
GROUP ACTIONS

MATT KOSTER

1. G-Manifolds

Let G be a Lie group and M a smooth manifold. In particular this means G is discrete if and
only if it is at most countable.

Definition 1. An smooth action of G on M is a group homomorphism A ∈ Hom(G,Diff(M)),
denoted g 7→ Ag, such that the action map A(x, g) = Ag(x) is a smooth map M ×G → M . We
call M a G-manifold. Replacing Diff(M) with Homeo(M) defines a continuous action and P is
called a G-space. For fixed x ∈ M the map θx(g) = Ag(x) is called the orbit map. The image is
of the orbit map is denoted Gx and called the orbit of x.

Remark 2. We also use the notation gx for Ag(x).

Definition 3. Let F : M ×G→M ×M be the map F (x, g) = (x, gx). If F is injective we say the
action is free, and if F is proper then we say the action is proper. If F is an embedding then we
call the action weakly proper. We call a G-space free if the action is free.

Remark 4. If F is injective and proper then it is automatically an embedding. Conversely, if F is
an embedding then it is proper if and only if its image is closed.

Lemma 5. For a G-manifold M the following are equivalent:

(1) The action is proper.
(2) If xn and gn are sequences in M and G (respectively) such that xn and gnxn converge, there

exists a convergent subsequence of gn.
(3) For every compact K ⊂M the set {g ∈ G : gK ∩K ̸= ∅} is compact.

Furthermore, any of the above imply that the stabilizer subgroups are compact and moreover the
orbits O of the action are closed embedded submanifolds of M with TxO = {ξM (x) : ξ ∈ g}.

Remark 6. In general the orbits of a smooth G-action are only immersed submanifolds.

Lemma 7. If the action map is proper then the action is proper.

Proof. Let K ⊂M be compact, define GK = {g : gK ∩K ̸= ∅} and let (gn) be a sequence in GK .
By definition of GK , for each n there exists xn ∈ gnK∩K. Since xn ∈ gnK we can write xn = gnyn
for yn ∈ K. Since xn ∈ K we have A(gn, yn) = xn ∈ K so (gn, yn) ∈ A−1(K). The action map is
assumed to be proper so A−1(K) is compact hence there exists a convergent subsequence (gnk

, ynk
)

of (gn, yn). In particular gnk
is a convergent subsequence of gn so GK is compact, as desired. □

Remark 8. The converse is not true. Non compact groups acting properly on compact manifolds
give a large family of counterexamples. For an example whereM is not compact consider the action
of Z on R2 \ 0 given by:

n · (x, y) =
(
2 0
0 1

2

)n(
x
y

)
The observation that compact groups have a proper action map leads gives:

Corollary 9. The action of a compact group is proper.
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2. When is a G-space a principal bundle?

Definition 10. A smooth principal G-bundle over M is a smooth map π : P →M from a G-
manifold P such that every point inM has a neighbourhood U and a G-equivariant diffeomorphism
φU : U ×G→ π−1(U) making the following diagram commute:

U ×G π−1(U)

M
projU

φU

π

where equivariance is taken with respect to the action g(x, h) = (x, hg−1). The pair (U,φU ) is
called a local trivialization or a trivialization over U . We will often use the notation PV or
P |V to mean π−1(V ) (even if V is not necessarily open).

For two smooth principal bundles πi : Pi → M , a bundle isomorphism is a G-equivariant
diffeomorphism f : P1 → P2 such that π1 = π2 ◦ f . A bundle isomorphism P → P (also called a
bundle automorphism) is called a gauge transformation and the notation Gau(P ) := Aut(P )
is often used and Gau(P ) called the gauge group.

Let (Ui, φi) ⊂M be two trivializations with U12 := U1∩U2 ̸= ∅. The map φ12 := φ1 ◦φ−1
2 : U12×

G → U12 ×G is a diffeomorphism satisfying φ12(x, g) = (x, ψ12(x, g)) for some ψ12 : U12 ×G → G
such that ψ12(x, gh) = ψ12(x, g)h i.e. φ12 is a gauge transformation of U12 ×G→ U12. We call the
map g12 : U12 → G defined by g12(x) = ψ12(x, e) the transition function of (U1, φ1) and (U2, φ2).
One could equivalently view this as a map U12 → Aut(G) by x 7→ (g 7→ ψ12(x, g)).

Remark 11. In the category of topological spaces, a principal G-bundle is defined by replacing
the “smooth” words with “continuous” (G becomes a topological group, P becomes a G-space, π
and φU become continuous). That said, we will usually simply refer to a smooth principal bundle
as simply a principal bundle.

