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1. Analytic

Definition 1.0.1. For U ⊂ C open, a map f : U → C is called holomorphic at a ∈ U if:

f ′(a) := lim
h→0

f(a+ h)− f(h)

h

exists and f ′(a) is called the (complex) derivative of f at a. We say that f is holomorphic
if it is holomorphic at every a ∈ U .

As a simple consequence of this definition, if we take h ∈ R, we have, for f = u+ iv:

f ′(a1, a2) = lim
h→0

u(a1 + h, a2) + iv(a1 + h, a2)− (u(a1, a2) + iv(a1, a2))

h

= lim
h→0

u(a1 + h, a2)− u(a1, a2)

h
+ i lim

h→0

v(a1 + h, a2)− v(a1, a2)

h

=
∂u

∂x
(a1, a2) + i

∂v

∂x
(a1, a2)

and taking h ∈ iR a similar calculation gives:

f ′(a1, a2) = −i

(
∂u

∂y
(a1, a2) + i

∂v

∂y
(a1, a2)

)
.

Thus:

Theorem 1.0.2 (Cauchy-Riemann equations). Writing f(x + iy) = u(x, y) + iv(x, y), f is holo-
morphic at a = (a1, a2) if and only if f ∈ C1 and:

∂u

∂x
(a) =

∂v

∂y
(a) and

∂u

∂y
(a) = −∂v

∂x
(a)

If f = u+ iv is holomorphic and v ∈ C2 then by Clairaut’s theorem:

∂2u

∂y2
= − ∂2v

∂y∂x
= − ∂2v

∂x∂y
= −∂2u

∂x2

so ∆v = 0. Assuming u ∈ C2 an identical calculation reveals ∆u = 0. It turns out (see “Cauchy’s
integral formula” below) that the real and imaginary parts of a holomorphic function are C∞ so:

Corollary 1.0.3. The real and imaginary parts of a holomorphic function are harmonic.

Remark 1.0.4. A function f being holomorphic at a is equivalent to daf : TaR2 → Tf(a)R2 being
complex-linear i.e. commuting with:

J =

(
0 −1
1 0

)
.
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By a complex structure on a real vector space V of even dimension 2k we mean a linear
transformation J : V → V such that J2 = −I. Such a map gives V the structure of a complex
vector space by declaring (x+iy)v = xv+yJ(v) (the only axiom that needs verifying is associativity
of scalar multiplication). As a complex vector space V has dimension k (begin with the observation
that J(v) = iv ∈ spanC(v)).

Now fix k = 1 so V = R2 and let VC = V ⊗R C. By definition V ⊗R C is a real vector space
together with a bilinear map π : V ×C → V ⊗RC satisfying the following universal property: for all

vector spaces U and bilinear maps T : V ×C → U there exists a unique linear map T̂ : V ⊗RC → U
making the following diagram commute:

V × C

V ⊗R C U

π T

T̂

We call the image of π simple tensors and use the notation v ⊗ α := π(v, α). Turn VC into a
complex vector space by α · (v ⊗ β) := v ⊗ (αβ) and extend linearly.

The bilinear map V × C → C2 given by (x, y, α) 7→ (αx, αy) descends to an isomorphism
V ⊗R C → C2 so dimC V ⊗R C = 2 and has as a basis e1 ⊗ 1, e2 ⊗ 1. Canonical inclusion
ι : V → VC where ι(v) = v ⊗ 1 identifies V as a subspace of VC fixed by complex conjugation. But
this identification of V as v ⊗ 1 is not as a complex subspace - the real subspace i(V ) satisfies
V ∩ i(V ) = 0. Hence we have a direct sum V ⊕ i(V ) meaning every z ∈ VC can be written uniquely
in the form z = u⊗ 1 + v ⊗ i for u, v ∈ V . For brevity we will often drop the ⊗ symbols and write
z = u+ iv.

Let J̃ : V → V be the complex structure given by J̃(x, y) = (−y, x). This is left multiplication

of

(
x
y

)
by

(
0 −1
1 0

)
. Complexifying J̃ defines a complex linear map J := J̃C : VC → VC so that

the following diagram commutes:

V VC

V VC

J̃

ι

J

ι

On simple tensors this looks like J(v⊗α) = J̃(v)⊗α so J(e1⊗1) = −e2⊗1 and J(e2⊗1) = e1⊗1
hence with respect to the ordered basis e1 ⊗ 1 and e2 ⊗ 1 the transformation J is again left

multiplication by

(
0 −1
1 0

)
. Since J2 = −I we see J has eigenvalues ±i. Let V 1,0 and V 0,1 be the

λ = i and λ = −i eigenspaces of VC, respectively. More concretely:

V 1,0 = spanC{e1 ⊗ 1− e2 ⊗ i} =: {2z}, V0,1 = spanC{e1 ⊗ 1 + e2 ⊗ i}
Note that complex conjugation on VC gives a real isomorphism of V 1,0 with V0,1 and this defines

a basis {z, z} for VC, thus:

VC = V 1,0 ⊕ V 0,1

and write v = α1z + α2z for α1, α2 ∈ C. Note that v ∈ V 1,0 we have J(v) = iv so J2(v) = −v

giving an identification of (V 1,0, J) with (V, J̃) as complex vector spaces. The choice of basis played
no role in this identification so this identification is canonical. Note that this is the second identi-
fication of V as a subspace of VC, but this time it is as a complex subspace.
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Note that R-bilinear maps V × C → C are canonically identified with C-linear maps VC → C,
but are also canonically identified with R-linear maps V → C. So HomR(V,C) = HomC(VC,C) =
(VC)

∗. Moreover, when V,W are finite dimensional, the bilinear map V ∗ ×W → Hom(V,W ) given
by (f, w) 7→ (v 7→ f(v)w) descends to an isomorphism V ∗ ⊗ W → Hom(V,W ) so in particular
(V ∗)C = V ∗ ⊗R C = HomR(V,C) = HomC(VC,C) = (VC)

∗.

Proposition 1.0.5. If V is a vector space with complex structure J then V ∗ = HomR(V,R) has
complex structure:

J ′(f)(v) = f(J(v))

Starting with a complex structure on V this proposition defines a complex structure on V ∗

which in turn provides a corresponding decomposition (V ∗)C = (V ∗)1,0 ⊕ (V ∗)0,1. Unravelling the
definitions one sees that:

(V ∗)1,0 = {f : f(J(v)) = if(v)}, (V ∗)0,1 = {f : f(J(v)) = −if(v)}

If {e1, e2} is as above a basis for (V, J) satisfying J(e1) = e2 and J(e2) = −e1 then the dual basis
{dx, dy} for V ∗ satisfies J ′(dx) = −dy and J ′(dy) = dx so we see (V ∗)1,0 is spanned by dx + idy
and (V ∗)0,1 is spanned by dx− idy. Now, notice that (dx+ idy)(z) = (dx+ idy)((e1 − ie2)/2) = 1
and similarly (dx− idy)(z) = 1, so:

(V ∗)1,0 = span{dz}, (V ∗)0,1 = span{dz}

i.e. (V ∗)1,0 = (V 1,0)∗ and (V ∗)0,1 = (V0,1)
∗.

The complex structure J( ∂
∂x) =

∂
∂y , J(

∂
∂y ) = − ∂

∂x gives a decomposition (TzR2)C = (TzR2)1,0 ⊕
(TzR2)0,1 with corresponding basis vectors:{

∂

∂z
,
∂

∂z

}
=

{
1

2

(
∂

∂x
− i

∂

∂y

)
,
1

2

(
∂

∂x
+ i

∂

∂y

)}
and a decomposition (T ∗

zR2)C = (T ∗
zR2)1,0 ⊕ (T ∗

zR2)0,1 with corresponding basis vectors:

{dz, dz} = {dx+ idy, dx− idy}.

The same holds for any open U ⊆ R2. For brevity we use the notation T 1,0
z U := (TzU)1,0 and

T 0,1
z U := (TzU)1,0. Patching together the complexified tangent spaces we define the complexified

tangent bundle:

TCU :=
⊔
z∈U

(TzU)C.

TCU is a complex vector bundle over U and is isomorphic (as complex vector bundles) to TU⊗C.
The decompositions (TzU)C = T 1,0

z U ⊕T 0,1
z U patch together to the splitting TCU = T 1,0U ⊕T 0,1U

as a Whitney sum. The same holds for:

T ∗
CU :=

⊔
z∈U

(T ∗
z U)C ∼= T ∗U ⊗ C

leading to the Whitney sum T ∗
CU = (T ∗U)1,0 ⊕ (T ∗U)0,1.

For (v1, v2) ∈ Rn × Rn let πi(v1, v2) = vi. The derivative Df of a smooth map f : U → R2 fits
into the following commutative diagram:
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TU R2 × R2

U R2

Df

π1

f

Using again the identification HomR(V,C) = HomC(VC,C) we identify Dpf : TpU → Tf(p)C with

a complex linear map TC
p U → Tf(p)C that fits into the commutative diagram:

TCU C× C

U C

DCf

π1

f

Sections X ∈ Γ(TCU) then act on C∞(U,C) by X(f) = π2 ◦DCf ◦X i.e. X(f)p = (DC
p f)(Xp).

