4 Intersection theory
The previous corollary allows us to make the following definition:

Definition 25. Let f : X — Y and g : Z — Y be smooth maps with X compact, g closed, and dim X +
dimZ = dimY. Then we define the (mod 2) intersection number of f and g to be

L(f, g) =#(Xr xgZ) (mod 2),

where f’ : X — Y is any smooth map smoothly homotopic to f but transverse to g, and where we assume
the fiber product to consist of a finite number of points (this is always guaranteed, e.g. if g is proper, or if g is
a closed embedding).

Example 3.22. /fCy, Cy are two distinct great circles on S? then they have two transverse intersection points,
so 12(C1, C3) = 0 in Zy. Of course we can shrink one of the circles to get a homotopic one which does not
intersect the other at all. This corresponds to the standard cobordism from two points to the empty set.

Example 3.23. /f (e), e2, €3) is a basis for R® we can consider the following two embeddings of S* = R/27Z
into RP?: 17 : 8+ (cos(8/2)e; + sin(8/2)ey) and 15 : 8 +— {(cos(8/2)es +sin(8/2)es). These two embedded
submanifolds intersect transversally in a single point {e>), and hence I>(t1,t2) = 1 in Zy. As a result, there is
no way to deform v; so that they intersect transversally in zero points. In particular, RP? has a noncontractible
loop.

Example 3.24. Given a smooth map f : X — Y for X compact and dmY = 2dim X, we may consider
the self-intersection I>(f, ). In the previous examples we may check 12(C1,C1) = 0 and I2(t1,t1) = 1. Any
embedded ST in an oriented surface has no self-intersection. If the surface is nonorientable, the self-intersection
may be nonzero.

Example 3.25. Let p € S1. Then the identity map |d : S1 — S' is transverse to the inclusion v : p — S*
with one point of intersection. Hence the identity map is not (smoothly) homotopic to a constant map, which
would be transverse to L with zero intersection. Using smooth approximation, get that |d is not continuously
homotopic to a constant map, and also that S is not contractible.

Example 3.26. By the previous argument, any compact manifold is not contractible.

Example 3.27. Consider SO(3) & RP? and let £ C RP® be a line, diffeomorphic to St. This line corresponds
to a path of rotations about an axis by 6 € [0, 7] radians. Let P C RP® be a plane intersecting £ in one point.
Since this is a transverse intersection in a single point, £ cannot be deformed to a point (which would have zero
intersection with P. This shows that the path of rotations is not homotopic to a constant path.

Ifv: 0w 1(0) is the embedding of S, then traversing the path twice via (' : 6 — 1(20), we obtain a map
" which is transverse to P but with two intersection points. Hence it is possible that ." may be deformed so as
not to intersect P. Can it be done?

Example 3.28. Consider RP* and two transverse hyperplanes Pi, P> each an embedded copy of RP3. These
then intersect in P, N P> = RP?, and since RP? is not null-cobordant, we cannot deform the planes to remove
all intersection.

Intersection theory also allows us to define the degree of a map modulo 2. The degree measures how many
generic preimages there are of a local diffeomorphism.

Definition 26. Let f : M — N be a smooth map of manifolds of the same dimension, and suppose M is
compact and N connected. Let p € N be any point. Then we define deg,(f) = l»(f, p).

Example 3.29. Let f : S' — S! be given by z +— z¥. Then deg,(f) = k (mod 2).
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