
The Coxeter-Killing element and the Poincare polynomial

Matt Koster

November 28, 2019

0 Introduction.

Let G be a compact simple Lie group with Lie algebra g and let T ≤ G be a maximal torus
(a maximal compact, abelian subgroup) with Lie algebra t ⊂ g. Then there exists a basis of
weight/root vectors for gC such that the matrix representations of Adg (g ∈ G) are diagonal so
the structure of gC is essentially determined by the adjoint action of T on gC.

Many questions about G thus become simpler to answer questions about gC. The classical
problem considered here asks to what end is the cohomology on G determined by the roots of
gC. The amazing result is that the Poincare polynomial for G has a simple form determined
entirely by the eigenvalues of a distinguished element γ ∈ NG(T )/T .

Let h denote the order of γ and let ζ denote a primitive h’th root of unity. Then the eigenvalues
for γ are {ζmi}`i=1. Let di = 2mi + 1. Then the Poincare polynomial is given by:

pG(t) =
∏̀
i=1

(1 + tdi)

Sections 1− 3 give the basic preliminary definitions and results (generating functions, singular
cohomology with coefficients in R, Betti numbers, de Rham’s theorem). Section 4 briefly devel-
ops the structure of gC induced by the adjoint action of T . Definitions given include maximal
torus, rank, weights, roots, Weyl group, Coxeter-Killing transformation, and Coxeter plane.
Section 5 covers the basic theory of the Coxeter-Killing transformation, the main result being
theorem 5.7. Section 6 applies the theory of section 5 to prove the formula for the Poincare
polynomial. Section 7 gives some interesting corollaries of the formula for the Poincare polyno-
mial.
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1 Generating Functions.

Given a collection C = {C1, C2, ...} of finite sets Cn define f(n) = |Cn|. One calls f a ”counting
function”. There are many explicit determinations of such f , the utility of each depending
heavily on the objects being counted.

1.1 Examples.

i) Let Cn = P(n) be the powerset of {1, ..., n}. Then f(n) = 2n. This is arguably the most
useful expression for this function. We call such an expression a closed-form for f .

ii) Let Cn ⊂ P(n) be the subsets of {1, ..., n} that do not contain two consecutive integers. One
finds a closed form expression for f given by:

f(n) =
(1 +

√
5)n+2 − (1−

√
5)n+2

2
√

5
.

However, we also notice that f(n) = f(n−1)+f(n−2). We call such an expression a recurrence
relation for f . One could argue that the recurrence relation for this f is more useful than the
closed form expression.

iii) Let Cn = Sn be the n’th symmetric group (bijections from {1, ..., n} to itself). Then:

f(n) ∼
√

2πn(
n

e
)n

where ∼ is meant to say that the two expressions are asymptotic (the quotient of their limits
as n → ∞ is 1). We call such an expression an asymptotic expression for f (this particular
formula is Stirling’s asymptotic expression for n!).

iv) We call P a partition of n if P = (P1, P2, ...) where Pi ≥ Pi+1 and
∑

k Pk = n. Let Cn be
the set of partitions of n such that for every P ∈ Cn, all the nonzero Pi are odd and distinct.
For example, P = (5, 3, 1, 0, 0, ...) would be such a partition of 9. Write:

F (x) = (1 + x)(1 + x3)(1 + x5) · · · =
∞∑
n=0

anx
n

One can show that in fact f(n) = an. We call such an expression (ie. where f(n) is the coefficient
of xn in a formal power series) a generating function for f . The utility of generating functions
cannot be understated. As another example let:

F (x) =
1

1− x− x2
.

Notice that F (0) = 1, F ′(0) = 1, F ′′(0) = 2 · 2, F ′′′(0) = 3 · 6, F (4)(0) = 5 · 24, F (5)(0) = 8 · 120,

etc. In this way we see that f(n) = F (n)(0)
n! is the n’th Fibonacci number (in fact this is the

same f(n) from example ii). Hence we can write:

F (x) =
1

1− x− x2
=

∞∑
n=0

f(n)xn

as a generating function for the Fibonacci numbers (ignoring issues of convergence).
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2 Singular Homology.

