Hilbert Nullstellensatz for ideals | — P := K[x]
or Z[x] , x .= (x1,...,x,) and K a field,
called geometric or arithmetic case.
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Below F :=P/mis a field, sets Spec(A) , Specm(A) are

prime, max. ideals of A:=P/l; Ma(l) := ﬂ m
I C meSpecm(A)

Main Thm: (1) VI :={f e P|fN eI} = M(I) := Mp(I) ;
(2) [F: K] :=dimk F < 00 and #(F) < oo in arithmetic case;
(3) IFsth. Ve(l):={€eF: f(&)=0,Yfel}#0;
Classical case: P = K[x] and K = its alg. closure K then
(4) ZV(1) = VI and V(Z(V(1))) = V(I) := Vi(I) . where
IV):={feP: fiy=0}.

Easy Thm: Pg(/) = m P = /I for ideals I in any ring
ICPeSpec(R)



Indeed, f € Pr(/)/I C B:= R/l = f & Mp[,,(0) = exists
(1+fx) =4 €Blx]=c=(—fYand /=0 W
Defs: R is domain when {0} € Spec(R) . Ring A<+ K is
K-algebraic: Va € A\ {0} 3 f € K|[z] \ {0} with f(a) =0

Lemma 1: K-algeb. domains A <= K are fields. If F is from (2)
Corollary 1: for £ € F" m¢:={f € P: f(§) =0} € Specm(P) .
Proof of L1: K[z] isa PID =V ac A\ {0} 3 irreducible f s.th.
m,:={g € K[z] : g(a) =0} = (f) = m, maximal, K[a] field.

For A= Kla1,...an] , ai :=[xj] = all Kl[a1,...a,] are fields. B



Key to HN. Lemma 2: Fields F = K|[x]/I are K-algebraic.

Remarks: [A: K] < oo for fields A from L1. Hence Lemma 2
= geom. case of Main Thm (2) = each m € Specm(P) is mg
from Cor. 1 with £ := ([x1],...,[xs]) and [x;]] € F :=P/m .

So (3) follows with F =P /m and m maximal among ideals

J # P s.ith. J D[ (via Zorn's lemma). So, then also (1) = (4).
Plan: We'll prove (2) = (1) , then L2, then arithm case of (2).

Note: K = K = V(I) — {m € Specm(K|[x]) : | C m} is bijective:



sincem=mg = (x1 —&1,...,xn—&n), = ([x1], .., [xa]) € V(/) A
Lemma 4 : M € Specm(P[x0]) = m:= MNP € Specm(P)

Prf: With k := K in geom. and ¢(Z) = Z/pZ in arith. case

F :=Plxo]/M = klao, a1,..., an] <> R:=P/m = kla1, ..., an| ,
where a; 1= [x;] € F . So, as in Lemma 1, R is a field. B

Prf (2) = (1): fe M(I)/I CA = f €0 A suffices

But f, due to L4, is in every maximal ideal of A[xg] implying exists

1+fx) =Yg €Alx] = ¢=(—f) ie ff=0M



Proof of Lemma 2: Fields F = K|[x]/I are K-algebraic.

Prf: Let @ := (a1,...,a;) , j < n, where a; := [x;] € F = K[a)]
If Fis not K-algebraic then not all of a;'s are. Then reorder a;'s
and choose maximal r < n so that aj is not K[a;_;]-algebraic for

Jj<r = K[xi,...,x/] isomorphic R := K[a,] = is UFD with
oo many irreducible elements and a;'s for r < j are R-algebraic
= m=[F:L]:=dmF < oo, where L:=K(a,) = (R) —

F = K[a,] . Let ¢ : F > b+ the matrix of the L-linear maps



of multiplication by b in F in a fixed L-basis of F . Let g € R be
common denominator of matrix entries of ¢(a;) € L™*™ (for i <r
matrix ¢(a;) = a; - | is diagonal) = ¢(a;) € R[g~1]™*™

=Vbe F3secZt sth. ¢(b)c g *R™™ . Letp;, j<k,

be the irred. factors of g in R and p € R < L any irreducible
element = matrix ¢(p~!)=p!-/and I d cZt and

feR sth. pl=g . f or g¢=p-f = pisone of the

pi's , but 3 oo many choices for irreducible p € R := K[a,] 7! &



Proof of (2) in the arithmetic case: then F = B[x]|/J

with B := ¢(Z) and ¢ : P — F =P/l = either

p:=charF < oo, [F:Z/pZ] < oo (then #(F) < oo, done)

or B=7,F=Q[x]/JQ[x] = each a; := ¢(x;) is algebraic over
Q and integral over R := Z[1] for an N € Z . Integral elements
form aring = A:=Z[a1,...,a,] is integral over R and
Vrez\{0} 3 b €Z[y] sth. (1) =b(L) 1+ .. +by =

LeZ[y] = 3s sth. X cZ. But #{ primes€ Z} =cc 7! W



Claim: Integral closure R of a noetherian R < S in

domain S is a subring. Follows using R[f + g] and R|[f - g] are
R-submodules of Spang(R[f] - R[g]) and Lemma:

f € Sisinteg. over R — S iff R[f]is a fin. gen. R-module.
Proof of ‘if': Let R[f] =3 "1.;c,R ¢, g €ER[f]|= f-e=
Yi<j<mdij- € with aj € R . Using T°Y. T =detT -/ =
det(f -/ —A)-e=0 Vi, where matrix A:={a;} =

det(f -1 —A)=0,ie R[z] > P(z) =det(z- | —A)=z"+

lower order terms and P(f) =0 . ‘Only if" is obvious. W



