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1. Introduction.

Given a smooth manifold M , obstructions to the existence of Riemannian metrics on M having
certain curvature properties is a classical subject with a wealth of interesting results. Given the
curvature hierarchy:

Curvature tensor ⇔ Sectional curvature ⇒ Ricci curvature ⇒ Scalar curvature

obstructions to the existence of metrics with positive scalar curvature immediately gives an
obstruction to the existence of metrics with certain Ricci or sectional curvature (notably those with
positive Ricci curvature or positive sectional curvature). We analyze the case of spin manifolds
with scalar sectional curvature here.

2. The Spinor bundle.

2.1. Principal bundles.

2.1.1. Definition. If π : E → B is a fiber bundle with fiber G where G is a topological group such
that G ⟳ E smoothly and freely, and the homeomorphism h : π−1(U) → U ×G respects the action
of G (ie. for all x ∈ π−1(U) we have h(xg) = h(x)g where the action on U ×G is the natural one
(x, g1)g2 = (x, g1g2)) then we say that E is a principal G-bundle and write B = E/G.

Implicitly in this definition is that π(x1) = π(x2) if and only if they are in the same G-orbit. To
see this suppose π(x1) = π(x2) = y. Let U be a local trivialization near y and φ : π−1(U) → U×G.
Since π : E → B is a fiber bundle we have π(x1) = π(x2) = πU (φ(x1)) = πU (φ(x2)) = y so
φ(x1) = (y, g1) and φ(x2) = (y, g2). But x1 = φ−1(y, g1) = φ−1(y, g2g

−1
2 g1) =

(
φ−1(y, g2)

)
g−1
2 g1 =

x2g
−1
2 g1. This justifies the notation B = E/G.

2.1.2. Examples.

(1) If G is a Lie group and H ≤ G is a closed subgroup then the coset action H ⟳ G is free
and smooth, and so defines a principal H bundle of G over G/H.

(2) As a concrete example of 1. we have the action of S1 = U(1) on S2n+1 by scalar multipli-
cation. This gives us a principal S1-bundle of S2n+1 over S2n+1/S1 = CP (n).

(3) Given an orientable Euclidean vector bundle π : E → B (ie. a vector bundle with an
inner product space in each fiber) of rank n, SO(n) acts smoothly and freely on the fibers
Ex. This allows us to define the principal SO(n)-bundle π : FSO(E) → B, called the
orthonormal frame bundle.

2.1.3. Definition. Given a principal G-bundle πG : P → B, if G ⟳ F for some topological space F
we define the associated bundle of P with respect to the G-action on F .

First note that G ⟳ P × F by the formula (x, f)g = (xg, g−1f). Define P ×G F = (P × F )/G,
the base space of the principal G-bundle π1 : P ×F → (P ×F )/G. Given v ∈ P ×G F we can write
v = π1(p, f) for some p ∈ P and f ∈ F . Then we define π : P ×G F → B to be π(v) = πG(p). As
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P ×G F is a principal G-bundle this map is well defined and turns π : P ×G F → B into a fiber
bundle over B with fiber F .

2.1.4. Definition. If π : E → B is a fiber bundle with fiber F and f : X → B is a continuous
function then we can form the pullback bundle f∗ : Ef → X with fiber F where Ef = {(x, y) ∈
X × E | f(x) = π(y)}. The map is given by f∗(x, y) = f(x) = π(y). If we apply the pullback
construction to a principal G-bundle we get a new principal G-bundle.

2.1.5. Definition. Let π1 : E1 → B, π2 : E2 → B be two bundles over B. Then E1 is isomorphic
to E2 as bundles over B, denoted E1

∼= E2 if there exists a homeomorphism f : E1 → E2 such that
π1(x) = π2(f(x)) for all x ∈ E1. For principal G-bundles we also require that f(xg) = f(x)g for
all x ∈ E1, g ∈ G.

2.2. Clifford Algebras.

2.2.1. Definition. Let (V, g) be a real inner product space. The real Clifford algebra of V , denoted
Clg(V ) is the quotient of the tensor algebra T (V ) by the two sided ideal:

I = {v1 ⊗ v2 + v2 ⊗ v1 − 2g(v1, v2) | v1, v2 ∈ V }

The map j : V → V given by j(v) = −v extends to an algebra morhpism J in Clg(V ) such that
J2 = Id. The eigenspaces of J give a Z2 grading for Clg(V ):

Clg(V ) = Cl0(V )⊕ Cl1(V )

into even and odd subspaces. If {e1, ..., en} is an orthonormal (with respect to g) basis of V
then {ei1 · · · eik k ≥ 0} is a basis of Clg(V ). We denote the complex Clifford algebra Cl(V )C =
Cl(V )⊗R C = Cl(V C) (using the complexification of g) by Cl(V ).