Given a topological space X, a singular n-simplex in X is a continuous function f : ∆n → X
where ∆n ⊂ Rn+1 is the standard n-simplex given by:

∆n = {(x0, ..., xn) ∈ Rn+1 | xi ≥ 0,
n∑
i=0

xi = 1}

Define Cn(X) to be the real vector space generated by the singular n-simplices in X. An ele-
ment of Cn(X) is a formal sum

∑
i nifi (ni ∈ R) called an n-chain. Define the boundary map

∂n : Cn(X)→ Cn−1(X) by:

∂n(σ) =
∑
i

(−1)iσ|Fi

where Fi denotes the i’th face of ∆n (ie setting xi = 0). Implicit is the canonical isomor-
phism ∆n−1 ∼= Fi so that the above map ∂n is well defined. One can show that ∂n ◦ ∂n+1 :
Cn+1(X) → Cn−1(X) vanishes identically. This allows us to make the definition Hn(X) =
ker(∂n)/∂n+1(Cn+1), the n’th (singular) homology group of X.

Since Cn(X) is a vector space and ∂n are linear transformations, Hn(X) is a (quotient) vector
space. When only finitely many Hn(X) are nonzero and each Hn(X) is finite dimensional we
say that X has finitely generated homology. In this case, we can write:

Hn(X) = Rm

and define the n’th Betti number of X, Bn(X), to be m = dim(Hn(X)). We further define the
Poincare polynomial of X, pX(t), to be the generating function for f(n) = Bn(X):

pX(t) =
∞∑
n=0

Bn(X)tn

Given two topologial spaces X and Y we say that X is homotopy equivalent to Y if there
exists continuous maps f : X → Y , g : Y → X, F : X × [0, 1] → X, and G : Y × [0, 1] → Y ,
such that F (x, 0) = (g ◦ f)(x), F (x, 1) = x, G(y, 0) = (f ◦ g)(y) and G(y, 1) = y. That is to
say that (g ◦ f) is homotopic to the identity on X with homotopy F , and (f ◦ g) is homotopic
to the identity on Y with homotopy G. In this case we call both f and g homotopy equivalences.

An important fact is that a homotopy equivalence f : X → Y induces isomorphisms on the sin-
gular homology groups f∗ : Hn(X)→ Hn(Y ) for all n. Then the singular homology groups give
homotopy invariants that can be used to check that two spaces are not homotopy equivalent.
Since a homeomorphism is a homotopy equivalence, homology can a fortiori be used to verify
that two spaces aren’t homeomorphic.

Because the coefficients on the n-chains came from R the above homology theory is sometimes
called homology with coefficients in R. If we replace R with another abelian group G we get
homology with coefficients in G. However, when G is not a field Cn(X) is free abelian rather
than a vector space so Hn(X) becomes an abelian group. There is a general algebraic formula
for expressing homology with coefficients in G in terms of homology with coefficients in Z (called
the Universal Coefficients Theorem) but we shall not need it here.
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3 de Rham Cohomology of Manifolds

Suppose M is a smooth manifold. Let Ωn(M) denote the space of smooth n-forms on M . Then
the exterior derivative d : Ωn(M)→ Ωn+1(M) satisfies d ◦ d ≡ 0. We say ω ∈ Ωn(M) is exact if
ω = dη for η ∈ Ωn−1(M), and say it is closed if dω = 0. It is immediate from these definitions
that if ω is exact it is closed so we are able to define the n’th de Rham cohomology group of M ,
denoted Hn

dr(M), to be the closed n-forms modulo the exact n-forms.

The above definition was given for a smooth manifold M . Since the de Rham cohomology
groups are defined by taking equivalence classes of smooth differential forms on M one would
quite reasonably expect that Hn

dr(M) depends on the smooth structure endowed on M . The
very deep and surprising result of de Rham (not proved here) tells us otherwise.

3.1 Theorem (de Rham’s theorem).

If M is an orientable smooth manifold then Hn
dr(M) ∼= Hn(M) for all n.

(In fact de Rham’s theorem says something stronger than whats written here. We are combining
it with Poincare duality for cohomology with coefficients in R for a result that applies to this
paper, as Lie groups are always orientable).

The singular homology defined in section 2 was done for an arbitrary topological space. A given
topological manifold M can be endowed with many non-equivalent smooth structures, but the
theorem tells us that the de Rham cohomology is induced entirely by the topology on M .

