COMPLEX

MATT KOSTER

1. ANALYTIC

Definition 1.0.1. For U C C open, a map f : U — C is called holomorphic at a € U if:

e = gy 10N =0

exists and f'(a) is called the (complex) derivative of f at a. We say that f is holomorphic
if it is holomorphic at every a € U.

As a simple consequence of this definition, if we take h € R, we have, for f = u + iv:

F(ar,az) = ’llil% u(ay + hyaz) + iv(a; + h, a;) — (u(ay,a2) +iv(ai,az))
—

— lim u(ay + h,a2) — u(ay, az) i lim v(ar + h,a2) — v(ai, az)
h—0 h h—0
ou

0
= %(GI,CLQ) + za—Z(ahaz)

and taking h € iR a similar calculation gives:

(0 0
f'(a1,a2) = —i <8Z(a1,a2) + 2%(@1,@2)) -

Thus:

Theorem 1.0.2 (Cauchy-Riemann equations). Writing f(x + iy) = u(z,y) + iv(z,y), f is holo-
morphic at a = (ay,az) if and only if f € C' and:

ou v ou ov
%(a) = @(a) and Fy(a) = —%(a)

If f =u+ iv is holomorphic and v € C? then by Clairaut’s theorem:

9%u B 0% B 0% 0%u

873/2 N _8y8x N _axﬁy T oa2
so Av = 0. Assuming u € C? an identical calculation reveals Au = 0. It turns out (see “Cauchy’s
integral formula” below) that the real and imaginary parts of a holomorphic function are C* so:

Corollary 1.0.3. The real and imaginary parts of a holomorphic function are harmonic.

Remark 1.0.4. A function f being holomorphic at a is equivalent to d,f : T,R? — Tf(a)R2 being
complex-linear i.e. commuting with:
0 -1
=13
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By a complex structure on a real vector space V of even dimension 2k we mean a linear
transformation J: V — V such that J?> = —I. Such a map gives V the structure of a complex
vector space by declaring (z+iy)v = zv+yJ(v) (the only axiom that needs verifying is associativity
of scalar multiplication). As a complex vector space V' has dimension k (begin with the observation
that J(v) = iv € spang(v)).

Now fix k = 1 so V = R? and let V& = V @ C. By definition V ®g C is a real vector space
together with a bilinear map 7: V' x C — V @ C satisfying the following universal property: for all
vector spaces U and bilinear maps T': V x C — U there exists a unique linear map 7: VQrC — U
making the following diagram commute:

VxC
lﬂx
V®RCL>U

We call the image of m simple tensors and use the notation v ® a := 7(v, ). Turn V¢ into a
complex vector space by a - (v ® ) = v ® (af) and extend linearly.

The bilinear map V x C — C? given by (z,y,a) — (az,ay) descends to an isomorphism
Ver C = C? so dimcV ®r C = 2 and has as a basis e; ® 1, ea ® 1. Canonical inclusion
t: V. — Ve where «(v) = v ® 1 identifies V' as a subspace of V¢ fixed by complex conjugation. But
this identification of V' as v ® 1 is not as a complex subspace - the real subspace i(V) satisfies
V' Ni(V) = 0. Hence we have a direct sum V @ i(V) meaning every z € V¢ can be written uniquely
in the form z =u® 1 + v ® i for u,v € V. For brevity we will often drop the ® symbols and write
Z=u+ 1. _

Let J: V — V be the complex structure given by J(z,y) = (—y,x). This is left multiplication
of ?j) by (1) _01> Complexifying J defines a complex linear map J = j(cz Ve — Vi so that
the following diagram commutes:

V%V{C

R
vV —— V¢

On simple tensors this looks like J(v®a) = J(v)@a so J(e1®1) = —ea®1 and J(e2®1) = e1®1
hence with respect to the ordered basis e; ® 1 and ex ® 1 the transformation J is again left

multiplication by (? _01> Since J%? = —I we see J has eigenvalues +4. Let V10 and V%! be the

A =1 and A = —1 eigenspaces of V¢, respectively. More concretely:

V0 = spanc{e; ® 1 —eg @i} =t {22}, Vo1 =spanc{e1 ® 1+ ex @i}

Note that complex conjugation on Vg gives a real isomorphism of V19 with V0,1 and this defines
a basis {z,z} for V¢, thus:

Ve=V"0evo

and write v = a1z + % for a1,as € C. Note that v € V19 we have J(v) = iv so J2(v) = —v
giving an identification of (V19 .J) with (V, J ) as complex vector spaces. The choice of basis played
no role in this identification so this identification is canonical. Note that this is the second identi-
fication of V' as a subspace of V¢, but this time it is as a complex subspace.
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Note that R-bilinear maps V' x C — C are canonically identified with C-linear maps Vg — C,
but are also canonically identified with R-linear maps V' — C. So Homg(V,C) = Hom¢(V¢,C) =
(Vo)*. Moreover, when V, W are finite dimensional, the bilinear map V* x W — Hom(V, W) given
by (f,w) — (v — f(v)w) descends to an isomorphism V* @ W — Hom(V, W) so in particular
(V*)(c =V*®rC= HomR(V, C) = Hom@(VC,(C) = (V(c)*.

