
3.5 Associated vector bundles

Recall that the tangent bundle (TM,πM ,M) is a bundle of vector spaces

TM = tpTpM

which has local trivializations Φ : π−1
M (U) −→ U ×Rk which preserve the projections to U, and which are linear

maps for fixed p.

By the smoothness and linearity of these local trivializations, we note that, for charts (Ui , ϕi), we have

gi j = (Φj ◦Φ−1
i ) = T (ϕj ◦ ϕ−1

i ) : Ui ∩ Uj −→ GL(Rk)

is a collection of smooth matrix-valued functions, called the “transition functions” of the bundle. These obviously

satisfy the gluing conditions or “cocycle condition” gi jgjkgki = 1k×k on Ui ∩ Uj ∩ Uk .

We will now use the tangent bundle to create other bundles, and for this we will use functors from the

category of vector spaces VectR to itself obtained from linear algebra.

Example 3.29 (Cotangent bundle). Consider the duality functor V 7→ V ∗ = Hom(V,R) which is contravariant,

i.e. if A : V −→ W then A∗ : W ∗ −→ V ∗. Also, it is a smooth functor in the sense that the map A 7→ A∗ is

smooth map of vector spaces (in this case it is the identity map, essentially).

The idea is to apply this functor to the bundle fibrewise, to apply it to the trivializations fiberwise, and to

use the smoothness of the functor to obtain the manifold structure on the result.

Therefore we can form the set

T ∗M = tp(TpM)∗,

which also has a projection map pM to M. And, for each trivialization Φ : π−1
M (U) −→ U × Rk , we obtain

bijections F = (Φ∗)−1 : pM
−1(U) −→ U × Rk . We use these bijections as charts for T ∗M, and we check the

smoothness by computing the transition functions:

(Pj ◦ P−1
i ) = (g∗i j)

−1.

Therefore we see that the transition functions for T ∗M are the inverse duals of the transition functions for TM.

Since this is still smooth, we obtain a smooth vector bundle. It is called the cotangent bundle.

Example 3.30. There is a well-known functor VectR × VectR −→ VectR given by (V,W ) 7→ V ⊕W . This is

a smooth functor and we may apply it to our vector bundles to obtain new ones, such as TM ⊕ T ∗M. The

transition functions for this particular example would be(
gi j 0

0 (g∗i j)
−1

)
Example 3.31 (Bundle of multivectors and differential forms). Recall that for any finite-dimensional vector

space V , we can form the exterior algebra

∧•V = R⊕ V ⊕ ∧2V ⊕ · · · ⊕ ∧nV,

for n = dim V . The product is usually denoted (a, b) 7→ a ∧ b, and it satisfies a ∧ b = (−1)|a||b|b ∧ a. With this

product, the algebra is generated by the degree 1 elements in V . So, ∧•V is a “finite dimensional Z-graded

algebra generated in degree 1”.

If (v1, . . . vn) is a basis for V , then vi1 ∧ · · · ∧ vik for i1 < · · · < ik form a basis for ∧kV . This space then has

dimension
(
n
k

)
, hence the algebra ∧•V has dimension 2n.

Note in particular that ∧nV has dimension 1, is also called the determinant line det V , and a choice of

nonzero element in det V is called an “orientation” on the vector space V .
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Recall that if f : V −→ W is a linear map, then ∧k f : ∧kV −→ ∧kW is defined on monomials via

∧k f (a1 ∧ · · · ∧ ak) = f (a1) ∧ · · · ∧ f (ak).

In particular, if A : V −→ V is a linear map, then for n = dim V , the top exterior power ∧nA : ∧nV −→ ∧nV is

a linear map of a 1-dimensional space onto itself, and is hence given by a number, called detA, the determinant

of A.

We may now apply this functor to the tangent and cotangent bundles: we obtain new bundles ∧•TM and

∧•T ∗M, called the bundle of multivectors and the bundle of differential forms. Each of these bundles is a

sum of degree k sub-bundles, called the k-multivectors and k-forms, respectively. We will be concerned primarily

with sections of the bundle of k-forms, i.e.