As an immediate consequence of de Rham’s theorem, the Betti number Bp(M) is equal to the
dimension of the vector space of closed p-forms mod exact p-forms. In fact, for a Lie group G
more is true:

3.2 Lemma.

The Betti number Bp(G) = dim(H(g)p) where H(g)p is the vector space of bi-invariant p-forms
on G.

Proof. We show that every coset [ω] has a bi-invariant representative.

Let [ω] be the equivalence class (modulo exact forms) of a closed p-form ω. Then:

ω′ =

∫
G×G

(Lh ◦Rg)∗ω dh dg

is a closed, bi-invariant p-form and [ω′] = [ω]. Conversely suppose ω is a bi-invariant 1-form.
Then Ad(g)∗ω = ω so Ad(exp(tX))∗ω = ω. From this we conclude that ω([X,Y ]) = 0 for all
X,Y ∈ g.

But now since dω(X,Y ) = 1
2(Xω(Y )−Y ω(X)−ω[X,Y ]), we use that ω is bi-invariant to have

the first two terms vanish. The third was computed to be 0 in the previous paragraph. Then ω
is closed.
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Any p-form can be written as a wedge of 1-forms. But if every bi-invariant 1-form is closed this
tells us that every bi-invariant p-form is closed.

Now suppose ω is bi-invariant and ω = dη. Then ω = L∗gω = L∗gdη = dL∗gη = dη. Then L∗gη− η
is closed for all g (and similar for R∗g) hence η is closed so ω = dη = 0.

The space of all bi-invariant differential forms on G forms an associative algebra H(g) under the
wedge product, graded by dimension. Then H(g)p is the subspace of H(g) given by restricting
our attention to those of dimension p.
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4 Lie groups and Lie algebras.

Let G be a simple compact Lie group with Lie algebra g. Let T ≤ G denote a maximal torus
(a maximal, compact, abelian subgroup of G). As T is a compact subspace of G it is closed,
hence by Cartan’s closed subgroup theorem it is a Lie group with Lie algebra t ⊂ g. Call the
dimension ` of t the rank of g. The purpose of this section is to define the roots of g. The ex-
position follows closely that of [5], although the presentation of the root system is a bit different.

4.1 Lemma.

Let T be a torus. If π : T → GL(V ) is an irreducible finite dimensional complex Lie group
representation then (1) dim(V ) = 1 so GL(V ) ∼= C× and (2) π(T ) ≤ S1.

Proof. (1) Let t, s ∈ T , v ∈ V . Then π(t)π(s)(v) = π(ts)(v) = π(st)(v) = π(s)π(t)(v) (where
the second equality comes from T being abelian). Then by Schur’s lemma we see that π(t) = cI.

Then π(t)(v) = cv so v is an eigenvector for π(t). But t and v were arbitrary so every vector in
V is an eigenvector for every π(t) so we can write V as a direct sum over the one dimensional
subspaces spanned by a basis. Finally since π is assumed to be irreducible we conclude that
dim(V ) = 1.

(2) Now since dim(V ) = 1, V ∼= C so GL(V ) = GL(C) ∼= C× (the group of units under multi-
plication). π : T → GL(V ) is continuous so π(T ) is a compact subspace of GL(V ). Moreover π
is a homomorphism so π(T ) is a subgroup of GL(V ).

Now if H ≤ C× is a subgroup and z ∈ H then zn ∈ H. But if |z| 6= 1 then either |z|2 > 1 or
|1z |

2 > 1. In either case we see that H is unbounded hence not compact.

Finally we conclude that since π(T ) is a compact subgroup of C×, π(T ) ⊂ S1.

4.2 Lemma.

Let G be a compact, connected Lie group and let π : G → GL(V ) be a finite dimensional Lie
group representation. Then π is completely reducible.

Proof. (Weyl’s ’unitarian trick’) Fix an inner product 〈〉0 on V and define:

〈u, v〉 =

∫
G
〈π(g)(u), π(g)(v)〉0 |dg|.

