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We compute simple expressions for the Fourier transforms of Orbital integrals on two co-
adjoint orbits, namely the semisimple cone of SL(2) acting on s[(2)* and the unit sphere of
SO(3) acting on s0(3)*. This was done under the supervision of professor Julia Gordon (UBC).

G denotes a Lie group with Lie algebra g.

X € g%, Ox denotes the co-adjoint orbit of X.

X eghY eg, (X,Y) denotes X(Y).

w the Kirillov-Kostant-Souriau symplectic form on Ox
S(g*) the Schwartz space on g*

A denotes the Lebesgue measure

Given G, g, X € g*, fix mg € M = Ox. We have @, : G — g* given by ¢m,(g) = Ady(mo).
The differential of ¢, at e € G gives an identification ®,,, : g/¢(X) = T M — Ting™ = g*.
This can be computed either by recalling that (®,,,(X),Y) = (mo, [Y, X]) or via the exponential
map:

d
By (X) = 2] o mq © €xB) (X).

The identification g/c¢(X) = T;,, M allows us to define a symplectic 2-form w on M by:

Wing (1, 0) = (mo, [@1; (w), By (v)])

We extend w to a 2-form on g* by using the decomposition T'g* = T'M & v(M) where v(M)
denotes the normal bundle to M. Given p € M we can thus write v € Tpg* as v = v' +0v" where
vt € T,M and v™ € v(M). Under this decomposition we define the extension @ of w at p to be
Wp(v1,v2) = wp(vh,vh). One can further define w at points p ¢ M using projection mappings
and a partition of unity but we shall not need that here. In this way we can see w as a form on g*.

Letting T': S(g*) — R denote the distribution on g* given by:

we evaluate f( f):

qUEY ( [ ) exp(-2mi(Y, X)AAX) ) (Y.

With no formal justification we proceed in the following way:



)= [ N ( [ ) exp(2mity X>>dA<X>) w(¥)
_ / / FOX) exp(—2mi(Y, X))aA(X)w(Y)
XegJYeOx

- [ (/[ sl X)lY) ) ar(X)

Xeg

= | FX)u(X)dA(X)
Xeg

so that one may say Tis given by integration against . It is a deep result of Harish-Chandra
that p is L' and analytic on the regular set of g. Below, we first compute simple expressions
for w as forms on g*, and then use this to compute simple expressions for u(X).

I:

Let G = SL(2;R), g = s[(2;R), and let 5 = {e, f, h} the basis for g given by:

B e el )

Define * = {e*,f*,h*} to be the basis for g* dual to 8 under the Killing form. Explicitly
this means that e*(f) = 4, f*(e) = 4, and h*(h) = 8. Denote by M the co-adjoint orbit of e*.
Finally let {dx, dy,dz} be the basis for Q!(g*) dual to {8%*7 8%7 5%}.

We start by computing M as a submanifold of g*. First we note that O(e) can be computed
as:

O(e):{@ Z) (8 é) (_dc ‘ab), ]ad—bc:l}:{<:z2€ Zi) ad — be =1}

= {a’e — *f — ach}

={(z,y,2) €g|y<0<uz,2?+2y =0}
From which it follows that:

M ={(z,y,2) €g" | £ <0 <y,z" +ay =0}

Fix mo € M and write mg = (x,y,2) in 8* coordinates. Let w(mg) = fi1(mo)dz A dy +
fa(mg)dx A dz + fs(mo)dy A dz. Then we see that at mg with respect to {%, %, aﬁ*}
coordinates for T},,,g* we have:

mo

(1) 07 O)t = (562 + 4’223 —2Y, —2y2)
(07170)t (_:I:y7y2 +42’2,—2(L’2’)
(0,0,1)f = (=2yz, —2x2, 2% + 3?)



A brief computation shows that with respect to 8, 5* coordinates the matrix representation
for ®,,, is given by:

-2z 0 2z
0 2z -2y
y —x 0
thus we see that:
T ot
®m0(_22707 5) = ae*
y, 9"
<I>m0(0, 225, —*) = 8?
o t
(I)m()(yﬂ x70) - ah*
Now we are ready to compute:
9 0 €z ) 2 2 2 2
fl(m()) = wmo(ae*ﬂ %) = <m07 [(_22707 5)7 (07 2z, _Q)D = _82(1: +y°+4z ) = —8Z|'U‘
o 0 x
F2(mo) = wmy (5 =, 515) = (mo, [(=22,0, 5), (y, —2,0)]) = da(z® +y° +42%) = dafof’
g 0

f3(m0) = wmo(a?’ W) = <m0’ [(07 227 _%)7 (y7 -, 0)]> = _4y(1“2 + y2 + 4Z2) = _4y|’U|2
where [v]? = 22 + y* + 42%. Thus:

w=4[v* (=22 dx Ndy + x dx ANdz —y dy A dz)

Parametrizing with p : (0, 00) %[0, 27) — g* given by p(t,0) = (t(cos@—1),t(cos0+1),tsin )
we conclude:

pfw = —4dt Ndb
Putting this into the definition of u(X):

/’L(X) = p(a, b, c)

