
1.6 Smooth functions and partitions of unity

The set C∞(M,R) of smooth functions on M inherits much of the structure of R by composition. R is a ring,

having addition + : R × R −→ R and multiplication × : R × R −→ R which are both smooth. As a result,

C∞(M,R) is as well: One way of seeing why is to use the smooth diagonal map ∆ : M −→ M × M, i.e.

∆(p) = (p, p).

Then, given functions f , g ∈ C∞(M,R) we have the sum f + g, defined by the composition

M
∆ // M ×M

f×g // R× R + // R .

We also have the product f g, defined by the composition

M
∆ // M ×M

f×g // R× R × // R .

Given a smooth map ϕ : M −→ N of manifolds, we obtain a natural operation ϕ∗ : C∞(N,R) −→ C∞(M,R),

given by f 7→ f ◦ ϕ. This is called the pullback of functions, and defines a homomorphism of rings since

∆ ◦ ϕ = (ϕ× ϕ) ◦ ∆.

The association M 7→ C∞(M,R) and ϕ 7→ ϕ∗ takes objects and arrows of C∞-Man to objects and arrows

of the category of rings, respectively, in such a way which respects identities and composition of morphisms.

Such a map is called a functor. In this case, it has the peculiar property that it switches the source and target

of morphisms. It is therefore a contravariant functor from the category of manifolds to the category of rings,

and is the basis for algebraic geometry, the algebraic representation of geometrical objects.

It is easy to see from this that any diffeomorphism ϕ : M −→ M defines an automorphism ϕ∗ of C∞(M,R),

but actually all automorphisms are of this form (Why?). Also, if M is a compact manifold, then an ideal

I ⊂ C∞(M,R) is maximal if and only if it is the vanishing ideal {f ∈ C∞(M,R) : f (p) = 0} of a point p ∈ M
(Why? Also, Why must M be compact?).

The key tool for understanding the ring C∞(M,R) is the partition of unity. This will allow us to go from

local to global, i.e. to glue together objects which are defined locally, creating objects with global meaning.

Definition 8. A collection of subsets {Uα} of the topological space M is called locally finite when each point

x ∈ M has a neighbourhood V intersecting only finitely many of the Uα.

Definition 9. A covering {Vα} is a refinement of the covering {Uβ} when each Vα is contained in some Uβ.

Lemma 1.18. Any open covering {Aα} of a topological manifold has a countable, locally finite refinement

{(Ui , ϕi)} by coordinate charts such that ϕi(Ui) = B(0, 3) and {Vi = ϕ−1
i (B(0, 1))} is still a covering of M.

We will call such a cover a regular covering. In particular, any topological manifold is paracompact (i.e. every

open cover has a locally finite refinement)

Proof. If M is compact, the proof is easy: choosing coordinates around any point x ∈ M, we can translate

and rescale to find a covering of M by a refinement of the type desired, and choose a finite subcover, which is

obviously locally finite.

For a general manifold, we note that by second countability of M, there is a countable basis of coordinate

neighbourhoods and each of these charts is a countable union of open sets Pi with Pi compact. Hence M has

a countable basis {Pi} such that Pi is compact.

Using these, we may define an increasing sequence of compact sets which exhausts M: let K1 = P 1, and

Ki+1 = P1 ∪ · · · ∪ Pr ,

where r > 1 is the first integer with Ki ⊂ P1 ∪ · · · ∪ Pr .
Now note that M is the union of ring-shaped sets Ki\K◦i−1, each of which is compact. If p ∈ Aα, then

p ∈ Ki+2\K◦i−1 for some i . Now choose a coordinate neighbourhood (Up,α, ϕp,α) with Up,α ⊂ Ki+2\K◦i−1 and

ϕp,α(Up,α) = B(0, 3) and define Vp,α = ϕ−1(B(0, 1)).

Letting p, α vary, these neighbourhoods cover the compact set Ki+1\K◦i without leaving the band Ki+2\K◦i−1.

Choose a finite subcover Vi ,k for each i . Then (Ui ,k , ϕi ,k) is the desired locally finite refinement.
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Definition 10. A smooth partition of unity is a collection of smooth non-negative functions {fα : M −→ R}
such that

i) {suppfα = f −1
α (R\{0})} is locally finite,

ii)
∑

α fα(x) = 1 ∀x ∈ M, hence the name.

A partition of unity is subordinate to an open cover {Ui} when ∀α, suppfα ⊂ Ui for some i .

Theorem 1.19. Given a regular covering {(Ui , ϕi)} of a manifold, there exists a partition of unity {fi} subordinate

to it with fi > 0 on Vi and suppfi ⊂ ϕ−1
i (B(0, 2)).

Proof. A bump function is a smooth non-negative real-valued function g̃ on Rn with g̃(x) = 1 for ||x || ≤ 1 and

g̃(x) = 0 for ||x || ≥ 2. For instance, take

g̃(x) =
h(2− ||x ||)

h(2− ||x ||) + h(||x ||+ 1)
,

for h(t) given by e−1/t for t > 0 and 0 for t < 0.