That this defines an inner product on V follows from 〈〉0 being one. Now since left multiplica-
tion is a diffeomorphism and |dg| is an invariant measure:

6



〈π(h)(u), π(h)(v)〉 =

∫
G
〈π(g)(π(h)(u)), π(g)(π(h)(v))〉0 |dg|

=

∫
G
〈π(gh)(u), π(gh)(v)〉0 |dg|

=

∫
Rh−1 (G)

R∗h−1〈π(gh)(u), π(gh)(v)〉0 |dg|

=

∫
G
〈π(g)(u), π(g)(v)〉0 R∗h−1 |dg|

=

∫
G
〈π(g)(u), π(g)(v)〉0|dg|

= 〈u, v〉

so π is unitary. Now assume that π is not irreducible (if it were then it would certainly be
completely reducible), and let W denote a nontrivial invariant subspace. Let g ∈ G, w ∈ W
and w⊥ ∈W⊥ where ⊥ is taken with respect to 〈〉. Then:

〈π(g)(w⊥), w〉 = 〈π(g−1)π(g)(w⊥), π(g−1)(w)〉 = 〈w⊥, π(g−1)(w)〉 = 0

so W⊥ is an invariant subspace. Finally by induction on the dimensions of W and W⊥ we see
that π is completely reducible.

Let Ad : G→ GL(gC) denote the adjoint representation. Then by lemma 4.2 if we restrict to a
maximal torus T , Ad is completely reducible so we can write:

gC =

n⊕
i=1

gi

where Ad is irreducible on gi. By lemma 4.1 we see that for vi ∈ gi we have Adt(vi) = αtvi
where αt ∈ S1. We then call the map α : T → S1 sending t 7→ αt a weight of g, and if moreover
α is not the trivial homomorphism we call it a root of g.

Phrased differently, there exists a basis β = {X1, ..., Xn} (called weight vectors) for gC where
Adt(Xi) = αitXi, the maps t → αit are the weights, and the nontrivial weights are the roots
(with corresponding root vectors Xα). Denote by R the set of roots.

Since T ∼= T ` we can write t ∈ T as t = (t1, ..., t`) with ti ∈ S1. Then if α : T → S1 is a root we
see that α(t) = α(t1, ..., t`) = ta11 · · · t

a`
1 where ai are the winding numbers. In this case we have

that since deα : t→ iR, then deα ∈ t∗. Let {X1, ..., X`} be a basis for t and let {X∗1 , ..., X∗` } be
the dual basis. Then α 7→ (a1, ..., a`) gives a correspondence between R and a discrete subset
of g∗ written as integer tuples in {X∗i } coordinates.

Then we may view the roots as elements of R` ∼= g∗. One can show that there is an inner product
B(·, ·) on R` such that R forms a root system. Let σα denote the hyperplane orthogonal to α with
respect to B. Then R` \

⋃
α∈R σα is a disconnected space. We call each connected component

a Weyl chamber. For a fixed Weyl chamber C, call α ∈ R a positive root if B(α, v) > 0 for all
v ∈ C and denote the set of positive roots (relative to C) by R+. We call α ∈ R+ a simple root
(relative to C) if it cannot be written as a nontrivial sum of elements of R+. Finally we define
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a partial order � on R. We will say that α � β if α−β ∈ spanR≥0
R+. One can show that there

is a unique α ∈ R such that for all β ∈ R, α � β. We call this the highest root or highest weight.

Let Rα : R` → R` denote reflection across σα, ie. Rα(v) = v − 2B(α,v)
B(α,α)α. We define the Weyl

group W of G relative to the Weyl chamber C to be the group generated by all such Rα. One
can show that W ∼= NG(T )/T . We call γ ∈ W a Coxeter-Killing transformation or a Coxeter-
Killing element if γ = Rα1 · · ·Rαn where {α1, ..., αn} is the set of simple roots in R, and write
h = |γ|. To each Coxeter element γ there exists a unique plane P ⊂ R` such that γ acts on P
by a rotation, called the Coxeter plane.

