Fourier transforms of Kirilov's Orbital integrals

Matt Koster

August 10, 2020

We compute simple expressions for the Fourier transforms of Orbital integrals on two coadjoint orbits, namely the semisimple cone of SL(2) acting on $\mathfrak{sl}(2)^*$ and the unit sphere of SO(3) acting on $\mathfrak{so}(3)^*$. This was done under the supervision of professor Julia Gordon (UBC).

G denotes a Lie group with Lie algebra \mathfrak{g} .

 $X \in \mathfrak{g}^*, \mathcal{O}_X$ denotes the co-adjoint orbit of X.

 $X \in \mathfrak{g}^*, Y \in \mathfrak{g}, \langle X, Y \rangle$ denotes X(Y).

 ω the Kirillov-Kostant-Souriau symplectic form on \mathcal{O}_X

 $\mathcal{S}(\mathfrak{g}^*)$ the Schwartz space on \mathfrak{g}^*

 λ denotes the Lebesgue measure

Given G, \mathfrak{g} , $X \in \mathfrak{g}^*$, fix $m_0 \in M = \mathcal{O}_X$. We have $\varphi_{m_0} : G \to \mathfrak{g}^*$ given by $\varphi_{m_0}(g) = Ad_g^*(m_0)$. The differential of φ_{m_0} at $e \in G$ gives an identification $\Phi_{m_0} : \mathfrak{g}/\mathfrak{c}(X) \to T_{m_0}M \hookrightarrow T_{m_0}\mathfrak{g}^* \cong \mathfrak{g}^*$. This can be computed either by recalling that $\langle \Phi_{m_0}(X), Y \rangle = \langle m_0, [Y, X] \rangle$ or via the exponential map:

$$\Phi_{m_0}(X) = \frac{d}{dt} \Big|_{t=0} (\varphi_{m_0} \circ \exp)(tX).$$

The identification $\mathfrak{g}/\mathfrak{c}(X) \cong T_{m_0}M$ allows us to define a symplectic 2-form ω on M by:

$$\omega_{m_0}(u,v) = \langle m_0, [\Phi_{m_0}^{-1}(u), \Phi_{m_0}^{-1}(v)] \rangle$$

We extend ω to a 2-form on \mathfrak{g}^* by using the decomposition $T\mathfrak{g}^* = TM \oplus \nu(M)$ where $\nu(M)$ denotes the normal bundle to M. Given $p \in M$ we can thus write $v \in T_p\mathfrak{g}^*$ as $v = v^t + v^n$ where $v^t \in T_pM$ and $v^n \in \nu(M)$. Under this decomposition we define the extension $\widetilde{\omega}$ of ω at p to be $\widetilde{\omega}_p(v_1, v_2) = \omega_p(v_1^t, v_2^t)$. One can further define ω at points $p \notin M$ using projection mappings and a partition of unity but we shall not need that here. In this way we can see ω as a form on \mathfrak{g}^* .

Letting $T: \mathcal{S}(\mathfrak{g}^*) \to \mathbb{R}$ denote the distribution on \mathfrak{g}^* given by:

$$T(f) = \int_{Y \in \mathcal{O}_X} f(Y)\omega(Y)$$

we evaluate $\widehat{T}(f)$:

$$\widehat{T}(f) = \int_{Y \in \mathcal{O}_X} \left(\int_{X \in \mathfrak{g}} f(X) \exp(-2\pi i \langle Y, X \rangle) d\lambda(X) \right) \omega(Y).$$

With no formal justification we proceed in the following way:

$$\begin{split} \widehat{T}(f) &= \int_{Y \in \mathcal{O}_X} \left(\int_{X \in \mathfrak{g}} f(X) \exp(-2\pi i \langle Y, X \rangle) d\lambda(X) \right) \omega(Y) \\ &= \int_{X \in \mathfrak{g}} \int_{Y \in \mathcal{O}_X} f(X) \exp(-2\pi i \langle Y, X \rangle) d\lambda(X) \omega(Y) \\ &= \int_{X \in \mathfrak{g}} f(X) \left(\int_{Y \in \mathcal{O}_X} \exp(-2\pi i \langle Y, X \rangle) \omega(Y) \right) d\lambda(X) \\ &= \int_{X \in \mathfrak{g}} f(X) \mu(X) d\lambda(X) \end{split}$$

so that one may say \widehat{T} is given by integration against μ . It is a deep result of Harish-Chandra that μ is L^1 and analytic on the regular set of \mathfrak{g} . Below, we first compute simple expressions for ω as forms on \mathfrak{g}^* , and then use this to compute simple expressions for $\mu(X)$.