Proposition 1.0.5. If V is a vector space with complex structure J then V* = Homg(V,R) has
complex structure:

J' () = f(J(v))

Starting with a complex structure on V this proposition defines a complex structure on V*
which in turn provides a corresponding decomposition (V*)¢ = (V*)20 @ (V*)%1. Unravelling the
definitions one sees that:

(VO ={f fU@) =if(v)}, (V)M ={f: f(J(v)) = ~if(v)}

If {e1, e} is as above a basis for (V, J) satisfying J(e;) = ez and J(ez) = —e; then the dual basis
{dx,dy} for V* satisfies J'(dz) = —dy and J'(dy) = dx so we see (V*)10 is spanned by dz + idy
and (V*)%! is spanned by dz — idy. Now, notice that (dz + idy)(z) = (dx + idy)((e1 — ie2)/2) = 1
and similarly (dz — idy)(z) = 1, so:

(VY0 = span{dz}, (V*)%! = span{dz}
i.e. (V*)LO = (Vl’o)* and (V*)OJ = (V()J)*.

The complex structure J(%) = %, J(a%) = —% gives a decomposition (T,R?)¢ = (T,R?)*0 @

(T.R?)%! with corresponding basis vectors:

o o0\ _JLfo 9N 1(9 .0
9220z  \2\az ‘ay) 2 \6: oy

and a decomposition (TR?)¢ = (TR?)M0 @ (TrR?)%! with corresponding basis vectors:

{dz,dz} = {dx + idy,dz — idy}.

The same holds for any open U C R2. For brevity we use the notation U = (T,U)'0 and
THU = (T,U)'0. Patching together the complexified tangent spaces we define the complexified
tangent bundle:

TeU = | [(T:U)e.
zeU
TcU is a complex vector bundle over U and is isomorphic (as complex vector bundles) to TU @ C.
The decompositions (T,U)c = U TOU patch together to the splitting TcU = THU @ TO1U
as a Whitney sum. The same holds for:

TeU = | |(IiU)c =T U & C
zeU
leading to the Whitney sum Tg:U = (T*U)"0 @ (T*U)%L.
For (vi,v2) € R™ x R™ let 7;(vy,v2) = v;. The derivative Df of a smooth map f: U — R? fits
into the following commutative diagram:
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TU —21, R2 % R2

b

v—7 ,Re

Using again the identification Homg (V, C) = Homg (V¢, C) we identify Dy, f: T,U — Ty(,)C with
a complex linear map TI()CU — T'4(»)C that fits into the commutative diagram:

C
.U 25 cxc

| [

v—L ¢

Sections X € I'(T¢U) then act on C*(U,C) by X(f) =m0 Dcfo X ie. X(f)p = (D5 f)(Xp)
More explicitly, the identification Homg (V, C) = Homc(V, C) is given by T +— (V ® ) — oT'(v)
SO Dgf(’u ® a) = aD, f(v). Hence for X(p) = 6% ® g + 8% ® ap we compute X (f) = Dpf 8% ®

aq + a% ® ag) = alef(a%) + agDpf(a%). In particular:

and by a similar calculation:

DL (FN + (L ?
7= 3 ((%@U) : ( 20e)
where f(z) = (fi(2), f2(2)) € C. Thus we introduce the notations:

of 0 ) of 0 9
f(2) = fi(2) + ifa(2), ?ﬁZai*a*f ag:aj;lﬂaj;g

so that:
of _1(0f Of\ of _1(0f of
92 2\or ‘oy)’ 8z 2\az  'ay
The Cauchy-Riemann equations are then equivalent to:
of
9 = 0.

In Cartesian coordinates:

2g7 Ju Ov OJv Ou 2ﬁ7 @_@@+@
0z ’ or Oy Ox Oy
Note that this satisfies:

%—Fay’@aﬁ oy

0z

Definition 1.0.6. A complex k-form on U is a section of /\k(TéU).

[}
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A 0-form is a section of AXTgU) = U x C i.e. a map U — C. A 1-form is a section of
/\1(T(§U) = T{¢U and can be written in the form o = f(2)dz + g(2)dz for f,g: U — C. Finally, a
2-form is a section of /\1(TEU) and can be written in the form w = f(z)dz A dz for f: U — C.