The Clifford algebra comes with a second involution (besides J) called the transpose, given on
2-vectors by (v1v2)

t = v2v1 and extended naturally.

2.2.2. Definition. A Clifford module over Cl(V ) is a complex Z2 graded inner product space E =
E0 ⊕ E1 with a Z2 graded algebra morphism ρ : Cl(V ) → End(E).

2.2.3. Definition. A Clifford module bundle over M is a vector bundle πS : S → M such that each
fiber Sx is a Cl(V )-module and the Clifford module structure is preserved in local trivializations.

If πE : E → M is an oriented Euclidean vector bundle, the Clifford bundle of E is the associated
vector bundle π : Cl(E) = FSO(E)×σCl(Rn) → M where σ : SO(n) → Aut(Cl(Rn)) is the natural
induced representation. Note that the fibers Cl(E)x are Clifford algebras so Cl(E) is a bundle of
Clifford algebras over M . Denote Cl(TM) by Cl(M).

2.3. Spin structures. Using the double cover p : SU(2) → SO(3) and the exact sequence of
homotopy groups one can show that π1(SO(n)) = Z2 for all n ≥ 3. In particular this means that
SO(n) is not simply connected, but instead has a simply connected double cover called Spin(n).
Since SO(n) is a Lie group, Spin(n) is also a Lie group. However, there is an alternative realization
of Spin(n) as a concrete subgroup of Clg(V ) (that we will not define here).
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2.3.1. Definition. Let ρ : E → M an oriented Euclidean n ≥ 3-bundle and πF : FSO(E) → M
the orthonormal frame bundle. Then a spin structure on E is a principal Spin(n)-bundle πS :
Spin(E) → M together with a double cover P : Spin(E) → FSO(E) such that P (pg) = P (p)ρ2(g)
for all p ∈ Spin(E) and g ∈ Spin(n), where ρ2 : Spin(n) → SO(n) is the double covering.

Spin(n) Spin(E) FSO(E)

SO(n) M

ρ2

P

πS
πF

A spin manifold is an oriented Riemannian manifold with a spin structure on TM .

2.3.2. Definition. Let ρ : Cl(Rn) → End(MC) be a Clifford module and E → M an oriented
Euclidean vector bundle with spin structure P : Spin(E) → FSO(E). Let ρn : Spin(n) → SO(MC)
denote the restriction of ρ to Spin(n) ≤ Cl(Rn). Then the associated Clifford module bundle
SC(E) = Spin(E) ×ρn MC → M is a (complex) spinor bundle and sections of SC(M) are called
spinors.

If M is an even dimension spin manifold (ie. with a spin structure on TM) there is a unique
irreducible spinor bundle which we denote by ϖC.

3. The index of elliptic operators.

3.1. Fredholm Theory.

3.1.1. Definition. A bounded linear map T : V → W between Banach spaces is called Fredholm
if ker(T ) and coker(T ) are both finite dimensional. If T is Fredholm we define the index of T by
Index(T ) = ker(T )− coker(T ).

3.2. Elliptic Operators.

3.2.1. Definition. Let E,F be smooth vector bundles over M of ranks m,n (respectively). We say
that P : Γ(E) → Γ(F ) is a differential operator of order k and write P ∈ DOk(E,F ) if

(1) For all u ∈ Γ(E), suppPu ⊂ suppu.
(2) For any U ⊂ M and trivializations E|U , F |U , P is given by:

(Pu)(x) =
∑
|α|≤k

Aα(x)(D
αu)(x)

where the sum is taken over multi indices α and Aα(x) : E|U → F |U is an n×m matrix
valued function of x.

Given P ∈ DOk(E,F ) and f1, ..., fk ∈ C∞(M), it is a consequence of polarization that ad(f1) · · · ad(fk)P ∈
Γ(E∗ ⊗F ) is symmetric in the fi so ad(f1) · · · ad(fk)P = ad(f)kP . Furthermore, by Taylor’s theo-
rem the value of ad(f)kP at x depends only on dxf . Thus, the following is well defined.

3.2.2. Definition. Let π : T ∗M → M denote the bundle projection. If P ∈ DOk(E,F ), the
principal symbol σP ∈ Γ(π∗(E∗ ⊗ F )) is given by:

σP (ξ) =
1

k!
ad(f)kP

where f is any function satisfying dxf = ξ.

