
1.3 Smooth maps

For topological manifolds M,N of dimension m, n, the natural notion of morphism from M to N is that of a

continuous map. A continuous map with continuous inverse is then a homeomorphism from M to N, which is the

natural notion of equivalence for topological manifolds. Since the composition of continuous maps is continuous

and associative, we obtain a category C0-Man of topological manifolds and continuous maps. Recall that a

category is simply a class of objects C (in our case, topological manifolds) and an associative class of arrows A

(in our case, continuous maps) with source and target maps A
s

((

t

66 C and an identity arrow for each object,

given by a map Id : C −→ A (in our case, the identity map of any manifold to itself). Conventionally we write

the set of arrows {a ∈ A : s(a) = x and t(a) = y} as Hom(x, y). Also note that the associative composition

of arrows mentioned above then becomes a map

Hom(x, y)× Hom(y , z) −→ Hom(x, z).

So, the category C0-Man has objects which are topological manifolds, and Hom(M,N) = C0(M,N) is the set

of continuous maps M −→ N. We now describe the morphisms between smooth manifolds, completing the

definition of the category of smooth manifolds.

Definition 4. A map f : M −→ N is called smooth when for each chart (U,ϕ) for M and each chart (V, ψ)

for N, the composition ψ ◦ f ◦ ϕ−1 is a smooth map, i.e. ψ ◦ f ◦ ϕ−1 ∈ C∞(ϕ(U),Rn). The set of smooth

maps (i.e. morphisms) from M to N is denoted C∞(M,N). A smooth map with a smooth inverse is called a

diffeomorphism.

If g : L −→ M and f : M −→ N are smooth maps, then so is the composition f ◦g, since if charts ϕ,χ,ψ for

L,M,N are chosen near p ∈ L, g(p) ∈ M, and (f g)(p) ∈ N, then ψ ◦ (f ◦g)◦ϕ−1 = A◦B, for A = ψf χ−1 and

B = χgϕ−1 both smooth mappings Rn −→ Rn. By the chain rule, A ◦ B is differentiable at p, with derivative

Dp(A ◦ B) = (Dg(p)A)(DpB) (matrix multiplication).

Now we have a new category, which we may call C∞-Man, the category of smooth manifolds and smooth

maps; two manifolds are considered isomorphic when they are diffeomorphic.

Example 1.11. We show that the complex projective line CP 1 is diffeomorphic to the 2-sphere S2. Consider

the maps f+(x0, x1, x2) = [1 + x0 : x1 + ix2] and f−(x0, x1, x2) = [x1 − ix2 : 1 − x0]. Since f± is continuous on

x0 6= ±1, and since f− = f+ on |x0| < 1, the pair (f−, f+) defines a continuous map f : S2 −→ CP 1. To check

smoothness, we compute the compositions

ϕ0 ◦ f+ ◦ ϕ−1
N : (y1, y2) 7→ y1 + iy2, (10)

ϕ1 ◦ f− ◦ ϕ−1
S : (y1, y2) 7→ y1 − iy2, (11)

both of which are obviously smooth maps.

Remark 2 (Exotic smooth structures). The topological Poincaré conjecture, now proven, states that any

topological manifold homotopic to the n-sphere is in fact homeomorphic to it. We have now seen how to put a

differentiable structure on this n-sphere. Remarkably, there are other differentiable structures on the n-sphere

which are not diffeomorphic to the standard one we gave; these are called exotic spheres.

Since the connected sum of spheres is homeomorphic to a sphere, and since the connected sum operation

is well-defined as a smooth manifold, it follows that the connected sum defines a monoid structure on the set

of smooth n-spheres. In fact, Kervaire and Milnor showed that for n 6= 4, the set of (oriented) diffeomorphism

classes of smooth n-spheres forms a finite abelian group under the connected sum operation. This is not known

to be the case in four dimensions. Kervaire and Milnor also compute the order of this group, and the first

dimension where there is more than one smooth sphere is n = 7, in which case they show there are 28 smooth

spheres, which we will encounter later on.
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The situation for spheres may be contrasted with that for the Euclidean spaces: any differentiable manifold

homeomorphic to Rn for n 6= 4 must be diffeomorphic to it. On the other hand, by results of Donaldson,

Freedman, Taubes, and Kirby, we know that there are uncountably many non-diffeomorphic smooth structures

on the topological manifold R4; these are called fake R4s.

Example 1.12 (Lie groups). A group is a set G with an associative multiplication G × G m // G , an identity

element e ∈ G, and an inversion map ι : G −→ G, usually written ι(g) = g−1.

If we endow G with a topology for which G is a topological manifold and m, ι are continuous maps, then the

resulting structure is called a topological group. If G is a given a smooth structure and m, ι are smooth maps,

the result is a Lie group.

The real line (where m is given by addition), the circle (where m is given by complex multiplication), and

their cartesian products give simple but important examples of Lie groups. We have also seen the general linear

group GL(n,R), which is a Lie group since matrix multiplication and inversion are smooth maps.

Since m : G × G −→ G is a smooth map, we may fix g ∈ G and define smooth maps Lg : G −→ G and

Rg : G −→ G via Lg(h) = gh and Rg(h) = hg. These are called left multiplication and right multiplication.