More explicitly, the identification HomR(V,C) = HomC(VC,C) is given by T 7→ (V ⊗ α) 7→ αT (v)
so DC

p f(v ⊗ α) = αDpf(v). Hence for X(p) = ∂
∂x ⊗ α1 +

∂
∂y ⊗ α2 we compute X(f) = Dpf(

∂
∂x ⊗

α1 +
∂
∂y ⊗ α2) = α1Dpf(

∂
∂x) + α2Dpf(

∂
∂x). In particular:

∂

∂z
f(z) =

1

2

(
∂

∂x
− i

∂

∂y

)
f(z) =

1

2

(
Dzf(

∂

∂x
)− iDzf(

∂

∂y
)

)
=

1

2

((∂f1
∂x (z)
∂f2
∂x (z)

)
− i

(
∂f1
∂y (z)
∂f2
∂y (z)

))

=
1

2

((∂f1
∂x (z)
∂f2
∂x (z)

)
+

(
∂f2
∂y (z)

−∂f1
∂y (z)

))
and by a similar calculation:

∂

∂z
f(z) =

1

2

((∂f1
∂x (z)
∂f2
∂x (z)

)
+

(
−∂f2

∂y (z)
∂f1
∂y (z)

))
where f(z) = (f1(z), f2(z)) ∈ C. Thus we introduce the notations:

f(z) = f1(z) + if2(z),
∂f

∂x
=

∂f1
∂x

+ i
∂f2
∂x

,
∂f

∂y
=

∂f1
∂y

+ i
∂f2
∂y

so that:

∂f

∂z
=

1

2

(
∂f

∂x
− i

∂f

∂y

)
,

∂f

∂z
=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
The Cauchy-Riemann equations are then equivalent to:

∂f

∂z
= 0.

In Cartesian coordinates:

2
∂f

∂z
=

(
∂u

∂x
+

∂v

∂y
,
∂v

∂x
− ∂u

∂y

)
, 2

∂f

∂z
=

(
∂u

∂x
− ∂v

∂y
,
∂v

∂x
+

∂u

∂y

)
Note that this satisfies:

Daf(α) =
∂f(a)

∂z
α+

∂f(a)

∂z
α

Definition 1.0.6. A complex k-form on U is a section of
∧k(T ∗

CU).
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A 0-form is a section of
∧0(T ∗

CU) = U × C i.e. a map U → C. A 1-form is a section of∧1(T ∗
CU) = T ∗

CU and can be written in the form α = f(z)dz + g(z)dz for f, g : U → C. Finally, a

2-form is a section of
∧1(T ∗

CU) and can be written in the form ω = f(z)dz ∧ dz for f : U → C.

The usual exterior derivative d extends uniquely to a complex linear operator on complex forms
that we continue to denote by d:

Proposition 1.0.7. If f is a complex 0-form then:

df =
∂f

∂z
dz +

∂f

∂z
dz

If ω = gdz + hdz is a complex 1-form then:

dω =

(
∂h

∂z
− ∂g

∂z

)
dzdz

For f(z) = z this computes df = dz and for f(z) = z we see ∂f
∂z = 0 and ∂f

∂z = 1 so df = dz.
Notice that when f is holomorphic df = f ′(z)dz. The usual definitions of closed and exact carry
over to complex forms - ω is closed if dω = 0 and exact if ω = dη.

For f : U → C define
∫
U f =

∫
U f1+i

∫
U f2 where f = f1+if2 (this is the usual Bochner integral).

For a path γ : [a, b] → R2 with components γ(t) = (x(t), y(t)) integration of the complex 1-form
fdz + gdz along γ is defined to be:

∫
γ
fdz + gdz̄ =

∫ b

a
f(γ(t))(x′(t) + iy′(t))dt+

∫ b

a
g(γ(t))(x′(t)− iy′(t))dt

=

∫ b

a
(f(γ(t)) + g(γ(t)))x′(t)dt+ i

∫ b

a
(f(γ(t))− g(γ(t)))y′(t)dt

Introducing the notation γ′(t) = x′(t) + iy′(t) this becomes:

∫
γ
fdz + gdz̄ =

∫ b

a
f(γ(t))γ′(t)dt+

∫ b

a
g(γ(t))γ′(t)dt

Definition 1.0.8. If f : U → C is holomorphic and γ : [a, b] → U is a curve we define the integral
with respect to arc length: ∫

γ
f(z)|dz| =

∫ b

a
f(γ(t))|γ′(t)|dt

and the length of γ by:

ℓ(γ) =

∫
γ
|dz| =

∫ b

a
|γ′(t)|dt

Corollary 1.0.9 (Mean value principle). If f : U → C is holomorphic at 0 ∈ U and Br(0) ⊂ U
then:

f(0) =
1

2π

∫
∂Br(0)

fdS =
1

2π

∫ 2π

0
f(reiθ)dθ =

1

2πr

∫
γ
f(z)|dz|

where γ : [0, 2π] → U is γ(t) = reit.
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Corollary 1.0.10 (Maximum modulus principle). Suppose U is connected and f : U → C is
continuous and satisfies the conclusion of the mean value principle. If a ∈ U is a local max for f
then f is constant in U .

Lemma 1.0.11 (Schwarz lemma). If f : D → D is holomorphic and f(0) = 0 then |f(z)| ≤ |z| and
|f ′(0)| ≤ 1. If there exists some z ∈ D \ {0} such that |f(z)| = |z| or if |f ′(0)| = 1 then there exists
a ∈ S1 with f(z) = az.

Theorem 1.0.12 (Cauchy’s theorem). If f : U → C is holomorphic then f(z)dz is closed.

Proof. If ω = f(z)dz then:

dω = (
∂f

∂z
dz +

∂f

∂z̄
dz̄) ∧ dz = 0

□

Theorem 1.0.13 (Cauchy’s integral formula). If f : U → C is holomorphic, z0 ∈ U and |z− z0| ≤
r ⊂ U , then for all a ∈ |z − z0| ≤ r:

f(a) =
1

2πi

∫
|z−z0|=r

f(z)

z − a
dz

Proof. Define g : U → C by:

g(z) =

{
f(z)−f(a)

z−a z ̸= a

f ′(a) z = a

Then g is continuous on U and holomorphic on U \ {a} so g(z)dz is closed hence:

0 =

∫
|z−z0|=r

g(z)dz =

∫
|z−z0|=r

f(z)− f(a)

z − a

ie: ∫
|z−z0|=r

f(z)

z − a
=

∫
|z−z0|=r

f(a)

z − a
=

∫
|z−z0|=r

1

z − a
= 2πif(a)

□

Corollary 1.0.14 (Cauchy’s inequality). If f : U → C is holomorphic at a, then:

|an| ≤
M(r)

rn

where M(r) = sup|z−a|=r f(z).

Definition 1.0.15. A map f is called entire if it is defined and holomorphic at every z ∈ C.

Theorem 1.0.16 (Liouville’s theorem). If f is entire and bounded then it is constant.

Proof. By Cauchy’s inequality |an| ≤ M(r)
rn and since f is bounded, M = supr M(r) < ∞ so:

|an| ≤ lim
r→∞

M

rn
= 0

except when n = 0, ie. f is constant.
□

Theorem 1.0.17. If f : U → C is holomorphic at a then f is analytic at a.
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Proof. By Cauchy’s integral formula:

f(a) =
1

2πi

∫
|z−z0|=r

f(z)

z − a
dz =

1

2πi

∫
|z−z0|=r

f(z)

(
1

z

∞∑
n=0

an

zn

)
dz =

an

2πi

∫
|z−z0|=r

( ∞∑
n=0

f(z)

zn+1

)
dz

=
∞∑
n=0

(

∫
|z−z0|=r

f(z)

2πizn+1
dz)an

=
∞∑
n=0

cna
n

□

Theorem 1.0.18 (Morera’s theorem). If ω = f(z)dz is closed in U then f is holomorphic in U .

Proof. For a ∈ U , since f(z)dz is closed in U there exists g : U → C holomorphic at a such that
dg = f(z)dz locally near a. But dg = g′dz, so f(a) = g′(a). By theorem 1.1.8, g is analytic hence
g′ = f is analytic ie. holomorphic at a. □

Theorem 1.0.19 (Identity theorem). If f, g : U → C are holomorphic on the domain U (a
connected open set) and f ≡ g on a nonempty open subset V ⊆ U then f ≡ g everywhere in U .

2. Analytic Functions

Definition 2.0.1. The exponential map is defined by exp(z) = ez :=
∑∞

n=0
zn

n! .

As a consequence of the results of the previous section the domain of exp is an entire function.
Moreover we have exp(z + w) = exp(z) exp(w).

Definition 2.0.2. For z, w ∈ C we say z is a logarithm of w if ez = w and define log(w) = {z ∈
C : z is a logarithm of z} = {z ∈ C : ez = w} = exp−1(w).