4.3 Example.

We compute the root system for SU(3), the group of 3× 3 unitary matrices with determinant
1. Let T be the maximal torus given by diagonal matrices. Let Xi,j ∈ su(3) (i 6= j) be the
matrix that has a 0 in every entry except a 1 in the (i, j) position. Then if:

t =

z1 0 0
0 z2 0

0 0 z−11 z−12


we see that:

Adt(X1,2) = z1z
−1
2 X1,2

Adt(X1,3) = z21z2X1,3

Adt(X2,1) = z−11 z2X2,1

Adt(X2,3) = z1z
2
2X2,3

Adt(X3,1) = z−21 z−12 X3,1

Adt(X3,2) = z−11 z−22 X3,2

and Adt(X) = X for all diagonal matrices X. The corresponding integer tuples of the winding
numbers are (1,−1), (2, 1), (−1, 1), (1, 2), (−2,−1), (−1,−2). Take:

X1 =

1 0 0
0 −1 0
0 0 0

 , X2 =

1 0 0
0 0 0
0 0 −1


as a basis for t. Let X̂1, X̂2 be the dual basis of t∗ under the Killing form K. Then since
X̂1(X1) = X̂2(X2) = 12 and X̂1(X2) = X̂2(X1) = 6 we see in the {X∗i } coordinates that

X̂1 = (12, 6) and X̂2 = (6, 12). It follows that (2, 1) = X̂1/6, (1, 2) = X̂2/6, and (1,−1) =

X̂1/6−X̂2/6.Let B(·, ·) be the inner product on t∗ given by B(X̂i, X̂j) = K(Xi, Xj). Then with
respect to B we see that:

|(1,−1)| = |(1, 2)| = |(2, 1)| = 1/3

Moreover:
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〈(2, 1), (1, 2)〉 =
1

6
= cos(θ1)/3,

〈(2, 1), (1,−1)〉 =
1

6
= cos(θ2)/3,

〈(1, 2), (1,−1)〉 = −1

6
= cos(θ3)/3

Then with respect to B, (1,−1), (1, 2) and (2, 1) are all vectors with length 1/3, ,the angle
between the first two is θ1 = π/6, the angle between the second two is θ2 = π/6, and the
angle between the first and third is θ3 = π/3. Thus we see that the root system look as in the
following image:

X̂1

X̂2

(1, 2)

(2, 1)(1,−1)

The blue arrows indicate the roots of SU(3), the dashed lines indicate the orthogonal hyper-
planes σα, the blue shaded region is a choice of Weyl chamber C, the labelled roots are the
positive roots with respect to C, the two positive roots not in C are the simple roots (with
respect to C) and the single root inside of the Weyl chamber is the highest root.
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5 The Coxeter element

The principle result of this section is to show that h` = 2r where h = |γ|, ` is the rank of g, and
r = |R+|. This was the crucial step needed to conclude the proof that pG(t) can be computed
explicitly by the eigenvalues of γ, and was originally show by Kostant in 1959 [4].

5.1 Theorem.

Let γ be a Coxeter-Killing element. Then the number N(γ) of roots α ∈ R+ such that
γ(α) /∈ R+ is `.

Proof. Define φi = Rα`
Rα`−1

· · ·Rαi+1αi. Then φi = αi +
∑

j>i cjαj so φi ∈ R+. It will be
shown in lemma 5.5 that the φi are linearly independent.

Now γ(φi) = Rα1 · · ·Rαi−1(−αi) so γ(φi) = −αi +
∑

j<imjαj . Thus φi ∈ R+ and γ(φi) /∈ R+.
But φi are linearly independent so N(γ) ≥ `.

Now suppose φ ∈ R+ and γ(φ) /∈ R+. Then since:

Rα1Rα2 · · ·Rα`
φ /∈ R+

but:

φ ∈ R+

there must exist a largest i such that:

RαiRαi+1 · · ·Rα`
φ /∈ R+

ie. :

Rαi+1 · · ·Rα`
φ ∈ R+

This means that Rαi+1 · · ·Rα`
φ is a positive root that changed sign under Rαi . But αi is the

only possible such element, so Rαi+1 · · ·Rα`
φ = αi hence φ = φi so N(γ) ≤ `.

Since N(γ) ≤ ` and N(γ) ≥ `, N(γ) = ` as claimed.

The following result will be used several times, although we do not prove it here. For a proof
see [2].

5.2 Theorem (Coleman).

There exists an eigenvector v for γ with eigenvalue ζ such that v /∈ σα for all α ∈ R. Such an
eigenvector is called regular.
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5.3 Lemma.

If λ is an eigenvalue for γ then λ = ζmi for some mi.

Proof. Suppose γ(v) = λv. Then since γ has order h, v = γh(v) = λhv ie. λh = 1. Since the
primitive h’th roots of unity generate the h’th roots of unity, λ = ζmi for some mi.

5.4 Remark.

In fact more is true - every primitive h’th root of unity occurs as an eigenvector for γ. To see
this, notice that since ζ is an eigenvalue, it must be a root of the characteristic polynomial pγ .
But then the minimial polynomial Φ (the h’th cyclotomic polynomial) for ζ must divide pγ .
Now since the other primitive h’th roots of unity are roots of Φ we see that they too must be
roots of pγ .

5.5 Lemma.

If γ is a Coxeter-Killing element then γ has no non-zero fixed points (ie. 1 is not an eigenvalue).

Proof. Let {ei} be a basis for t dual under the Killing form to the simple roots of g. Define:

e′i =
2

〈αi, αi〉
ei.

Then:

γ(e′i) = Rα1 · · ·Rα`
e′i = e′i +Rα1 · · ·Rαi(αi) = e′i +Rα1 · · ·Rαi−1(−αi)

Define φi = Rα`
Rα`−1

· · ·Rαi+1(αi). Then γ(e′i) = e′i − γ(φi). Let X =
∑`

i=1 aie
′
i and suppose

γ(X) = X. Then:

X = γ(X) =
∑̀
i=1

αi(e
′
i + γ(φi)) = X +

∑̀
i=1

αiγ(φi)

so:

∑̀
i=1

aiγ(φi) = 0

We see that:

φi = αi +
∑
j>i

cjαj

hence the φi are linearly independent. But this means that ai = 0 for all i, so X = 0 as required.
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5.6 Lemma.

Let Oi denote the orbits in R under the action of < γ >. Then:

hi =
⊕
α∈Oi

Xα

is a Lie subalgebra of g of dimension h.

Proof. It suffices to prove that |Oi| = h. Let α ∈ R and assume γn(α) = α. Let ζ be a primitive
h’th root of unity. By theorem 5.2 there exists a regular eigenvector v of γ with eigenvalue ζ.
Hence:

〈v, α〉 = 〈v, γnα〉 = 〈γ−n(v), α〉 = ζ−n〈v, α〉.

But v is regular so 〈v, α〉 6= 0 thus ζ−n = 1, ie. exp(−2πnih ) = 1. This means that n
h ∈ Z so h

divides n.

Now since Oi = {γk(α)} ⊂ {α, γ(α), γ2(α), ..., γh−1(α)} and h divides n whenever γn(α) = α
we conclude that |Oi| = h.

5.7 Theorem.

Let γ be a Coxeter-Killing element and suppose |γ| = h. Then h` = 2r where r = |R+|.

Proof. Define hi as in the previous lemma. Since R =
⋃
iOi we have that:

g = t⊕
L⊕
i=1

hi

where L is the number of distinct orbits Oi. Since g has dimension `+ 2r, the above direct sum
decomposition shows that `+ 2r = `+ hL ie. 2r = hL. We claim that L = `.

Let M ≤ L denote the number of orbits where α acts as the identity on hi for every α ∈ Oi.
Write:

gγ =

L⊕
i=1

hi ∩ gγ .

Each hi ∩ gγ has dimension 0 or 1 depending on whether every α ∈ Oi acts as the identity on
hi or not. Then we see thatM is the dimension of gγ . But t ⊂ gγ so we conclude that ` ≤M ≤ L.

Each Oi must contain at least one positive root and at least one negative root. For contra-
diction, suppose not. With no loss in generality assume it contains only positive roots. Then∑

α∈Oi
α 6= 0. Since γ permutes the elements of Oi, γ(

∑
α∈Oi

α) =
∑

α∈Oi
α. But by lemma
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5.5 γ doesn’t have any fixed points, a contradiction.

But now since Oi is an orbit, there must exist a positive root α ∈ Oi such that γ(α) is a negative
root, ie. that α changes sign under the action of γ. Hence there is at least one element in each
Oi that changes sign under the action of γ. But by theorem 5.1 there are ` such elements so
L ≤ `.

Finally since ` ≤ L and L ≤ ` we conclude that ` = L. So h` = 2r.
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6 The Betti numbers of G

Write {ζmi} for the eigenvalues of γ. The goal of this section is to show:

pG(t) =
∏̀
i=1

(1 + tdi) (∗)

where di = 2mi + 1. The numbers mi are called the exponents of g. Hence the Poincare poly-
nomial for G can be computed entirely from knowledge of a Coxeter-Killing element.