The usual exterior derivative d extends uniquely to a complex linear operator on complex forms
that we continue to denote by d:

Proposition 1.0.7. If f is a complex O-form then:

fd + Uz

df = -

If w = gdz + hdZz is a complezx 1-form then.
dw = (8h — 39) dzdz

For f(z) = z this computes df = dz and for f(z) = Z we see {T = 0 and 8f = 1sodf = dz.
Notice that when f is holomorphic df = f’(z)dz. The usual definitions of closed and exact carry
over to complex forms - w is closed if dw = 0 and exact if w = dn.

For f: U — C define [, f = [;; fi+i [; f2 where f = fi+ifo (this is the usual Bochner integral).

For a path « : [a,b] — R? with components v(t) = (x(t), y(t)) integration of the complex 1-form
fdz + gdZz along ~ is defined to be:

b b
/fdz+gd2=/ f(v(t))(fﬁ'(t)+iy'(t))dt+/ gy (1)) (@' (t) — iy (¢))dt
b

b
- / (FOH0) + gy () (B)dt + i / (F(1(1)) — g () (B)dt

Introducing the notation ~/(t) = 2/(t) + iy (¢) this becomes:

/fdz +gdz = / flv t)dt + /abg('y(t))fy’(t)dt

Definition 1.0.8. If f : U — C is holomorphic and v : [a,b] — U is a curve we define the integral

with respect to arc length:
RCCE [ ra@r o

() = / i = | Iy (o)

Corollary 1.0.9 (Mean value principle). If f : U — C is holomorphic at 0 € U and B.(0) C U
then:

and the length of v by:

1 I 1
$O =g [ sas= 5o [ et = 5 [ e
where 7y : [0,27] — U is y(t) = re't.
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Corollary 1.0.10 (Maximum modulus principle). Suppose U is connected and f : U — C is
continuous and satisfies the conclusion of the mean value principle. If a € U is a local max for f
then f is constant in U.

Lemma 1.0.11 (Schwarz lemma). If f: D — D is holomorphic and f(0) = 0 then |f(2)| < |z| and
|£/(0)| < 1. If there exists some z € D\ {0} such that |f(z)| = |z| or if |f'(0)| =1 then there exists
a € St with f(2) = az.

Theorem 1.0.12 (Cauchy’s theorem). If f : U — C is holomorphic then f(z)dz is closed.
Proof. If w = f(z)dz then:

(O sy h g =
dw_(ﬁzdz+8ZdZ>Adz_O

0

Theorem 1.0.13 (Cauchy’s integral formula). If f : U — C is holomorphic, zo € U and |z — zp| <
r C U, then for all a € |z — zp| < r:

_ 1 f(2)
fla) = i /|zzo:r mdz

[O=1@ 4,
g(Z)—{ . ’

Proof. Define g : U — C by:

f'(a) z=ua

Then ¢ is continuous on U and holomorphic on U \ {a} so ¢g(z)dz is closed hence:

' /ZZOI=r o)== /zzo:r W

1) _ fla) _ IR
/|ZZO|:T ioa /ZZO|ZT z-a /zzolzr z—a 27”f(a)

ie:

O
Corollary 1.0.14 (Cauchy’s inequality). If f : U — C is holomorphic at a, then:
M(r)
’an| < n
where M(r) = sup|,_q =, f(2).
Definition 1.0.15. A map [ is called entire if it is defined and holomorphic at every z € C.
Theorem 1.0.16 (Liouville’s theorem). If f is entire and bounded then it is constant.
Proof. By Cauchy’s inequality |a,| < % and since f is bounded, M = sup, M (r) < oo so:
M
lap| < lim — =0
r—oo 1’
except when n =0, ie. f is constant.
O

Theorem 1.0.17. If f : U — C is holomorphic at a then f is analytic at a.
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Proof. By Cauchy’s integral formula:

o= JPee L) (1S f)e-ff | (S19)e
EFRol=T n=0 20T \n=0

Theorem 1.0.18 (Morera’s theorem). If w = f(z)dz is closed in U then f is holomorphic in U.

Proof. For a € U, since f(z)dz is closed in U there exists g : U — C holomorphic at a such that
dg = f(z)dz locally near a. But dg = ¢’dz, so f(a) = ¢’(a). By theorem 1.1.8, g is analytic hence
¢ = f is analytic ie. holomorphic at a. O

Theorem 1.0.19 (Identity theorem). If f,g : U — C are holomorphic on the domain U (a
connected open set) and f = g on a nonempty open subset V-C U then f = g everywhere in U.

2. ANALYTIC FUNCTIONS

oo "
n=0 n! -

Definition 2.0.1. The exponential map is defined by exp(z) = e* =

As a consequence of the results of the previous section the domain of exp is an entire function.
Moreover we have exp(z + w) = exp(z) exp(w).