Note that the group axioms imply that RgLh = LhRg.

1.4 Manifolds with boundary

The concept of manifold with boundary is important for relating manifolds of different dimension. Our manifolds

are defined intrinsically, meaning that they are not defined as subsets of another topological space; therefore,

the notion of boundary will differ from the usual boundary of a subset.

To introduce boundaries in our manifolds, we need to change the local model which they are based on. For

this reason, we introduce the half-space Hn = {(x1, . . . , xn) ∈ Rn : xn ≥ 0}, equip it with the induced topology

from Rn, and model our spaces on this one.

Definition 5. A topological manifold with boundary M is a second countable Hausdorff topological space which

is locally homeomorphic to Hn. Its boundary ∂M is the (n − 1) manifold consisting of all points mapped to

xn = 0 by a chart, and its interior IntM is the set of points mapped to xn > 0 by some chart.

A smooth structure on such a manifold with boundary is an equivalence class of smooth atlases, where

smoothness is defined below.

Definition 6. Let V,W be finite-dimensional vector spaces, as before. A function f : A −→ W from an arbitrary

subset A ⊂ V is smooth when it admits a smooth extension to an open neighbourhood Up ⊂ W of every point

p ∈ A.

For example, the function f (x, y) = y is smooth on H2 but f (x, y) =
√
y is not, since its derivatives do not

extend to y ≤ 0.

Note the important fact that if M is an n-manifold with boundary, IntM is a usual n-manifold, without

boundary. Also, even more importantly, ∂M is an n − 1-manifold without boundary, i.e. ∂(∂M) = ∅. This is

sometimes phrased as the equation

∂2 = 0.

Example 1.13 (Möbius strip). The mobius strip E is a compact 2-manifold with boundary. As a topological

space it is the quotient of R× [0, 1] by the identification (x, y) ∼ (x + 1, 1− y). The map π : [(x, y)] 7→ e2πix

is a continuous surjective map to S1, called a projection map. We may choose charts [(x, y)] 7→ ex+iπy for

x ∈ (x0 − ε, x0 + ε), and for any ε < 1
2 .

Note that ∂E is diffeomorphic to S1. This actually provides us with our first example of a non-trivial fiber

bundle. In this case, E is a bundle of intervals over a circle. It is nontrivial, since the trivial fiber bundle S1×[0, 1]

has boundary S1 t S1.
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1.5 Cobordism

(n+1)-Manifolds with boundary provide us with a natural equivalence relation on n-manifolds, called cobordism.

Definition 7. Compact n-manifolds M1,M2 are cobordant when there exists a compact n + 1-manifold with

boundary N such that ∂N is diffeomorphic to M1 tM2. If N is cobordant to M, then we say that M,N are in

the same cobordism class.

• We use compact manifolds since any manifold M is the boundary of a noncompact manifold with boundary

M × [0, 1).

• The set of cobordism classes of k-dimensional manifolds is called Ωk , and forms an abelian group under

the operation [M1]+[M2] = [M1tM2]. The additive identity element is 0 = [∅]. Note that ∅ is a manifold

of dimension k for all k .

• The direct sum Ω• =
⊕

k≥0 Ωk then forms a commutative ring called the Cobordism ring, where the

product is

[M1] · [M2] = [M1 ×M2].

Note that while the Cartesian product of manifolds is a manifold, the Cartesian product of two manifolds

with boundary is not a manifold with boundary. On the other hand, the Cartesian product of manifolds

only one of which has boundary, is a manifold with boundary (why?)

Note that the 1-point space [∗] is not null-cobordant, meaning it is not the boundary of a compact 1-manifold.

Compact 0-dimensional manifolds are boundaries only if they consist of an even number of points. This shows

that there are compact manifolds which are not boundaries.

Proposition 1.14. The cobordism ring is 2-torsion, i.e. x + x = 0 ∀x .

Proof. The zero element of the ring is [∅] and the multiplicative unit is [∗], the class of the one-point manifold.

For any manifold M, the manifold with boundary M × [0, 1] has boundary M tM. Hence [M] + [M] = [∅] = 0,

as required.

Example 1.15. The n-sphere Sn is null-cobordant (i.e. cobordant to ∅), since ∂Bn+1(0, 1) ∼= Sn, where

Bn+1(0, 1) denotes the unit ball in Rn+1.

Example 1.16. Any oriented compact 2-manifold Σg is null-cobordant , since we may embed it in R3 and the

“inside” is a 3-manifold with boundary given by Σg.

We would like to state an amazing theorem of Thom, which is a complete characterization of the cobordism

ring.

Theorem 1.17 (René Thom 1954). The cobordism ring is a (countably generated) polynomial ring over F2

with generators in every dimension n 6= 2k − 1, i.e.

Ω• = F2[x2, x4, x5, x6, x8, . . .].

This theorem implies that there are 3 nonzero cobordism classes in dimension 4, namely x2
2 , x4, and x2

2 +x4.

Can you find 4-manifolds representing these classes? Can you find connected representatives? What is the

abelian group structure on Ω4? In fact, there is a finite set of numbers associated to each manifold, called the

Stiefel-Whitney characteristic numbers, which completely determine whether two manifolds are cobordant.
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