Using equivariance of the local trivializations and the right action of G on itself is proper we see
the action of G on P is free and proper and moreover it restricts to a transitive action on the fibers
of π. The quotient map P → P/G induces a homeomorphism M → P/G, providing a smooth
structure on the orbit space making P → P/G a submersion. The converse also holds:

Theorem 12 (Quotient Manifold Theorem). Let P be a free G-manifold. Then P/G is a smooth
manifold making P → P/G into a smooth principal G-bundle if and only if the action is proper.
The smooth structure on P/G is unique (up to diffeomorphism).

Remark 13. All of the assumptions in the quotient manifold theorem are necessary to ensure P/G
is a smooth manifold and P → P/G is a submersion. It is straightforward enough to come up with
actions that are not free or not proper so that the quotient won’t even be a topological manifold.
The assumption that G is acting by diffeomorphisms is necessary, even if G is discrete and finite
and P is compact:

Proposition 14. There exists a free action of Z2 on S4 by homeomorphisms such that S4/Z2 is
not smoothable [2].

The quotient manifold theorem therefore provides a correspondence between smooth principal
G-bundles and smooth actions of Lie groups on manifolds that are free and proper. The situation in
the category of topological spaces is more subtle. The existence of equivariant local trivializations
on a principal bundle implies the action is free and proper, but the converse is not true even if P
and G are both compact Hausdorff:

Proposition 15. There exists a compact metrizable topological group G and compact Hausdorff
free G-space P such that the quotient map P → P/G is not a fiber bundle [1].
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It is true, however, under mild assumptions:

Proposition 16. If G is a Lie group and P is a locally compact Hausdorff free G-space then
P → P/G is a principal bundle if and only if the action is proper.

If we require that P be a manifold we have the Hilbert-Smith conjecture (verified for P a 3-
manifold, as well as some specific types of actions):

Conjecture 17 (Hilbert-Smith). If G is a locally compact topological group acting continuously
and faithfully on a connected topological manifold then G is a Lie group.

Remark 18. Actually, the Hilbert-Smith conjecture is equivalent to:

Conjecture 19 (Hilbert-Smith). There does not exist a continuous and faithful action of a p-adic
group on a connected topological manifold.

We summarize these results in the following table for G a topological group acting continuously
on P :

G a Lie group G not a Lie group

P a manifold P → P/G is a principal bundle. Hilbert-Smith.
P LCH P → P/G is a principal bundle. P → P/G not necessarily a principal

bundle (even if P is compact).
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Definition 20. Let π : P → M be a principal G-bundle. A (prinicpal) connection is a G-
equivariant g-valued 1-form θ ∈ Ω1(P, g) such that θ(X∗) = X for every X ∈ g (where X∗ is the
generating vector field for X associated to the action of G on P ). By G-equivariance we mean with
respect to the adjoint action on g, i.e. A∗

gθ = Adg(θ) where by the right hand side we mean the
composition of θ with Adg when the g-valued 1-form as a map θ : TP → g (recall that at x ∈ P ,
θx is a map θx : TxP → g). We further define the horizontal subbundle Hθ = ker(θ). Note that
TP = ker(π∗)⊕Hθ.

Since θ(X∗) = X, for any two connections θ1, θ2 we have (θ1−θ2)(X∗) = 0 so θ1−θ2 corresponds
to some A ∈ Ω1(M,AdP ), i.e. the space of connections A(P ) is an affine space modelled on
Ω1(M,AdP )

Let P = M ×G be the trivial principal G-bundle and θ ∈ Ω1(P, g) = Ω1(M ×G, g) a principal
connection. At (x, g) ∈ P we have θ(x,g) : Tx,p(M×G) = TxM⊕TpG→ g. Writing θx,g = θx+θg for

θx = θx,g|TxM and θg = θx,g|TgG, it follows from the definition that θx = Adg−1(A) for A ∈ Ω1(M, g)

and θg = θL is the left-invariant Maurer-Cartan form. We call A the connection 1-form. Viewing
g as a matrix algebra, A is a matrix whose entries are elements of Ω1(M), i.e. A is amatrix-valued
1-form.