Ωk(M) = Γ (M,∧kT ∗M).

3.6 Coordinate representations

We are familiar with vector fields, which are sections of TM, and we know that a vector field is written locally

in coordinates (x1, . . . , xn) as

X =
∑
i

v i ∂
∂x i
,

with coefficients v i smooth functions.

There is an easy way to produce examples of 1-forms in Ω1(M), using smooth functions f . We note that

the action X 7→ X(f ) defines a dual vector at each point of M, since (X(f ))p depends only on the vector Xp
and not the behaviour of X away from p. Recall that X(f ) = π2 ◦ T f ◦X.

Definition 27. The exterior derivative of a function f , denoted df , is the section of T ∗M given by the fiber

projection π2 ◦ T f .

In a coordinate chart, we can apply d to the coordinates x i ; we obtain dx i , which satisfy dx i( ∂
∂x j

) = δij .

Therefore (dx1, . . . , dxn) is the dual basis to ( ∂
∂x1 , . . . ,

∂
∂xn ). Therefore, a section of T ∗M has local expression

ξ =
∑
i

ξidx
i ,

for ξi smooth functions, given by ξi = ξ( ∂
∂x i

). In particular, the exterior derivative of a function df can be

written

df =
∑
i

∂f
∂x i
dx i .

A general differential form ρ ∈ Ωk(M) can be written

ρ =
∑

i1<···<ik

ρi1···ikdx
i1 ∧ · · · ∧ dx ik

4 Differential forms

There are several properties of differential forms which make them indispensible: first, the k-forms are intended

to give a notion of k-dimensional volume (this is why they are multilinear and skew-symmetric, like the deter-

minant) and in a way compatible with the boundary map (this leads to the exterior derivative, which we define

below). Second, they behave well functorially, as we see now.
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4.1 Pullback of forms

Given a smooth map f : M −→ N, we obtain bundle maps f∗ : TM −→ TN and hence f ∗ := ∧k(f∗)
∗ :

∧kT ∗N −→ ∧kT ∗M. Hence we have the diagram

∧kT ∗M
πM

��

∧kT ∗N
πN

��

f ∗
oo

M
f

// N

The interesting thing is that if ρ ∈ Ωk(N) is a differential form on N, then it is a section of πN . Composing

with f , f ∗, we obtain a section f ∗ρ := f ∗ ◦ ρ ◦ f of πM . Hence we obtain a natural map

Ωk(N)
f ∗−→ Ωk(M).

Such a natural map does not exist (in either direction) for multivector fields, for instance.

Suppose that ρ ∈ Ωk(N) is given in a coordinate chart by ρ =
∑
ρi1···ikdy

i1 ∧ · · · ∧ dy ik . Now choose

a coordinate chart for M with coordinates x1, . . . xm. What is the local expression for f ∗ρ? We need only

compute f ∗dyi . We use a notation where f k denotes the k th component of f in the coordinates (y1, . . . yn),

i.e. f k = y k ◦ f .

f ∗dyi(
∂
∂x j

) = dyi(f∗
∂
∂x j

) (18)

= dyi(
∑
k

∂f k

∂x j
∂
∂yk

) (19)

= ∂f i

∂x j
. (20)

Hence we conclude that

f ∗dyi =
∑
j

∂f i

∂x j
dx j .

Finally we compute

f ∗ρ =
∑

i1<···<ik

f ∗ρi1···ik f
∗(dy i1 ) ∧ · · · ∧ f ∗(dy ik ) (21)

=
∑

i1<···<ik

(ρi1···ik ◦ f )
∑
j1

· · ·
∑
jk

∂f i1

∂x j1
· · · ∂f ik

∂x jk
dx j1 ∧ · · · dx jk . (22)

4.2 The exterior derivative

Differential forms are equipped with a natural differential operator, which extends the exterior derivative of

functions to all forms: d : Ωk(M) −→ Ωk+1(M). The exterior derivative is uniquely specified by the following

requirements: first, it satisfies d(df ) = 0 for all functions f . Second, it is a graded derivation of the algebra of

exterior differential forms of degree 1, i.e.

d(α ∧ β) = dα ∧ β + (−1)|α|α ∧ dβ.