It was shown by Hopf [3] in 1941 that pG(t) is given by (∗). His original derivation of the di’s is
given by lemma 6.1. Nearly ten years later, Chevalley [1] proved (see theorem 6.3 below) that
the di arise as the degrees of W -invariant polynomials on t, and he used explicit calculations of
these polynomials to find exact values of the di.

It was noted by Coxeter that the explicit values for the di by Chevalley were related to the
eigenvalues of the Coxeter-Killing element γ described in the previous section. In 1958, Cole-
man [2] showed that this was more than mere coincidence. He proved (theorem 6.5 below)
that di = 2mi + 1 where the eigenvalues of γ are given by lemma 5.3. However, his proof
of di = 2mi + 1 relied on the assumption that h` = 2r where h is the order of γ, ` is the
rank of g, and r is the number of positive roots. This equality was shown to hold for all of
the examples previously computed by Chevalley, but there was no general proof of it at the time.

Finally, Kostant showed [4] (theorem 5.7 in the previous section) in 1959 that in general h` = 2r.

6.1 Lemma.

The Poincare polynomial pG(t) is given by:

pG(t) =
∏̀
i=1

(1 + tdi)

where di are some odd integers.

Proof. Let:

pG(t) =
∑
p

Bpt
p

denote the Poincare polynomial for G. As was stated in section 4, Bp is given by the dimension
of H(g)p. It was shown by Hopf that H(g) is isomorphic (as a graded algebra) to the exterior
algebra of a subspace P (g) ⊂ H(g) of dimension ` with a basis given by forms with odd degrees
{d1, ..., d`}.

Then any bi-invariant p-form corresponds uniquely to the choice of k odd dimension forms of
degrees di in P (g) such that

∑k
i=1 di = p. So if we write:
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f(t) =
∏̀
i=1

(1 + tdi)

we see that the coefficient on tp is given by the number of ways to write p as a sum of di’s, ie.
is exactly Bp. Thus:

pG(t) =
∏̀
i=1

(1 + tdi)

6.2 Remark.

Examination of the above proof shows that in order to compute the di we need only to find a
basis for P (g). Below, we construct a surjective linear map onto P (g) such that the preimage
of a 2k − 1 form is a polynomial of degree k.

6.3 Theorem.

Write di = 2ki − 1. Then ki is the degree of a W -invariant polynomial on t.

Proof. Let S(g) denote the symmetric algebra over g and let I(g) ⊂ S(g) be the polynomials
that are both left and right Ad-invariant.

There is a surjective linear map T : I(g)→ P (g) given by:

P (X1, ..., Xn) 7→ 1

n

n∑
i=1

(
∂P

∂xi
)(dX1, ..., dXn)Xi

whose kernel is generated by 1 and products of homogeneous polynomials. If P ∈ I(g)/ ker(T )
has degree n, T (P ) is a 2n−1 form. Then since P (g) is generated by the the di = 2ki−1 forms
{ω1, ..., ω`}, we have that I(g)/ ker(T ) (and hence I(g) ) is generated by deree ki polynomials
{P1, ..., P`}.

Since every element of G is conjugate to an element in T , if P ∈ I(g) then P (Adg(X)) = P (X).
Thus if P has a root in t then P ≡ 0 on t. So I(g) is isomorphic to the restriction of I(g) to t.

But P is the restriction to t of P ′ ∈ I(g) if and only if P is W -invariant. Thus the generators
for the Ad-invariant polynomials I(g) correspond exactly to W -invariant polynomials on t.

Given theorem 6.3 what remains to be found are the values ki given by the degree of the W -
invariant polynomials in I(g). Theorem 6.5 shows that ki = mi + 1, concluding the calculation
of pG(t).
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6.4 Lemma (Coleman)

|R+| =
∑

i(ki − 1).