The gauge group acts on A(P ) by gauge transformations φ · θ = (φ−1)∗θ = φ∗(θ) and we
call θ and φ∗θ gauge equivalent. Suppose φ ∈ Gau(P ) and (U,ψU ) is a local trivialization so
φ(PU ) = PU . Then Φ = ψ−1

U ◦ φ ◦ ψU is a gauge transformation U × G → U × G i.e. Φ(x, g) =
(x, ϕ(x, g)) for some ϕ : U × G → G with ϕ(x, gh) = ϕ(x, g)h. Write ϕ(x) = ϕ(x, e). In this case
Φ−1(x, g) = (x, ϕ(x)−1g). Observe that the gauge action on θ becomes:

Φ · θ = (Φ−1)∗θ = (Φ−1)∗(g−1Ag + θL) = (Φ−1)∗(g−1Ag) + (Φ−1)∗θL

= g−1ϕAϕ−1g + g−1ϕd(ϕ−1g)

= g−1ϕAϕ−1g + g−1ϕ(−ϕ−1dϕϕ−1g + ϕ−1dg)

= g−1ϕAϕ−1g − g−1dϕϕ−1g + g−1dg

= g−1(ϕAϕ−1 − ϕ∗θR)g + θL

= g−1Bg + θL

We see then that locally the gauge action on A(P ) reduces to the gauge action of C∞(M,G)
on Ω1(M, g) as in ϕ ·A = Adϕ(A)−ϕ∗θR. In particular if (U1, φ1), (U2, φ2) are local trivializations

with transition function g12, writing φ
∗
i θ = g−1Aig + θL we see:

g−1A2g + θL = φ∗
12(g

−1A1g + θL) = φ21 · (g−1A1g + θL) = g−1(g−1
12 A1g12 + g∗12θ

L)g + θL

thus:

A2 = g−1
12 A1g12 + g∗12θ

L

is how the connection 1-form transforms under change of trivializations.

Definition 21. Let π : P → M be a principal bundle and θ a connection. A path γ : I → P is
called horizontal if γ̇(t) ∈ Hθ.

Proposition 22. For every smooth γ : I → M with γ(0) = x and p ∈ π−1(x), there exists a
horizontal lift γ̃p : I → P with γ̃p(0) = p, i.e. π ◦ γ̃p = γ and γ̃p is horizontal. The map
τγ : π

−1(x) → π−1(γ(1)) given by τγ(p) = γ̃p(1) is called the parallel transport along γ and it is
an isomorphism.
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Definition 23. Let γ : I →M be a loop based at x ∈M . The holonomy Holx,γ : Px → Px of γ at
x is defined by Holx,γ(p) = γ̃p(1). This defines a map Holx : C(x) → Homeo(Px), Holx(γ) = Holx,γ .

A useful reinterpretation of the holonomy group as a subgroup of G is as follows.

Definition 24. Fix p ∈ Px. For γ ∈ C(x) there exists a unique gγ ∈ G such that Holx,γ(p) = gγ · p
defining a map Holp : C(x) → G by γ 7→ gγ . The image Φp ≤ G of Holp is called the holonomy
subgroup of G (with reference point p) and there exists a unique isomorphism Φx → Φp such
that the following diagram commutes:

C(x)

Φx Φp

Finally, we define two notions of reducibility. If Φp is not equal to G then we say the connection
is reducible to Φp. Alternatively (but not equivalently), if H is a proper subgroup of G then
we say A is reducible if there exists a reduction of the structure group ι : Q → P to a principal
H-bundle Q such that ι∗A is a principal connection for Q. The second definition of reducible is
equivalent to ι∗A taking values in h.

Definition 25. If P is a principalG-bundle with θ a principal connection, the curvature Curv(θ) =
Curvθ ∈ Ω2(P, g) of θ is:

Curv(θ) = dθ + [θ, θ]

where dθ is the exterior derivative on Ωk(P, g) and:

[η1, η1](u, v) = [η1(u), η1(v)].

where the right hand side is the Lie bracket on g. If Curv(θ) ≡ 0 we say θ is flat and denote the
space of flat connections by Aflat(P ). When P =M×G, Curv(θL) = 0 so we call θL the canonical
flat connection on M ×G.

Remark 26. The space of flat connections is a gauge invariant subspace of A(P ).

Definition 27. Let M be a manifold, p ∈ M , and fix ϕ ∈ Hom(π(M,p), G) for a Lie group

G. For ψ ∈ π(M,p) let F ϕψ : M̃ × G → M̃ × G be the diffeomorphism F ϕψ (x, g) = (ψ(x), ϕ(ψ)g).

The canonical flat connection θL on the trivial bundle M̃ × G satisfies (F ϕψ )
∗θL = θL for every

ψ ∈ π(M,p) so it induces a flat connection θϕ on the associated bundle M̃ ×ϕ G that we call the
canonical flat connection.