— [ exp(-2mil(ap.2) 0o w
(z,y,2)EM
oo 2w
= —4/ / exp(—8mit(b(cos@ + 1) + a(cosf — 1) + 2¢sin6)) df dt
o Jo

oo 2w
= —4/ / exp(—8mit((a + b) cosf + 2csinf + b — a) df dt
0 0

= —8m /OO exp(—8mi(b — a)t)Jo(87t\/(a + b)? + 4¢?) dt
0
o(a —b)

W= vt e



The equality (*) needs some justification. The following argument was shown to me by

Saminul Haque. First we note that [;°¢*" exp(—at)dt = Ugm#)'l To see this:

a2m

% 42 exp(—u
= / 2mI:-(1 )du
0 a

00 00 t2m 2m —at
/ 2™ exp(—at)dt = / o™ exp(—a )dt
0 0

1 > 4
= a2m+1/0 u”™ exp(—u)du

I'(2m+1)
2mt1

Now we see:

[eS) B 0 0 (_1)mQ2mt2m
/0 exp(—Pt)Jo(Qt)dt—/O exp(—Pt)mZOWdt
[ e ryer
0

(m!)24m

dt

M

0

3
I

(_l)mQ2m

1\24m
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P (m!)24m P2

m=0
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/ t*™ exp(—Pt)dt
0

— 3
]

where the final equality follows from the previous computation. Finally we use that:

to conclude:

o0 1
/ exp(—P1)Jo(QU)dt = —
0 Py/% +1

and so:

—8m /OOO exp(—8mi(b — a)t)Jo(8mt\/(a + b)% + 4c2)dt = _;/(C%

by the above formula with P = 87i(b—a) and Q = 87/(a + b)? + 4¢?, where o denotes the
sign function.



II:
Let G = SO(3), g = s0(3) and let 5 = {X, H,Y} be the basis for g where:

00 O 0
X=10 0 -1 H=1]0
01 O -1

Let g* = {X™*, H*, Y*} be the dual basis to § under the Killing form. Explicitly this means
X*(X) = H"(H) =Y*(Y) = -

= —2. Denote by M the co-adjoint orbit of H*. Then a brief
calculation shows that:

M ={(z,y,2) €g* | 2® +y* +2* =1}

Write w = f1dX* AdH* + fodX* ANdY™ + f3dH* A dY™ as in the previous paragraph. We

aim to compute f1, fo, f3. Given mg € M write mg = (x1,x2,x3) in f* coordinates. Then at

mg we see that with respect to {%, 813* , %}

mg Coordinates for Tpn,g* we have:

(1,0,0)" = (1

(0,1,0)" = (—z129,1 — 23, —x2x3)

2
— X1, —T1T2, —T123)

(0,0, 1)t = (—z123, —T223,1 — x%)

A brief computation shows that with respect to 8, 8* coordinates, the matrix representation
for ®,,, is given by:

0 T3 —XI2
—XI3 0 T
xI9 —I1 0

Thus we see that:

8 t
q)mo (07x37 —J,’Q) - BX*
a t
émo(_x&ovxl) = OH*
8 t
Dy (w2, —21,0) = 9y
Now we are ready to compute f1, fo, f3:
0 0 2 2 3
Ji1(mo) = wmo(W7 @) = (mo, [(0, z3, —x2), (—23,0,21)]) = —2(x{x3 + x523 + x3) = —223
0 0
fa(mo) = wmg(@v W) = (mo, [(0, z3, —22), (2, —21,0)]) = 2(xiw2 + 23 + 2273) = 222
0 0

f3(mg) = wmo(ﬁ7 W) = (mo, [(—23,0,21), (v2, —21,0)]) = —2(2} + 2105 + 2123) = —211

thus:



w(z,h,y) = —2x dH* NdY* +2h dX* NdY" — 2y dX* NdH*
=2x dH*NAY* —hdX* NdY" +y dX* NdH")

exp(—2mi(g, v))dw(y)
€52

,Ul(vl, V2, U3) =

—

exp(—2mi{(x,y, z),v))(x dy A dz — ydx A dz + zdx A dy)
(z,y,2)€52

Il
~—

exp(4mi(xvy + yvo + zv3))(z dy A dz — ydx A dz + zdx A dy)
(z,y,2)€52

2w
/ exp(4mi(vy sin 6 cos ¢ + vy sin O sin ¢ 4 v3 cos 6)) sin 0 dfd¢
0

|
S~

s 2
/ exp(4mi(vy sin 6 cos ¢ + vy sin O sin ¢ + v3 cos 6)) sin 0 dpdf
o Jo

T exp(4mivsg cos(0))Jo(4my/v? + v2sin ) sin ) d
| exptamivgcos(@) o(am g + o3 sino)

In the final equation we see that yu is a function only of v? 4+ v3 + vZ hence p(vy, ve,v3) =
v? + v5 +v3) so we may as well compute x(0,0,v3) and thus:

Il
DO

1(0,0,v3) = 277/ exp(4mivz cos 0) sin 6 df
0

_ 2msin(47mvs)

U3

For vs # 0. It is easily seen from the original equation that p(0) = |, gzw = 4m. Then to
simplfiy we can write v? + v3 + v3 = r? and conclude:

_ 2msin(4mr)

p(r) =

This calculation is probably done a bit simpler in SU(2).
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