If ez = w then ez+2πi = eze2πi = ez = w so log(w) is a countably infinite discrete set where any
two elements differ by an integer multiple of 2πi. Indeed, writing z = x + iy we have w = ez =
ex+iy = exeiy if and only if w ̸= 0, |w| = ex, and eiy = w/|w|. Since w ̸= 0 we immediately get that
x = log |w| (where the right hand side of this equation is the usual logarithm R>0 → R).

Definition 2.0.3. For z, w ∈ C we define zw := exp(w log(z)). Note that log(z) is a set so zw is
also a set and by w log(z) we mean {wz′ : z′ ∈ log(z)}.

Example 2.0.4. log(1) = {z : ez = 1} = {2πin : n ∈ Z} so:

1
1
2 = exp(

1

2
log(1)) = exp({πin : n ∈ Z}) = {±1}

Definition 2.0.5. For w ∈ C\0 we define the argument argw to be the imaginary part of log(w).
Note again that this is a set with elements differing by integer multiples of 2π (it is the set of y
such that eiy = w/|w|).

Definition 2.0.6. For f : C → P(C) (we call such f a multi-valued function), let Df = C \
f−1(∅). A branch of f is a subset W of C such that f(z) ∩W has cardinality 1 for all z ∈ Df .
After a branch of f has been chosen we consider f as a map from Df to W in the natural way.

Example 2.0.7. For f = log, Df = C \ {0}. For w ∈ Df , log(w) = log |w|+ i argw so a branch of
log is equivalent to a map Df → Z. In particular, for k ∈ R, Wk := {z ∈ C : k < Im(z) ≤ k + 2π}
defines a branch of log.
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Definition 2.0.8. If f is a multi-valued function and a branch W has been chosen, a branch cut
is an open subset U of Df such that f |U → W is continuous.

Example 2.0.9. For f = log with branch W−π = {z ∈ C : −π < Im(z) ≤ π}, the set U =
C \ R≤0 defines a branch cut. Since log(U) is open and log |U = exp |−1

log(U) we conclude log |U is a

biholomorphism between U and log(U) = {z ∈ C : −π < Im(z) < π}.

We use the above to write log(w) = log |w|+i argw where log |w| is the usual logarithm R>0 → R,
keeping in mind that i argw is a set unless a branch of log has been chosen.

3. Meromorphic

Definition 3.0.1. A map f : U → C is called meromorphic in U if f is there exists a discrete
set K ⊂ U such that f is holomorphic on U \K. Elements of K are called poles of f .

Definition 3.0.2. If f : U → C is meromorphic and a ∈ U , the Laurent expansion for f around
a is:

f(z) =

∞∑
n=−∞

(
1

2πi

∫
γ

f(w)

(w − a)n+1
dw

)
(z − a)n =

∞∑
n=−∞

an(z − a)n

where γ : [c, d] → U is any simple closed curve whose image lies in an open annulus centered
at a in which f is holomorphic. The Laurent expansion is unique and f is equal to the Laurent
expansion everywhere in the annulus. The number a−1 in the Laurent expansion for f is called the
residue of f at a, denoted Res(f, a).

Theorem 3.0.3 (Residue theorem). If f : U → C is meromorphic and γ : [a, b] → U is a simple
closed curve oriented positively (with respect to the standard orientation on R2) whose image does
not pass through any of the poles of f , then:∫

γ
f(z)dz = 2πi

∑
k

Res(f, ak)

Theorem 3.0.4 (Argument principle). If f : U → C is meromorphic and γ : [a, b] → U is a simple
closed curve that does not intersect any of the zeroes or poles of f then:

1

2πi

∫
γ

f ′(z)

f(z)
dz = Z − P

where Z is the number of zeroes and P is the number of poles contained in the region bounded
by γ.

Corollary 3.0.5 (Rouche’s theorem). Let f, g : U → C be two holomorphic functions. If γ is a
simple closed curve in U and |g(z)| < |f(z)| for all z on γ then f and f + g have the same number
of zeroes in the region bounded by γ.

4. Several Complex Variables.

Definition 4.0.1. A map f : U → C where U ⊂ Cn is open is called holomorphic if the Cauchy-
Riemann equations are satisfied for all zj = xj + iyj.

Proposition 4.0.2. There is a Cauchy integral formula for several variables:

f(z) =
1

2πi

∫
|ξi−ηi|=ϵi

f(ξ)

(ξ1 − z1) · · · (ξn − zn)
dξ

Theorem 4.0.3. If f : U → C is holomorphic in each variable separately then f is holomorphic.
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Corollary 4.0.4. If f is holomorphic then f is analytic.

Corollary 4.0.5. The maximum principle, identity theorem, and Liouville theorem all hold in
several variables.
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