One computes that when θ = g−1Ag+ θL we have Curv(θ) = Adg−1(Curv(A)) It follows that in
the overlap:

Curv(Aα) = gαβCurv(Aβ)g
−1
αβ

so the g-valued 2-forms Curv(Aα) ∈ Ω2(M, g) glue together to form FA ∈ Ω2(M, adP ). Moreover,
under bundle projection π : P →M we have Curvθ = π∗FA ∈ Ω2(P, π∗adP ) = Ω2(P, g).

Another way to define FA is as follows. For X,Y ∈ X(M) let XH , YH ∈ X(P ) denote their
horizontal lifts (horizontal with respect to θ). View the connection as an equivariant splitting
θ : TP → V ∼= P × g, let q : P × g → adP denote the quotient map and define:

FA(X,Y ) = q(θ[XH , YH ])
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Observe that the Hθ is integrable if and only if θ is flat - definition, a vector X ∈ TpP is
horizontal if θ(X) = 0. Then for horizontal vector fields X,Y on P it follows easily that θ([X,Y ]) =
−2Curvθ(X,Y ) so the Lie bracket of horizontal vector fields is again horizontal if and only if the
curvature vanishes.

Proposition 28. If π : (P, θ) → M is a flat G-bundle and Γ: [0, 1]2 → M is a homotopy then the
holonomy of γs(t) = Γ(s, t) is the same for all s ∈ [0, 1].

Proof. Let Γ̃ : [0, 1]2 → P denote the horizontal lift of Γ starting at x := Γ̃(s, 0). Since γ̃s(t) = Γ̃(s, t)
is horizontal, γ̃s(t) ∈ Px for all s and t where Px is the leaf of the horizontal foliation through x.

But dim(Px) = dim(M) so π|Px is a covering map hence Γ̃(s, 1) is constant in s. □

From this we see that the holonomy of a flat connection is homotopy invariant so Holp descends
to a homomorphism ϕθ : π1(M) → G that we call the holonomy homomorphism.

Let A(M,G) = {(P, θ) : P a principal G-bundle, θ a connection} and Aflat(M,G) the subspace
where θ is taken to be flat. Put an equivalence relation∼ onA(M,G) by declaring (P1, θ1) ∼ (P2, θ2)
if there exists a bundle isomorphism f : P1 → P2 such that f∗θ2 = θ1.

Theorem 29. The map Aflat(M,G) → Hom(π1(M), G) defined by (P, θ) 7→ ϕθ descends to a
bijection Aflat(P )/ ∼ → Hom(π1(M), G)/G. The map Hom(π1(M), G) → Aflat(M,G) given by

ϕ 7→ (M̃ ×ϕ G, θϕ) descends to its inverse.
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3. Some calculations

Let G = SL2(R) with g = sl2(R) having basis ea =

(
1 0
0 −1

)
, ek =

(
0 1
−1 0

)
, eh =

(
0 1
1 0

)
.

Note that for c ∈ R we have:

exp cea =

(
ec 0
0 1

ec

)
, exp cek =

(
cos c sin c
− sin c cos c

)
, exp ceh =

(
cosh c sinh c
sinh c cosh c

)
Let B(X,Y ) = 4 tr(XY ) denote the Killing form on sl2(R). If e∗a, e

∗
k, e

∗
h denote the dual basis

to ea, ek, eh then fa = 8e∗a, fk = −8e8k, and fh = 8e∗h is the B-dual basis.

For t > 1 and z ∈ R let m =

√√
t4z2+1+1

2 , n =

√√
t4z2+1−1

2 , and s = t

(t4z2+1)
1
4
. Then:(

ms
t

ns
t−ns

t
ms
t

)(
m n
n m

)(
s 0
0 1

s

)
=

(
t tz
0 1

t

)
and since

(
ms
t

ns
t−ns

t
ms
t

)
∈ SO(2) we have a decomposition of G of the form g = kha where

k ∈ SO(2), a ∈ A is diagonal and h is of the form

(
m n
n m

)
with m ≥ 1 > 0 and this decomposition

is unique. Note that such a matrix can be written h =

(
cosh(w) sinh(w)
sinh(w) cosh(w)

)
for w = sinh−1(n).