3.2.3. Remark. The above definition involves two standard identifications - the first being E∗⊗F ∼=
Hom(E,F ) and the the second being that sections of a pullback bundle f∗s ∈ Γ(f∗E) are given by
composing f with section s of E: f∗s = s ◦ f .
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3.2.4. Example. In local trivializations, Pu =
∑

|α|≤k Aα(x)(D
αu). Then ad(f)kP = k!

∑
|α|=k Aα(x)(D

αf)

so σP is given at x ∈ U by

σP (x, ξ) =
∑
|α|=k

Aα(x)ξ
α

3.2.5. Definition. A differential operator P : Γ(E) → Γ(F ) is called elliptic if σP (ξ, x) : Ex → Fx

is invertible for all ξ ∈ T ∗M \M .

3.2.6. Theorem. If E,F are vector bundles over a compact manifold M , s ∈ R, then any elliptic dif-
ferential operator P : Γ(E) → Γ(F ) extends to a Fredholm operator P̃ : Hs(M,E) → Hs−k(M,F )

where Hj(M,S) denotes the Sobolev space W j,2(Γ(S)) and the index of P̃ is independent of s.

3.2.7. Definition. The analytic index of an elliptic differential operator P is defined to be Index(P ) =
dim(kerP )−dim(kerP ∗) where P ∗ is a formal adjoint to P under the chirality element ω. By the-

orem 3.2.6 it is the case that Index(P ) = Index(P̃ ).

4. The Â-genus.

4.1. Characteristic classes.

4.1.1. Theorem. (Stiefel-Whitney classes). Let M be a smooth manifold and V ect(n) denote the
isomorphism classes of real n-bundles over M . Then there exists a unique map w : V ect(n) →
H∗(M ;Z) such that:

(1) wi(f
∗E) = f∗(wi(E))

(2) w(E1 ⊕ E2) = w(E1) ∪ w(E2)
(3) wi(E) = 0 for i > n
(4) If E → RP (∞) is the canonical line bundle, H1(RP (∞),Z) = ⟨w1(E)⟩

where w = (w1, ..., wn) in coordinates (ie. wi(E) ∈ H i(M ;Z)). We call wi the i’th Stiefel-
Whitney class and the map w the total Stiefel-Whitney class.

4.1.2. Proposition. An orientable Riemannian manifold M has a spin structure if and only if
w2(TM) = 0.

4.1.3. Theorem (Chern classes). Let M be a smooth manifold and V ect(n) denote the isomorphism
classes of complex n-bundles over M . Then there exists a unique map c : V ect(n) → Hev(M ;Z)
such that:

(1) ci(f
∗E) = f∗(ci(E))

(2) c(E1 ⊕ E2) = c(E1) ∪ c(E2)
(3) ci(E) = 0 for i > n
(4) If E → CP (∞) is the canonical line bundle, H2(CP (∞),Z) = ⟨c1(E)⟩
where c = (c1, ..., cn) in coordinates (ie. ci(E) ∈ H2i(M ;Z)). We call ci the i’th Chern class and

the map c the total Chern class.

4.1.4. Definition. Let E → M a real vector bundle of rank n and EC its complexification. We
define the i’th Pontryagin class of E by pi(E) = (−1)ic2i(E

C), and the total Potryagin class:

p(E) =

⌊n
2
⌋∑

i=0

pi

We define the Potryagin classes of a manifold M to be pi(M) = pi(TM).
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4.1.5. Definition. Let f(x) be a formal power series in x with rational coefficients such that f(0) =
1. Writing:

n∏
i=1

f(xi) = 1 + F1(σ1) + F2(σ1, σ2) + · · ·

where:

σk(x1, ..., xn) =
∑

i1<···<ik

k∏
j=1

xij

is the k’th elementary symmetric function, and Fk is weighted homogeneous of degree k, ie.
Fk(tσ1, ..., t

kσk) = tkFk(σ1, ..., σk). The sequence (Fk) = (Fk(σ1, ..., σk)) is called the multiplicative
sequence associated to f .

4.1.6. Examples.

(1) Let fa(x) be the power series given by the Taylor series of:

fa(x) =

√
x

2 sinh(
√
x
2 )

ie:

fa(x) = 1− 1

24
x+

7

5760
x2 ± · · ·

The multiplicative sequence associated to fa, denoted (Âi), is called the Â-sequence. The

first term is given by Â1(σ1(x1)) = − 1
24x1.

(2) Let fℓ(x) be the power series given by the Taylor series of:

fℓ(x) =

√
x

tanh(
√
x)

ie.

fℓ(x) = 1 +
1

3
x− 1

45
x2 ± · · ·

The multiplicative sequence in this case, denoted (Li), is called the Hirzebruch L-
sequence. The first term is given by L1(σ1(x1)) =

1
3x1.