I:

Let $G = SL(2; \mathbb{R})$, $\mathfrak{g} = \mathfrak{sl}(2; \mathbb{R})$, and let $\beta = \{\mathbf{e}, \mathbf{f}, \mathbf{h}\}$ the basis for \mathfrak{g} given by:

$$\mathbf{e} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad \mathbf{f} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \quad \mathbf{h} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$

Define $\beta^* = \{\mathbf{e}^*, \mathbf{f}^*, \mathbf{h}^*\}$ to be the basis for \mathfrak{g}^* dual to β under the Killing form. Explicitly this means that $\mathbf{e}^*(\mathbf{f}) = 4$, $\mathbf{f}^*(\mathbf{e}) = 4$, and $\mathbf{h}^*(h) = 8$. Denote by M the co-adjoint orbit of \mathbf{e}^* . Finally let $\{dx, dy, dz\}$ be the basis for $\Omega^1(\mathfrak{g}^*)$ dual to $\{\frac{\partial}{\partial \mathbf{e}^*}, \frac{\partial}{\partial \mathbf{f}^*}, \frac{\partial}{\partial \mathbf{h}^*}\}$.

We start by computing M as a submanifold of \mathfrak{g}^* . First we note that $O(\mathbf{e})$ can be computed as:

$$O(\mathbf{e}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}, \mid ad - bc = 1 \right\} = \left\{ \begin{pmatrix} -ac & a^2 \\ -c^2 & ac \end{pmatrix} \mid ad - bc = 1 \right\}$$
$$= \left\{ a^2 \mathbf{e} - c^2 \mathbf{f} - ac \mathbf{h} \right\}$$
$$= \left\{ (x, y, z) \in \mathfrak{g} \mid y < 0 < x, z^2 + xy = 0 \right\}$$

From which it follows that:

$$M = \{(x, y, z) \in \mathfrak{g}^* \mid x < 0 < y, z^2 + xy = 0\}$$

Fix $m_0 \in M$ and write $m_0 = (x, y, z)$ in β^* coordinates. Let $\omega(m_0) = f_1(m_0)dx \wedge dy + f_2(m_0)dx \wedge dz + f_3(m_0)dy \wedge dz$. Then we see that at m_0 with respect to $\left\{\frac{\partial}{\partial \mathbf{e}^*}, \frac{\partial}{\partial \mathbf{f}^*}, \frac{\partial}{\partial \mathbf{h}^*}\right\}\Big|_{m_0}$ coordinates for $T_{m_0}\mathfrak{g}^*$ we have:

$$(1,0,0)^t = (x^2 + 4z^2, -xy, -2yz)$$
$$(0,1,0)^t = (-xy, y^2 + 4z^2, -2xz)$$
$$(0,0,1)^t = (-2yz, -2xz, x^2 + y^2)$$

A brief computation shows that with respect to β , β^* coordinates the matrix representation for Φ_{m_0} is given by:

$$\begin{pmatrix}
-2z & 0 & 2x \\
0 & 2z & -2y \\
y & -x & 0
\end{pmatrix}$$

thus we see that:

$$\Phi_{m_0}(-2z, 0, \frac{x}{2}) = \frac{\partial}{\partial \mathbf{e}^*}^t$$

$$\Phi_{m_0}(0, 2z, -\frac{y}{2}) = \frac{\partial}{\partial \mathbf{f}^*}^t$$

$$\Phi_{m_0}(y, -x, 0) = \frac{\partial}{\partial \mathbf{h}^*}^t$$

Now we are ready to compute:

$$f_{1}(m_{0}) = \omega_{m_{0}}(\frac{\partial}{\partial \mathbf{e}^{*}}, \frac{\partial}{\partial \mathbf{f}^{*}}) = \langle m_{0}, [(-2z, 0, \frac{x}{2}), (0, 2z, -\frac{y}{2})] \rangle = -8z(x^{2} + y^{2} + 4z^{2}) = -8z|v|^{2}$$

$$f_{2}(m_{0}) = \omega_{m_{0}}(\frac{\partial}{\partial \mathbf{e}^{*}}, \frac{\partial}{\partial \mathbf{h}^{*}}) = \langle m_{0}, [(-2z, 0, \frac{x}{2}), (y, -x, 0)] \rangle = 4x(x^{2} + y^{2} + 4z^{2}) = 4x|v|^{2}$$

$$f_{3}(m_{0}) = \omega_{m_{0}}(\frac{\partial}{\partial \mathbf{f}^{*}}, \frac{\partial}{\partial \mathbf{h}^{*}}) = \langle m_{0}, [(0, 2z, -\frac{y}{2}), (y, -x, 0)] \rangle = -4y(x^{2} + y^{2} + 4z^{2}) = -4y|v|^{2}$$
where $|v|^{2} = x^{2} + y^{2} + 4z^{2}$. Thus:

$$\omega = 4|v|^2(-2z\ dx \wedge dy + x\ dx \wedge dz - y\ dy \wedge dz)$$

Parametrizing with $\rho:(0,\infty)\times[0,2\pi)\to\mathfrak{g}^*$ given by $\rho(t,\theta)=(t(\cos\theta-1),t(\cos\theta+1),t\sin\theta)$ we conclude:

$$\rho^*\omega = -4 dt \wedge d\theta$$

Putting this into the definition of $\mu(X)$:

$$\mu(X) = \mu(a, b, c)$$

$$= \int_{(x,y,z)\in M} \exp(-2\pi i \langle (x, y, z), (a, b, c) \rangle) \omega$$

$$= -4 \int_0^\infty \int_0^{2\pi} \exp(-8\pi i t (b(\cos \theta + 1) + a(\cos \theta - 1) + 2c \sin \theta)) d\theta dt$$

$$= -4 \int_0^\infty \int_0^{2\pi} \exp(-8\pi i t ((a + b) \cos \theta + 2c \sin \theta + b - a) d\theta dt$$

$$= -8\pi \int_0^\infty \exp(-8\pi i (b - a)t) J_0(8\pi t \sqrt{(a + b)^2 + 4c^2}) dt$$

$$(*) = -\frac{\sigma(a - b)}{2\sqrt{ab + c^2}}$$

The equality (*) needs some justification. The following argument was shown to me by Saminul Haque. First we note that $\int_0^\infty t^{2m} \exp(-at) dt = \frac{(2m)!}{a^{2m+1}}$. To see this:

$$\begin{split} \int_0^\infty t^{2m} \exp(-at) dt &= \int_0^\infty \frac{t^{2m} a^{2m} \exp(-at)}{a^{2m}} dt \\ &= \int_0^\infty \frac{u^{2m} \exp(-u)}{a^{2m+1}} du \\ &= \frac{1}{a^{2m+1}} \int_0^\infty u^{2m} \exp(-u) du \\ &= \frac{\Gamma(2m+1)}{a^{2m+1}} \\ &= \frac{(2m)!}{a^{2m+1}} \end{split}$$

Now we see:

$$\int_0^\infty \exp(-Pt)J_0(Qt)dt = \int_0^\infty \exp(-Pt) \sum_{m=0}^\infty \frac{(-1)^m Q^{2m} t^{2m}}{(m!)^2 4^m} dt$$

$$= \sum_{m=0}^\infty \int_0^\infty \frac{(-1)^m Q^{2m} \exp(-Pt) t^{2m}}{(m!)^2 4^m} dt$$

$$= \sum_{m=0}^\infty \frac{(-1)^m Q^{2m}}{(m!)^2 4^m} \int_0^\infty t^{2m} \exp(-Pt) dt$$

$$= \frac{1}{P} \sum_{m=0}^\infty \frac{(-1)^m (2m)!}{(m!)^2 4^m} (\frac{Q^2}{P^2})^m$$

where the final equality follows from the previous computation. Finally we use that:

$$\sum_{k=0}^{\infty} \frac{(-1)^k (2k)!}{4^k (k!)^2} x^k = \frac{1}{\sqrt{x+1}}$$

to conclude:

$$\int_0^\infty \exp(-Pt) J_0(Qt) dt = \frac{1}{P\sqrt{\frac{Q^2}{P^2} + 1}}$$

and so:

$$-8\pi \int_0^\infty \exp(-8\pi i(b-a)t)J_0(8\pi t\sqrt{(a+b)^2+4c^2})dt = -\frac{\sigma(a-b)}{2\sqrt{ab+c^2}}$$

by the above formula with $P = 8\pi i (b-a)$ and $Q = 8\pi \sqrt{(a+b)^2 + 4c^2}$, where σ denotes the sign function.

II:

Let G = SO(3), $\mathfrak{g} = \mathfrak{so}(3)$ and let $\beta = \{X, H, Y\}$ be the basis for \mathfrak{g} where:

$$X = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \qquad H = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix} \qquad Y = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Let $\beta^* = \{X^*, H^*, Y^*\}$ be the dual basis to β under the Killing form. Explicitly this means $X^*(X) = H^*(H) = Y^*(Y) = -2$. Denote by M the co-adjoint orbit of H^* . Then a brief calculation shows that:

$$M = \{(x, y, z) \in \mathfrak{g}^* \mid x^2 + y^2 + z^2 = 1\}$$

Write $\omega = f_1 dX^* \wedge dH^* + f_2 dX^* \wedge dY^* + f_3 dH^* \wedge dY^*$ as in the previous paragraph. We aim to compute f_1, f_2, f_3 . Given $m_0 \in M$ write $m_0 = (x_1, x_2, x_3)$ in β^* coordinates. Then at m_0 we see that with respect to $\{\frac{\partial}{\partial X^*}, \frac{\partial}{\partial H^*}, \frac{\partial}{\partial Y^*}\}\Big|_{m_0}$ coordinates for $T_{m_0}\mathfrak{g}^*$ we have:

$$(1,0,0)^t = (1 - x_1^2, -x_1x_2, -x_1x_3)$$

$$(0,1,0)^t = (-x_1x_2, 1 - x_2^2, -x_2x_3)$$

$$(0,0,1)^t = (-x_1x_3, -x_2x_3, 1 - x_3^2)$$

A brief computation shows that with respect to β , β^* coordinates, the matrix representation for Φ_{m_0} is given by:

$$\begin{pmatrix} 0 & x_3 & -x_2 \\ -x_3 & 0 & x_1 \\ x_2 & -x_1 & 0 \end{pmatrix}$$

Thus we see that:

$$\Phi_{m_0}(0, x_3, -x_2) = \frac{\partial}{\partial X^*}^t$$

$$\Phi_{m_0}(-x_3, 0, x_1) = \frac{\partial}{\partial H^*}^t$$

$$\Phi_{m_0}(x_2, -x_1, 0) = \frac{\partial}{\partial Y^*}^t$$

Now we are ready to compute f_1, f_2, f_3 :

$$f_1(m_0) = \omega_{m_0}(\frac{\partial}{\partial X^*}, \frac{\partial}{\partial H^*}) = \langle m_0, [(0, x_3, -x_2), (-x_3, 0, x_1)] \rangle = -2(x_1^2 x_3 + x_2^2 x_3 + x_3^3) = -2x_3$$

$$f_2(m_0) = \omega_{m_0}(\frac{\partial}{\partial X^*}, \frac{\partial}{\partial Y^*}) = \langle m_0, [(0, x_3, -x_2), (x_2, -x_1, 0)] \rangle = 2(x_1^2 x_2 + x_2^3 + x_2 x_3^2) = 2x_2$$

$$f_3(m_0) = \omega_{m_0}(\frac{\partial}{\partial H^*}, \frac{\partial}{\partial Y^*}) = \langle m_0, [(-x_3, 0, x_1), (x_2, -x_1, 0)] \rangle = -2(x_1^3 + x_1 x_2^2 + x_1 x_3^2) = -2x_1$$

thus:

$$\omega(x, h, y) = -2x \ dH^* \wedge dY^* + 2h \ dX^* \wedge dY^* - 2y \ dX^* \wedge dH^*$$

= -2(x \ dH^* \land dY^* - h \ dX^* \land dY^* + y \ dX^* \land dH^*)

.

$$\mu(v_1, v_2, v_3) = \int_{q \in S^2} \exp(-2\pi i \langle q, v \rangle) d\omega(y)$$

$$= \int_{(x,y,z) \in S^2} \exp(-2\pi i \langle (x,y,z), v \rangle) (x \ dy \wedge dz - y dx \wedge dz + z dx \wedge dy)$$

$$= \int_{(x,y,z) \in S^2} \exp(4\pi i (xv_1 + yv_2 + zv_3)) (x \ dy \wedge dz - y dx \wedge dz + z dx \wedge dy)$$

$$= \int_0^{2\pi} \int_0^{\pi} \exp(4\pi i (v_1 \sin \theta \cos \phi + v_2 \sin \theta \sin \phi + v_3 \cos \theta)) \sin \theta \ d\theta d\phi$$

$$= \int_0^{\pi} \int_0^{2\pi} \exp(4\pi i (v_1 \sin \theta \cos \phi + v_2 \sin \theta \sin \phi + v_3 \cos \theta)) \sin \theta \ d\phi d\theta$$

$$= 2\pi \int_0^{\pi} \exp(4\pi i v_3 \cos(\theta)) J_0(4\pi \sqrt{v_1^2 + v_2^2} \sin \theta) \sin \theta \ d\theta$$

In the final equation we see that μ is a function only of $v_1^2 + v_2^2 + v_3^2$ hence $\mu(v_1, v_2, v_3) = \mu(0, 0, \sqrt{v_1^2 + v_2^2 + v_3^2})$ so we may as well compute $\mu(0, 0, v_3)$ and thus:

$$\mu(0,0,v_3) = 2\pi \int_0^{\pi} \exp(4\pi i v_3 \cos \theta) \sin \theta \ d\theta$$
$$= \frac{2\pi \sin(4\pi v_3)}{v_3}$$

For $v_3 \neq 0$. It is easily seen from the original equation that $\mu(0) = \int_{S^2} \omega = 4\pi$. Then to simplfy we can write $v_1^2 + v_2^2 + v_3^2 = r^2$ and conclude:

$$\mu(r) = \frac{2\pi \sin(4\pi r)}{r}$$

This calculation is probably done a bit simpler in SU(2).