In Cartesian coordinates, the left-invariant vector fields on G associated to our basis for g can
be computed:

gea = x∂x − y∂y + z∂z − w∂w, gek = −y∂x + x∂y − w∂z + z∂w, geh = y∂x + x∂y + w∂z + z∂w

In Cartesian coordinates, the1 dual basis for g∗ is:

e∗a =
1

2

(
1 0
0 −1

)
, e∗k =

1

2

(
0 1
−1 0

)
, e∗h =

1

2

(
0 1
1 0

)
so the left-invariant 1-forms dual to the above left invariant vector fields are given in Cartesian

coordinate by:

2g−te∗a = wdx+zdy−ydz−xdw 2g−te∗k = zdx+wdy−xdz−ydw, 2g−te∗h = −zdx+wdy−xdz−ydw
and we denote them (respectively) by ωa, ωk, and ωh. With respect to Iwasawa coordinates

G = KAN = S1 × R>0 × R one computes that:

2ωk = (r2 +
1

r2
+ r2z2)dθ − dz − 2z

r
dr

and under the diffeomorphism S1 × R2 → KAN given by (θ, s, z) 7→ (θ, es, z) we have:

ωk = (2 cosh(2s) + e2sz)dθ − dz − 2zds

Conversely one can write the Cartesian 1-forms in terms of the left-invariant ones, e.g.:

dθ =
ωh − ωk
x2 + z2

=
1

x2 + z2
g−t

(
0 0
1 0

)
=
xdz − zdx

x2 + z2

Alternatively, using Cartan decomposition G = KP ∼= S1 × R2 it can be shown that:

dθg =
1

|g|2
((z − y)(dx+ dw) + (x+ w)(dy − dz)) =

1

|g|2
((z − y)d(x+ w) + (x+ w)d(y − z))
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where g =

(
x y
z w

)
and |g|2 = tr(ggt + I).

Let Σ be a closed oriented genus g ≥ 2 surface. A pair (S, f) representing an element of
Teichmuller space Tg is by definition an orientation preserving diffeomorphism f : Σ → S where S
is a Riemann surface. The Riemann surface S has Fuchsian representation S = H/ΓS for ΓS ≤ G,
unique up to conjugation. The map f induces a group isomomorphism f∗ : π1(Σ) → π1(S) =
ΓS ≤ G hence ι ◦ f∗ ∈ Hom(π1(Σ), G) is injective with discrete image. The map (S, f) 7→ ι ◦ f∗
therefore descends to an injective map Tg → Hom(π1(Σ), G)/G. Conversely, if ϕ ∈ Hom(π1(Σ), G)
is injective with discrete image, Γϕ := Im(ϕ) ∼= π1(Σ) is Fuchsian so there exists a diffeomorphism
fϕ : Σ → Sϕ := H/Γϕ such that (fϕ)∗ = ϕ. The map fϕ pulls back the metric on Sϕ to a metric
on Σ so if fϕ is orientation preserving (there is a canonical orientation on Sϕ) the pair (Sϕ, fϕ)
represents an element of Tg.

Fix P → Σ a principal G-bundle with a flat connection θ ∈ Ω1(P, g) and fix p ∈ Σ. Since θ
is flat there exists a trivializing neighbourhood U1 of p such that θ|PU1

= θL and with no loss in

generality we may take U1 to be a disk. Let U2 = Σ \ p and fix a trivialization of P |U2 . Writing

θ = g−1Ag + θL in U2 for A =

(
ω1 ω2

ω3 −ω1

)
∈ Ω1(U2, g), in U12 we have A = g−1

12 dg12 = g∗12θ
L.

Flatness of θ is therefore equivalent to a solution to the system:

2dω1 = ω3 ∧ ω2

dω2 = ω2 ∧ ω1

dω3 = ω1 ∧ ω3.

Let α1 = ω2 + ω3, α2 = 2ω1 and ω = ω3 − ω2. Flatness of θ is therefore equivalent to a solution
to the Cartan equations:

dα1 = α2 ∧ ω
dα2 = ω ∧ α1

dω = α2 ∧ α1

We note here that ω (not only dω) is determined uniquely by αi whenever α1 ∧ α2 ̸= 0 - writing
dαi = −fiα1 ∧ α2 then ω = f1α1 + f2α2.

Define F : G×H → H by F (g, x) = g(x). Then:

D(g,x)F =
1

(d+ cx)2
(
2x,−(x2 + 1), 1, 1, i

)
where g =

(
a b
c d

)
. Hence the map (g, x) 7→ g−1ϕ(x) has derivative:

(
2(ϕ(x)(ad+ bc)− cdϕ(x)2 − ab) 2(ac+ bd)ϕ(x)− (c2 + d2)ϕ(x)2 − (a2 + b2) 2acϕ(x) + c2ϕ(x)2 + a2

)
together with dxϕ.
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