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Below F := P/m is a field, sets Spec(A) , Specm(A) are

prime, max. ideals of A := P/I ; MA(I ) :=
⋂

I ⊆ m∈Specm(A)

m

Main Thm: (1)
√
I := {f ∈ P | f N ∈ I} =M(I ) :=MP(I ) ;

(2) [F : K ] := dimK F <∞ and #(F ) <∞ in arithmetic case;

(3) ∃ F s.th. VF (I ) := {ξ ∈ F n : f (ξ) = 0, ∀ f ∈ I} 6= ∅ ;

Classical case: P = K [x ] and K = its alg. closure K then

(4) I(V(I )) =
√
I and V(I(V(I ))) = V(I ) := VK (I ) , where

I(V) := {f ∈ P : f|V = 0} .

Easy Thm: PR(I ) :=
⋂

I⊆P∈Spec(R)

P =
√
I for ideals I in any ring

R



Indeed, f ∈ PR(I )/I ⊂ B := R/I ⇒ f ∈MB[x0](0) ⇒ exists

(1 + f x0)−1 =
∑

j<d cjx
j
0 ∈ B[x0] ⇒ cj = (−f )j and f d = 0 �

Defs: R is domain when {0} ∈ Spec(R) . Ring A←↩ K is

K -algebraic: ∀a ∈ A \ {0} ∃ f ∈ K [z ] \ {0} with f (a) = 0

Lemma 1: K -algeb. domains A←↩ K are fields. If F is from (2)

Corollary 1: for ξ ∈ F n mξ := {f ∈ P : f (ξ) = 0} ∈ Specm(P) .

Proof of L1: K [z ] is a PID ⇒ ∀ a ∈ A \ {0} ∃ irreducible f s.th.

ma := {g ∈ K [z ] : g(a) = 0} = (f ) ⇒ ma maximal, K [a] field.

For A = K [a1, ...an] , ai := [xi ] ⇒ all K [a1, ...ak ] are fields. �



Key to HN. Lemma 2: Fields F = K [x ]/I are K -algebraic.

Remarks: [A : K ] <∞ for fields A from L1. Hence Lemma 2

⇒ geom. case of Main Thm (2) ⇒ each m ∈ Specm(P) is mξ

from Cor. 1 with ξ := ([x1], ..., [xn]) and [xi ] ∈ F := P/m .

So (3) follows with F = P/m and m maximal among ideals

J 6= P s.th. J ⊃ I (via Zorn’s lemma). So, then also (1) ⇒ (4).

Plan: We’ll prove (2)⇒ (1) , then L2, then arithm case of (2).

Note: K = K ⇒ V(I )→ {m ∈ Specm(K [x ]) : I ⊂ m} is bijective:



since m = mξ = (x1− ξ1, . . . , xn− ξn), ξ := ([x1], ..., [xn]) ∈ V(I ) �

Lemma 4 : M ∈ Specm(P[x0])⇒ m := M ∩ P ∈ Specm(P)

Prf: With k := K in geom. and φ(Z) = Z/pZ in arith. case

F := P[x0]/M = k[a0, a1, ..., an]←↩ R := P/m = k[a1, ..., an] ,

where ai := [xi ] ∈ F . So, as in Lemma 1, R is a field. �

Prf (2)⇒ (1): f ∈M(I )/I ⊂ A ⇒ f ∈
√

0 ↪→ A suffices

But f , due to L4, is in every maximal ideal of A[x0] implying exists

(1 + f x0)−1 =
∑

j<d cjx
j
0 ∈ A[x0] ⇒ cj = (−f )j , i.e. f d = 0 �



Proof of Lemma 2: Fields F = K [x ]/I are K -algebraic.

Prf: Let ~aj := (a1, . . . , aj) , j ≤ n , where ai := [xi ] ∈ F = K [~an]

If F is not K -algebraic then not all of ai ’s are. Then reorder ai ’s

and choose maximal r ≤ n so that aj is not K [~aj−1]-algebraic for

j ≤ r ⇒ K [x1, ..., xr ] isomorphic R := K [~ar ] ⇒ is UFD with

∞ many irreducible elements and aj ’s for r < j are R-algebraic

⇒ m = [F : L] := dimLF <∞ , where L := K (~ar ) = (R) ↪→

F = K [~an] . Let φ : F 3 b 7→ the matrix of the L-linear maps



of multiplication by b in F in a fixed L-basis of F . Let g ∈ R be

common denominator of matrix entries of φ(ai ) ∈ Lm×m (for i ≤ r

matrix φ(ai ) = ai · I is diagonal) ⇒ φ(ai ) ∈ R[g−1]m×m

⇒ ∀b ∈ F ∃ s ∈ Z+ s.th. φ(b) ∈ g−sRm×m . Let pj , j ≤ k ,

be the irred. factors of g in R and p ∈ R ↪→ L any irreducible

element ⇒ matrix φ(p−1) = p−1 · I and ∃ d ∈ Z+ and

f ∈ R s.th. p−1 = g−d · f or gd = p · f ⇒ p is one of the

pi ’s , but ∃ ∞ many choices for irreducible p ∈ R := K [~ar ] ?! �



Proof of (2) in the arithmetic case: then F = B[x ]/J

with B := φ(Z) and φ : P → F = P/I ⇒ either

p :=charF <∞ , [F : Z/pZ] <∞ (then #(F ) <∞ , done)

or B = Z , F = Q[x ]/JQ[x ] ⇒ each aj := φ(xj) is algebraic over

Q and integral over R := Z[ 1N ] for an N ∈ Z . Integral elements

form a ring ⇒ A := Z[a1, ..., an] is integral over R and

∀ r ∈ Z \ {0} ∃ bi ∈ Z[ 1N ] s.th. (1r )d = b1(1r )d−1 + . . . +bd ⇒

1
r ∈ Z[ 1N ] ⇒ ∃ s s.th. Ns

r ∈ Z . But #{ primes ∈ Z} =∞ ?! �



Claim: Integral closure R of a noetherian R ↪→ S in

domain S is a subring. Follows using R[f + g ] and R[f · g ] are

R-submodules of SpanR(R[f ] · R[g ]) and Lemma:

f ∈ S is integ. over R ↪→ S iff R[f ] is a fin. gen. R-module.

Proof of ‘if’: Let R[f ] =
∑

1≤j≤m R · ej , ej ∈ R[f ] ⇒ f · ei =∑
1≤j≤m aij · ej with aij ∈ R . Using T adj · T = detT · I ⇒

det(f · I −A) · ei = 0 ∀ i , where matrix A := {aij} ⇒

det(f · I −A) = 0 , i.e. R[z ] 3 P(z) := det(z · I −A) = zm+

lower order terms and P(f ) = 0 . ‘Only if’ is obvious. �


