
Example 4.6. S1 is connected, and hence H0
dR(S1) = R. So it remains to compute H1

dR(S1).

Let ∂
∂θ be the rotational vector field on S1 of unit Euclidean norm, and let dθ be its dual 1-form, i.e.

dθ( ∂∂θ ) = 1. Note that θ is not a well-defined function on S1, so the notation dθ may be misleading at first.

Of course, d(dθ) = 0, since Ω2(S1) = 0. We might ask, is there a function f (θ) such that df = dθ? This

would mean ∂f
∂θ = 1, and hence f = θ + c2. But since f is a function on S1, we must have f (θ + 2π) = f (θ),

which is a contradiction. Hence dθ is not exact, and [dθ] 6= 0 in H1
dR(S1).

Any other 1-form will be closed, and can be represented as gdθ for g ∈ C∞(S1,R). Let g = 1
2π

∫ θ=2π

θ=0 g(θ)dθ

be the average value of g, and consider g0 = g − g. Then define

f (θ) =

∫ t=θ

t=0

g0(t)dt.

Clearly we have ∂f
∂θ = g0(θ), and furthermore f is a well-defined function on S1, since f (θ+ 2π) = f (θ). Hence

we have that g0 = df , and hence g = g + df , showing that [gdθ] = g[dθ].

Hence H1
dR(S1) = R, and as a ring, H0

dR +H1
dR is simply R[x ]/(x2).

Note that technically we have proven that H1
dR(S1) ∼= R, but we will see from the definition of integration

later that this isomorphism is canonical.

The de Rham cohomology is an important invariant of a smooth manifold (in fact it doesn’t even depend on

the smooth structure, only the topological structure). To compute it, there are many tools available. There are

three particularly important tools: first, there is Poincaré’s lemma, telling us the cohomology of Rn. Second,

there is integration, which allows us to prove that certain cohomology classes are non-trivial. Third, there is the

Mayer-Vietoris sequence, which allows us to compute the cohomology of a union of open sets, given knowledge

about the cohomology of each set in the union.

Lemma 4.7. Consider the embeddings Ji : M −→ M × [0, 1] given by x 7→ (x, i) for i = 0, 1. The induced

morphisms of de Rham complexes J∗0 and J∗1 are chain homotopic morphisms, meaning that there is a linear

map K : Ωk(M × [0, 1]) −→ Ωk−1(M) such that

J∗1 − J∗0 = dK +Kd

This shows that on closed forms, J∗i may differ, but only by an exact form.

Proof. Let t be the coordinate on [0, 1]. Define Kf = 0 for f ∈ Ω0(M × [0, 1]), and Kα = 0 if α = f ρ for

ρ ∈ Ωk(M) . But for β = f dt ∧ ρ we define

Kβ = (

∫ 1

0

f dt)ρ.

Then we verify that

dKf +Kdf = 0 +

∫ 1

0

∂f
∂t dt = (J∗1 − J∗0 )f ,

dKα+Kdα = 0 + (

∫ 1

0

∂f
∂t dt)ρ = (J∗1 − J∗0 )α,

dKβ +Kdβ = (

∫ 1

0

dM f dt) ∧ ρ+ (

∫ 1

0

f dt) ∧ dρ+K(df ∧ dt ∧ ρ− f dt ∧ dρ) = 0,

which agrees with (J∗1 − J∗0 )β = 0 − 0 = 0. Note that we have used K(df ∧ dt ∧ ρ) = K(−dt ∧ dM f ∧ ρ) =

−(
∫ 1

0 dM f )∧ρ, and the notation dM f is a time-dependent 1-form whose value at time t is the exterior derivative

on M of the function f (−, t) ∈ Ω0(M).

The previous theorem can be used in a clever way to prove that homotopic maps M −→ N induce the same

map on cohomology:
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Theorem 4.8. Let f : M −→ N and g : M −→ N be smooth maps which are (smoothly) homotopic. Then

f ∗ = g∗ as maps H•(N) −→ H•(M).

Proof. Let H : M × [0, 1] −→ N be a (smooth) homotopy between f , g, and let J0, J1 be the embeddings

M −→ M × [0, 1] from the previous result, so that H ◦ J0 = f and H ◦ J1 = g. Recall that J∗1 − J∗0 = dK+Kd ,

so we have

g∗ − f ∗ = (J∗1 − J∗0 )H∗ = (dK +Kd)H∗ = dKH∗ +KH∗d

This shows that f ∗, g∗ differ, on closed forms, only by exact terms, and hence are equal on cohomology.

Corollary 4.9. If M,N are (smoothly) homotopic, then H•dR(M) ∼= H•dR(N).