4.1.7. Definition. Let M be a compact, oriented n-dimension manifold and (Fk) a multiplicative
sequence associated to some power series f(x). We define the total F -class associated to f by:

F(M) =

n∑
k=1

Fk(pk(M))

and define the F -genus ofM , denoted F (M), by ⟨F(M), [M ]⟩ where [M ] denotes the fundamental
class of M and ⟨·, ·⟩ denotes the pairing between Hn(M ;Q) and Hn(M ;Q). Equivalently, F (M) is
0 if n is not a multiple of 4 and otherwise:

F (M) = ⟨Fk(p1(M), ..., pk(M)), [M ]⟩
where n = 4k.
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4.1.8. Definition. Choosing f = fa from above, we have the Â-genus of M denoted Â(M). If M

has dimension 4 we see by the formulas for Â1 and L1 given above:

Â(M) = − 1

24
⟨p1(M), [M ]⟩ = −1

8
L(M)

4.1.9. Examples.

(1) If M = CP (2), ⟨p1(M), [M ]⟩ = 3 so Â(M) = −1/8.

(2) If M = S4, p1(M) = 0 so Â(M) = 0.

4.2. Dirac operators.

4.2.1. Definition. Let M a Riemannian manifold with Clifford bundle Cℓ(M) and let S → M
a Euclidean vector bundle of Cℓ(M)-modules (ie. the fibers Sx are Cℓ(M)x-modules) with a
Riemannian connection ∇. Then the map ∆ : Γ(S) → Γ(S) given by:

∆(σ) =

n∑
i=1

ei ×∇eiσ

is called the Dirac operator of S, where × denotes Clifford multiplication.

4.2.2. Definition. Let M be a spin manifold and S any spinor bundle associated to TM . Then S
is a Cℓ(M)-module bundle with a canonical connection induced by the Levi-Civita connection on
TM . The Dirac operator in this case is called the Atiyah-Singer operator. If S = ϖC we denote
this operator by /D.

4.2.3. Theorem (Lichnerowicz). LetM , /D as in definition 4.2.2 and let κ denote the scalar curvature
of M . Then:

/D
2
= ∇∗∇+

1

4
κ

4.2.4. Corollary. Let M, /D, κ as in theorem 4.3.2. If κ ≥ 0 and there exists p ∈ M with κ(p) > 0
then ker /D = 0.

Proof. Let σ ∈ ker( /D). By theorem 4.2.3 ∇∗∇σ + 1
4κσ = 0 so −∇∗∇σ = 1

4κσ hence g(14κσ, σ) =
−g(∇∗∇σ, σ). Equivalently:

1

4
κ||σ||2 = 1

4
κg(σ, σ) = −g(∇σ,∇σ) = −||∇σ||2

thus σ ≡ 0.
□

5. The (cohomological) Atiyah-Singer Index theorem.

5.1. The Atiyah-Singer Index theorem.

5.1.1. Theorem (Atiyah-Singer). Let M a compact oriented n manifold and E,F → M vector
bundles with an elliptic differential operator P : Γ(E) → Γ(F ). Let [σP ] ∈ K(M) denote the
K-theory class of the principal symbol of P . Then we have:

Index(P ) = (−1)
n(n+1)

2 ⟨π¡ch[σP ]Â(M)2, [M ]⟩
where π : TM → M is the canonical projection map.
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5.1.2. Theorem. Let M be a compact spin manifold of dimension n = 2k and /D the Atiyah-Singer
operator. Then:

Index( /D
+
) = Â(M)

Proof. Since π¡ch[σ /D
+ ] = (−1)kÂ

−1
, by theorem 5.1.1 we see:

Index( /D
+
) = (−1)k⟨(−1)kÂ

−1
Â

2
, [M ]⟩ = ⟨Â, [M ]⟩ = Â(M)

□

5.1.3. Corollary. If M is as in the previous theorem Â(M) is an integer.

5.1.4. Corollary. If M is a compact Riemannian spin manifold with positive scalar curvature then
Â(M) = 0.

Proof. By theorem 5.1.2, Â(M) = Index( /D
+
) = dim(ker( /D)) − dim(coker( /D

+
)) = dim(ker( /D)).

But by corollary 4.2.4 if κ > 0 then dim(kerD+) = 0 so Â(M)=0. □

5.2. Remark. If the dimension of M is not a multiple of 4 then Â(M) = 0, so the previous
corollary only gives a new obstruction to positive scalar curvature in the case n = 4k. But there
are plenty of non equivalent compact spin manifolds of dimension n = 4k, some with Â(M) = 0

and some with Â(M) ̸= 0.