This allows us to compute its action on any 1-form d(ξidx
i) = dξi ∧ dx i , and hence, in coordinates, we have

d(ρdx i1 ∧ · · · ∧ dx ik ) =
∑
k

∂ρ
∂xk
dxk ∧ dx i1 ∧ · · · ∧ dx ik .

Extending by linearity, this gives a local definition of d on all forms. Does it actually satisfy the requirements?

this is a simple calculation: let τp = dx i1 ∧ · · · ∧ dx ip and τq = dx j1 ∧ · · · ∧ dx jq . Then

d((f τp) ∧ (gτq)) = d(f gτp ∧ τq) = (gdf + f dg) ∧ τp ∧ τq = d(f τp) ∧ gτq + (−1)pf τp ∧ d(gτq),
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as required.

Therefore we have defined d , and since the definition is coordinate-independent, we can be satisfied that d

is well-defined.

Definition 28. d is the unique degree +1 graded derivation of Ω•(M) such that df (X) = X(f ) and d(df ) = 0

for all functions f .

Example 4.1. Consider M = R3. For f ∈ Ω0(M), we have

df = ∂f
∂x1 dx

1 + ∂f
∂x2 dx

2 + ∂f
∂x3 dx

3.

Similarly, for A = A1dx
1 + A2dx

2 + A3dx
3, we have

dA = ( ∂A2

∂x1 − ∂A1

∂x2 )dx1 ∧ dx2 + ( ∂A3

∂x1 − ∂A1

∂x3 )dx1 ∧ dx3 + ( ∂A3

∂x2 − ∂A2

∂x3 )dx2 ∧ dx3

Finally, for B = B12dx
1 ∧ dx2 + B13dx

1 ∧ dx3 + B23dx
2 ∧ dx3, we have

dB = ( ∂B12

∂x3 − ∂B13

∂x2 + ∂B23

∂x1 )dx1 ∧ dx2 ∧ dx3.

Definition 29. The form ρ ∈ Ω•(M) is called closed when dρ = 0 and exact when ρ = dτ for some τ .

Example 4.2. A function f ∈ Ω0(M) is closed if and only if it is constant on each connected component of M:

This is because, in coordinates, we have

df = ∂f
∂x1 dx

1 + · · ·+ ∂f
∂xn dx

n,

and if this vanishes, then all partial derivatives of f must vanish, and hence f must be constant.

Theorem 4.3. The exterior derivative of an exact form is zero, i.e. d ◦ d = 0. Usually written d2 = 0.

Proof. The graded commutator [d1, d2] = d1 ◦d2− (−1)|d1||d2|d2 ◦d1 of derivations of degree |d1|, |d2| is always

(why?) a derivation of degree |d1|+ |d2|. Hence we see [d, d ] = d ◦ d − (−1)1·1d ◦ d = 2d2 is a derivation of

degree 2 (and so is d2). Hence to show it vanishes we must test on functions and exact 1-forms, which locally

generate forms since every form is of the form f dxi1 ∧ · · · ∧ dxik .

But d(df ) = 0 by definition and this certainly implies d2(df ) = 0, showing that d2 = 0.

The fact that d2 = 0 is dual to the fact that ∂(∂M) = ∅ for a manifold with boundary M. We will see

later that Stokes’ theorem explains this duality. Because of the fact d2 = 0, we have a very special algebraic

structure: we have a sequence of vector spaces Ωk(M), and maps d : Ωk(M) −→ Ωk+1(M) which are such that

any successive composition is zero. This means that the image of d is contained in the kernel of the next d in

the sequence. This arrangement of vector spaces and operators is called a cochain complex of vector spaces 2.