Proof. Let w = |W |. By a theorem of Molien we have:

w
∏̀
i=1

1

1− tki
=
∑
α∈W

∏̀
i=1

1

1− λαi t

where λαi denotes the i’th eigenvalue of α. Multiply both sides by (1− t)`:

w
∏̀
i=1

1− t
1− tki

=
∑
α∈W

∏̀
i=1

1− t
1− λαi t

Then using L’Hospital’s rule on the left hand side we get:

lim
t→1

w
∏̀
i=1

1− t
1− tki

=
w∏`
i=1 ki

and since:

lim
t→1

∏̀
i=1

1− t
(1− ant)

= 0

if any of the an 6= 1, then all the summands on the right hand side vanish except for the identity
(which has all eigenvalues equal to 1). Hence the right hand side reduces to 1 so:

w =
∏̀
i=1

ki

Putting this back into the expression of Molien, subtract 1
(1−t)` from both sides and multiply

through by (1− t)`−1:

(1− t)`−1
∏`
j=1 dj∏`

i=1(1− tki)
− 1

1− t
= − 1

1− t
+
∑
α∈W

(1− t)`−1∏`
i=1(1− λαi t)

we repeat a similar process to above (using L’Hospital’s rule and take the limit as t → 1) and
what remains on the left hand side is: ∑

i(ki − 1)

2
.

On the right hand side, the − 1
1−t term cancels the summand corresponding to the identity

element. Finally we note that if a summand corresponds to a reflection one eigenvalue is −1
and the rest are 1 hence as t → 1 that summand gives 1

2 , and if it does not correspond to a
reflection then as t→ 1 that summand vanishes. Hence what we are left with is:∑

i(ki − 1)

2
=
|R+|

2
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and the result follows.

6.5 Theorem.

ki = mi + 1

Proof. Let Λ denote the eigenvalues for γ. Since γ is a linear transformation on the real vector
space t, if λ ∈ Λ then λ̄ ∈ Λ. Hence if mi is an exponent of g, ζmi is an eigenvalue of γ so
ζh−mi is also an eigenvalue for γ. Then h−mi is an exponent whenevermi is an exponent. Hence:

∑
i

mi =
∑
i

(h−mi) =
∑
i

h−
∑
i

mi = `h−
∑
i

mi

Then we see that: ∑
i

mi =
`h

2

But by theorem 5.7 we know that `h/2 = r and by lemma 6.4, r =
∑

i(ki − 1). Thus:∑
i

mi =
`h

2
= r =

∑
i

(ki − 1).

Now we show that for each mi there exists a j such that mi ≡ kj − 1 mod h.

Let {v1, ..., v`} denote a basis of eigenvectors for γ with eigenvalues {ζm1 , ..., ζm`} where m1 = 1.
Let {P1, ..., P`} denote the generators of I(g) with degrees {k1, ..., k`}, and let P = (P1, ..., P`).
Then the Jacobian dvP of P at v is an `× ` matrix with determinant equal to 0 if and only if
v is not regular.

By theorem 5.2 v1 is regular so dP (v1) has nonzero determinant. Then for all 1 ≤ i ≤ ` there
exists 1 ≤ j ≤ ` such that the (i, j) entry is nonzero. But the (i, j) entry of dP is ∂Pi

∂xj
, and:

∂Pi
∂xj

(x1, 0, ..., 0) =
∂

∂xj

∣∣∣∣
(x1,0,...,0)

∑
p

cipx
np1
1 x

np2
2 · · ·xnp`

`

is 0 unless one of the summands is xki−11 xj . But Pi ∈ I(g) so γ(xki−11 xj) = xki−11 xj . However:

γ(xki−11 xj) = ζki−1ζmjxki−11 xj = ζki−1+mjxki−11 xj

so ζki−1+mj = 1 ie. ki − 1 +mj ≡ 0 mod h as claimed.

Finally since: ∑
i

mi =
`h

2
=
∑
j

(kj − 1)

and for each i there exists a j such that mi ≡ kj − 1 mod h we can change the indices so that
mi = ki − 1 ie. ki = mi + 1 as claimed.
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7 Corollaries of the Poincare polynomial formula.

Let G be a simple compact connected Lie group.

7.1 Corollary 1.

π1(G) is finite.

Proof. It was shown in lemma 5.5 that 0 is not an eigenvalue of γ so mi 6= 0 for any i ie.
2mi + 1 6= 1. Then Bi(G) = 0 for i ∈ {1, 2}. In particular B1(G) = 0 so H1(G) is torsion free.
But π1(G) is abelian (see eg. [5]) so π1(G) = H1(G) is torsion free hence finite.
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