Having this bump function, we can produce non-negative bump functions on the manifold gi = g̃ ◦ϕi which

have support suppgi ⊂ ϕ−1
i (B(0, 2)) and take the value +1 on Vi . Finally we define our partition of unity via

fi =
gi∑
j gj

, i = 1, 2, . . . .

Corollary 1.20 (Existence of bump functions). Let A ⊂ M be any closed subset of a manifold, and let U be any

open neighbourhood of A. Then there exists a smooth function fU : M −→ R with fU ≡ 1 on A and suppfU ⊂ U.

Proof. Consider the open cover {U,M\A} of M. Choose a regular subcover (Ui , ϕi) with subordinate partition

of unity fi . Then let fU be the sum of all fi with support contained in U.

One interesting application of partitions of unity is to the extension of any chart ϕi : Ui ⊂ M −→ Rn to a

smooth mapping ϕ : M −→ Rn. If ψ is a bump function supported in Ui , then take

ϕ(x) =

{
0 for x ∈ M\Ui
ψ(x)ϕi(x) for x ∈ Ui
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2 The tangent functor

The tangent bundle of an n-manifold M is a 2n-manifold, called TM, naturally constructed in terms of M,

which is made up of the disjoint union of all tangent spaces to all points in M. Usually we think of tangent

spaces as subspaces of Euclidean space which approximate a curved subset, but interestingly, the tangent space

does not require an ambient space in order to be defined. In other words, the tangent space is “intrinsic” to

the manifold and does not depend on any embedding.

As a set, it is fairly easy to describe, as simply the disjoint union of all tangent spaces. However we must

explain precisely what we mean by the tangent space TpM to p ∈ M.

Definition 11. Let (U,ϕ), (V, ψ) be coordinate charts around p ∈ M. Let u ∈ Tϕ(p)ϕ(U) and v ∈ Tψ(p)ψ(V ).

Then the triples (U,ϕ, u), (V, ψ, v) are called equivalent when D(ψ ◦ ϕ−1)(ϕ(p)) : u 7→ v . The chain rule for

derivatives Rn −→ Rn guarantees that this is indeed an equivalence relation.

The set of equivalence classes of such triples is called the tangent space to p of M, denoted TpM, and

forms a real vector space of dimension dimM.

As a set, the tangent bundle is defined by

TM =
⊔
p∈M

TpM,

and it is equipped with a natural surjective map π : TM −→ M, which is simply π(X) = x for X ∈ TxM.

We now give it a manifold structure in a natural way.

Proposition 2.1. For an n-manifold M, the set TM has a natural topology and smooth structure which make

it a 2n-manifold, and make π : TM −→ M a smooth map.

Proof. Any chart (U,ϕ) for M defines a bijection

Tϕ(U) ∼= U × Rn −→ π−1(U)

via (p, v) 7→ (U,ϕ, v). Using this, we induce a smooth manifold structure on π−1(U), and view the inverse of

this map as a chart (π−1(U),Φ) to ϕ(U)× Rn.

given another chart (V, ψ), we obtain another chart (π−1(V ),Ψ) and we may compare them via

Ψ ◦Φ−1 : ϕ(U ∩ V )× Rn −→ ψ(U ∩ V )× Rn,

which is given by (p, u) 7→ ((ψ ◦ ϕ−1)(p), D(ψ ◦ ϕ−1)pu), which is smooth. Therefore we obtain a topology

and smooth structure on all of TM (by defining W to be open when W ∩π−1(U) is open for every U in an atlas

for M; all that remains is to verify the Hausdorff property, which holds since points x, y are either in the same

chart (in which case it is obvious) or they can be separated by the given type of charts.

A more constructive way of looking at the tangent bundle: We choose a countable, locally finite atlas

A = {(Ui , ϕi)} for M and glue together Ui × Rn to Uj × Rn via an equivalence

(x, u) ∼ (y , v) ⇔ y = ϕj ◦ ϕ−1
i (x) and v = D(ϕj ◦ ϕ−1

i )xu,

and verify the conditions of the general gluing construction (Assignment 1), obtaining a manifold TMA. Then

show that the result is independent of the chosen atlas in the smooth structure: for a different atlas A′, one

obtains a diffeomorphism ϕAA′ : TMA −→ TMA′ which itself satisfies ϕA′A′′ ◦ ϕAA′ = ϕAA′′ .

It is easy to see from the definition that (TM,πM ,M) is a fiber bundle with fiber type Rn; in fact there

is slightly more structure involved: the tangent spaces TpM have a natural vector space structure and the

given local trivializations Φ : π−1
M (U) −→ U × Rn preserve the vector space structure on each fiber, i.e.

Φ|TpM : TpM −→ {p} × Rn is a linear map for all p. This makes (TM,πM ,M) into a vector bundle.
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