We often simply refer to this as a “complex” and omit the term “cochain”. The reason for the “co” is that the

differential increases the degree k , which is opposite to the usual boundary map on manifolds, which decreases

k . We will see chain complexes when we study homology.

A complex of vector spaces is usually drawn as a linear sequence of symbols and arrows as follows: if

f : U −→ V is a linear map and g : V −→ W is a linear map such that g ◦ f = 0, then we write

U
f−→ V

g−→ W

In general, this simply means that imf ⊂ ker g, and to measure the difference between them we look at the

quotient ker g/imf , which is called the cohomology of the complex at the position V (or homology, if d

decreases degree). If we are lucky, and the complex has no cohomology at V , meaning that ker g is precisely

2since this complex appears for Ω•(U) for any open set U ⊂ M, this is actually a cochain complex of sheaves of vector spaces,

but this won’t concern us right away.
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equal to imf , then we say that the complex is exact at V . If the complex is exact everywhere, we call it an

exact sequence (and it has no cohomology!) In our case, we have a longer cochain complex:

0 −→ Ω0(M)
d−→ · · · d−→ Ωk−1(M)

d−→ Ωk(M)
d−→ Ωk+1(M)

d−→ · · · d−→ Ωn(M) −→ 0

There is a bit of terminology to learn: we have seen that if dρ = 0 then ρ is called closed. But these are

also called cocycles and denoted Zk(M). Similarly the exact forms dα are also called coboundaries, and are

denoted Bk(M). Hence the cohomology groups may be written HkdR(M) = ZkdR(M)/BkdR(M).

Definition 30. The de Rham complex is the complex (Ω•(M), d), and its cohomology at Ωk(M) is called

HkdR(M), the de Rham cohomology.

Exercise: Check that the graded vector space H•dR(M) =
⊕

k∈ZH
k(M) inherits a product from the wedge

product of forms, making it into a Z-graded ring. This is called the de Rham cohomology ring of M, and the

product is called the cup product.

It is clear from the definition of d that it commutes with pullback via diffeomorphisms, in the sense f ∗ ◦d =

d ◦ f ∗. But this is only a special case of a more fundamental property of d :

Theorem 4.4. Exterior differentiation commutes with pullback: for f : M −→ N a smooth map, f ∗ ◦ dN =

dM ◦ f ∗.

Proof. We need only check this on functions g and exact 1-forms dg: let X be a vector field on M and

g ∈ C∞(N,R).

f ∗(dg)(X) = dg(f∗X) = π2g∗f∗X = π2(g ◦ f )∗X = d(f ∗g)(X),

giving f ∗dg = df ∗g, as required. For exact 1-forms we have f ∗d(dg) = 0 and d(f ∗dg) = d(df ∗g) = 0 by the

result for functions.

This theorem may be interpreted as follows: The differential forms give us a Z-graded ring, Ω•(M), which

is equipped with a differential d : Ωk −→ Ωk+1. This sequence of vector spaces and maps which compose to

zero is called a cochain complex. Beyond it being a cochain complex, it is equipped with a wedge product.

Cochain complexes (C•, dC) may be considered as objects of a new category, whose morphisms consist of a

sum of linear maps ψk : Ck −→ Dk commuting with the differentials, i.e. dD ◦ ψk = ψk+1 ◦ dC . The previous

theorem shows that pullback f ∗ defines a morphism of cochain complexes Ω•(N) −→ Ω•(M); indeed it even

preserves the wedge product, hence it is a morphism of differential graded algebras.

Corollary 4.5. We may interpret the previous result as showing that Ω• is a functor from manifolds to differential

graded algebras (or, if we forget the wedge product, to the category of cochain complexes). As a result, we

see that the de Rham cohomology H•dR may be viewed as a functor, from smooth manifolds to Z-graded

commutative rings.
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