Definition 2.0.2. For z,w € C we say z is a logarithm of w if e* = w and define log(w) = {z €
C: z is a logarithm of 2z} = {z € C: e* = w} = exp}(w).

If e* = w then e*T2™ = 2™ = e = w so log(w) is a countably infinite discrete set where any

two elements differ by an integer multiple of 27i. Indeed, writing z = x + iy we have w = e* =
et = e if and only if w # 0, |w| = €%, and ¥ = w/|w|. Since w # 0 we immediately get that
x = log |w| (where the right hand side of this equation is the usual logarithm R-g — R).

Definition 2.0.3. For z,w € C we define z¥ = exp(wlog(z)). Note that log(z) is a set so 2" is
also a set and by wlog(z) we mean {wz' : 2’ € log(z)}.

Example 2.0.4. log(1) = {z:e* =1} = {2min : n € Z} so:

12 = exp(% log(1)) = exp({min : n € Z}) = {£1}

Definition 2.0.5. For w € C\ 0 we define the argument argw to be the imaginary part of log(w).
Note again that this is a set with elements differing by integer multiples of 2m (it is the set of y
such that e = w/|w|).

Definition 2.0.6. For f: C — P(C) (we call such f a multi-valued function), let Dy = C\
f71(0). A branch of f is a subset W of C such that f(z) N W has cardinality 1 for all z € Dy.
After a branch of f has been chosen we consider f as a map from Dy to W in the natural way.

Example 2.0.7. For f =log, Dy = C\ {0}. For w € Dy, log(w) = log |w| 4+ iargw so a branch of
log is equivalent to a map Dy — Z. In particular, for k € R, W}, :== {2 € C: k < Im(2) < k + 27}
defines a branch of log.
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Definition 2.0.8. If f is a multi-valued function and a branch W has been chosen, a branch cut
is an open subset U of Dy such that fly — W is continuous.

Example 2.0.9. For f = log with branch W_, = {# € C: —7 < Im(z) < w}, the set U =
C \ R<g defines a branch cut. Since log(U) is open and log |y = exp |1;é(U) we conclude log |7 is a

biholomorphism between U and log(U) = {z € C: —7 < Im(z) < 7}.

We use the above to write log(w) = log |w|+i arg w where log |w| is the usual logarithm Rsg — R,
keeping in mind that i argw is a set unless a branch of log has been chosen.

3. MEROMORPHIC

Definition 3.0.1. A map f : U — C is called meromorphic in U if f is there exists a discrete
set K C U such that f is holomorphic on U \ K. Elements of K are called poles of f.

Definition 3.0.2. If f : U — C is meromorphic and a € U, the Laurent expansion for f around
a 1s:

A f(w) S
flz)= _Z (%i[y(u}—a)”ﬂdw) (z—a)" = _Z an(z —a)"
n=-—oo n=—oo
where v: [e,d] — U is any simple closed curve whose image lies in an open annulus centered
at a in which f is holomorphic. The Laurent expansion is unique and f is equal to the Laurent
expansion everywhere in the annulus. The number a_y in the Laurent expansion for f is called the
residue of f at a, denoted Res(f,a).

Theorem 3.0.3 (Residue theorem). If f : U — C is meromorphic and 7y : [a,b] — U is a simple
closed curve oriented positively (with respect to the standard orientation on R?) whose image does
not pass through any of the poles of f, then:

/ f(z)dz =2mi Y Res(f,a)
v k

Theorem 3.0.4 (Argument principle). If f : U — C is meromorphic and v : [a,b] — U is a simple
closed curve that does not intersect any of the zeroes or poles of f then:

1 [ f(z)

2mi J., f(2)

where Z 1is the number of zeroes and P is the number of poles contained in the region bounded
by .

Corollary 3.0.5 (Rouche’s theorem). Let f,g : U — C be two holomorphic functions. If v is a

simple closed curve in U and |g(z)| < |f(z)| for all z on ~y then f and f + g have the same number
of zeroes in the region bounded by .

dz=7—P

4. SEVERAL COMPLEX VARIABLES.

Definition 4.0.1. A map f: U — C where U C C" is open is called holomorphic if the Cauchy-
Riemann equations are satisfied for all z; = x; + iy;.

Proposition 4.0.2. There is a Cauchy integral formula for several variables:
_ 1 / f()
270 Jigs—mil=e; (61— 21) - (€n — 2n)

Theorem 4.0.3. If f : U — C is holomorphic in each variable separately then f is holomorphic.
Page 8
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Corollary 4.0.4. If f is holomorphic then f is analytic.

Corollary 4.0.5. The mazximum principle, identity theorem, and Liouville theorem all hold in
several variables.
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