Proof. M,N are homotopic iff we have maps f : M −→ N, g : N −→ M with f g ∼ 1 and gf ∼ 1. This

shows that f ∗g∗ = 1 and g∗f ∗ = 1, hence f ∗, g∗ are inverses of each other on cohomology, and hence

isomorphisms.

Corollary 4.10 (Poincaré lemma). Since Rn is homotopic to the 1-point space (R0), we have

HkdR(Rn) =

{
R for k = 0

0 for k > 0

As a note, we should mention that the homotopy in the previous theorem need not be smooth, since any

homotopy may be deformed (using a continuous homotopy) to a smooth homotopy, by smooth approximation.

Hence we finally obtain that the de Rham cohomology is a homotopy invariant of smooth manifolds.

4.3 Integration

Since we are accustomed to the idea that a function may be integrated over a subset of Rn, we might think

that if we have a function on a manifold, we can compute its local integrals and take a sum. This, however,

makes no sense, because the answer will depend on the particular coordinate system you choose in each open

set: for example, if f : U −→ R is a smooth function on U ⊂ Rn and ϕ : V −→ U is a diffeomorphism onto

V ⊂ Rn, then we have the usual change of variables formula for the (Lebesgue or Riemann) integral:∫
U

f dx1dx2 · · · dxn =

∫
V

ϕ∗f
∣∣det[ ∂ϕi

∂x j
]
∣∣ dx1 · · · dxn.

The extra factor of the absolute value of the Jacobian determinant shows that the integral of f is coordinate-

dependant. For this reason, it makes more sense to view the left hand side not as the integral of f but rather

as the integral of ν = f dx1 ∧ · · · ∧ dxn. Then, the right hand side is indeed the integral of ϕ∗ν (which includes

the Jacobian determinant in its expression automatically) , as long as ϕ∗ has positive Jacobian determinant.

Therefore, the integral of a differential n-form will be well-defined on an n-manifold M, as long as we can

choose an atlas where the Jacobian determinants of the gluing maps are all positive: This is precisely the choice

of an orientation on M, as we now show.

Definition 31. A n-manifold M is called orientable when detT ∗M := ∧nT ∗M is isomorphic to the trivial line

bundle. An orientation is the choice of an equivalence class of nonvanishing sections v , where v ∼ v ′ iff f v = v ′

for f ∈ C∞(M,R). M is called oriented when an orientation is chosen, and if M is connected and orientable,

there are two possible orientations.

Rn has a natural orientation by dx1 ∧ · · · ∧ dxn; if M is orientable, we may choose charts which preserve

orientation, as we now show.

Proposition 4.11. If the n-manifold M is oriented by [v ], it is possible to choose an orientation-preserving atlas

(Ui , ϕi) in the sense that ϕ∗i dx
1 ∧ · · · ∧ dxn ∼ v for all i . In particular, the Jacobian determinants for this atlas

are all positive.
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Proof. Choose any atlas (Ui , ϕi). For each i , either ϕ∗i dx
1 ∧ · · · ∧ dxn ∼ v , and if not, replace ϕi with q ◦ ϕ,

where q : (x1, . . . , xn) 7→ (−x1, . . . , xn). This completes the proof.

Now we can define the integral on an oriented n-manifold M, by defining the integral on chart images and

asking it to be compatible with these charts:

Theorem 4.12. Let M be an oriented n-manifold. Then there is a unique linear map
∫
M : Ωn

c(M) −→ R on

compactly supported n-forms which has the following property: if h is an orientation-preserving diffeomorphism

from V ⊂ Rn to U ⊂ M, and if α ∈ Ωn
c(M) has support contained in U, then∫

M

α =

∫
V

h∗α.

Proof. Let α ∈ Ωn
c(M) and choose an orientation-preserving, locally finite atlas (Ui , ϕi) with subordinate

partition of unity (θi). Then using the required properties (and noting that α is nonzero in only finitely many

Ui), we have ∫
M

α =
∑
i

∫
M

θiα =
∑
i

∫
ϕi (Ui )

(ϕ−1
i )∗θiα.

This proves the uniqueness of the integral. To show existence, we must prove that the above expression actually

satisfies the defining condition, and hence can be used as an explicit definition of the integral.

Let h : V −→ U be an orientation-preserving diffeomorphism from V ⊂ Rn to U ⊂ M, and suppose α has

support in U. Then ϕi ◦ h are orientation-preserving, and

∫
M

α =
∑
i

∫
ϕi (Ui )∩ϕi (U)

(ϕ−1
i )∗θiα

=
∑
i

∫
V ∩h−1(Ui )

(ϕi ◦ h)∗(ϕ−1
i )∗θiα

=
∑
i

∫
V ∩h−1(Ui )

h∗(θiα)

=

∫
V

h∗α,

as required.
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