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1 Introduction.

The celebrated Riemann Mapping Theorem states that every nonempty simply connected strict
open subset U of C is conformally equivalent to ID. We call the biholomorphism ¢ : D — U
a Riemann mapping. Unfortunately however, it is not true in general that ¢ extends to a bi-
holomorphism % : D — U (where the bar is taken to mean the closure rather than the complex
conjugate). To this end, there is another celebrated result (of Carathéodory) that states ¢ is
extendable to S' = 0D if and only if U is locally connected. Then wee see that the issue of
local connectedness of certain subsets of C is of the utmost importance.

The interior of the Mandelbrot set M has been shown to be simply connected, hence (by the

Riemann Mapping theorem) is conformally equivalent to D, but it is an open problem whether
M is locally connected.

2 The Mandelbrot Set.

2.1 Definition.

For w € C we define f,,(z) = z2+w. From this we define a sequence w1 = f,,(0), w2 = fu(f(0)),
wy, = (fw o0 fuy)(0) where there are n terms in the composition. We then define the Man-
delbrot set M by:

M={weC : |w,| <C, CeR}

2.2 Basic Properties.

a) M is compact.

Proof. Suppose |w| > 4. We will show that w ¢ M. First we claim that |w,| > 3" uw|.
Proceeding by induction:

jwi| = Jw| = 3%w.

Now assume the claim holds for 1 < k <n. Then:



wni1| = [wh+w] > fwn* ~Jw] > (3" w])? ~[w| = [w| (37" |w| 1) 2 |w|(3*"7*-4~1) > 3"|w]

Then M C 4D hence M is bounded. Now suppose |w| < 4 but |wx| > 4 for some N. Then:

wns1| = [wiy +w| > [wy]? — w| > 4wy | -4

hence lim,, o |wy,| — 00. Thus we see that w € m if and only if |w,| never exceeds 4 (in
fact more is true, |wy| never exceeds 2, but we don’t need this fact here). Let C,, = {z € C :
|zn| < 4}. Then by what was shown above we have that:

wo A
n=1

Define a sequence of functions fi(w) = w, fo(w) = w? + 2, f,(w) = (fa—1(w))? + w. Then
we see that:

Cn = f;l([074])

so each C), is closed. Finally we conclude that since W is the intersection of closed sets it is
closed, hence M is compact.
O

b) (Douady and Hubbard) M is connected. We sketch a proof of this fact below.

Proof. Define ¢ : C \ M — C by:

pl(z) = lim (f2(w))="

n—o0

First note by the Bottcher-Fatou lemma, ¢ is analytic on ® \ M, hence it is an open map.
Moreover ¢ is proper (this follows immediately from the fact that the Green functions G.(z)
of the filled in Julia sets for f. are continuous). Then since ¢ is proper and open it is also closed.

Now we see that ¢ is surjective onto (AC\ﬁAbecause the interior of C \ M gets mapped to an
open subset of C\ D and the boundary of ¢(C \ D) coincides with the boundary of D.

But ¢ is also injective. This follows from applying the argument principle:

_ 1 (@)
k ! =— [ ————da.
e
Choosing 7 to contain all z with |z| < M, we see that since ¢~ !(00) = oo and k, is locally
constant it must be that in fact k, is identically 1 hence ¢ is injective.
Finally by Goursat’s theorem since ¢ is injective analytic and open o~ 1 is analytic. Then
we have found a biholomorphism of C\ M with C\ D so C\ M is simply connected in C hence
M is connected.



¢) M is "simply connected”. Simply connected is in quotation marks because simply con-
nected is only defined on spaces that are path connected, which is currently still an open question
for M. M is ”simply connected” in that it is full.

d) (Shishikura) OM has Hausdorff dimension 2.

2.3 The MLC (Mandelbrot local connectivity) conjecture.

M is locally connected.

2.4 Remark.

If the MLC were proved true, the theorem of Caratheodory would give us an extension of the
Riemann map ¢ : D — Int(M) to S', giving a conformal equivalence of M with D. Given the
fractal nature of M, this would be a very surprising result.

3 The Density of Hyperbolicity Conjecture.

3.1 Definitions.

Let ¢ : C — C be a rational function. We say w is a periodic point for @ with period n if
©"(w) = w (if n = 1 this is a fixed point). In this case we call {w, p(w), ..., " L (w)} a cycle.

If w is a periodic point for ¢ with period n, the multiplier of w is defined to be:

Mo = (") (w).

If [Ay| < 1 then we say w is attractive. If [Ajj,)| < 1 for all 1 < j < n, we call

{w, p(w), ..., " (w)} an attractive cycle.Finally we define:

H, ={w € C| f, has an attractive n-cycle}

3.2 Proposition.
1 A
Hi={w= 1(1 —re?) : r=2(1+cosh)}

Proof. 1f f,,(z) = 2% + w has a l-cycle (a fixed point), 22 + w = 2. Then:

1++v1—-4w
2

Let 1 — 4w = re? (r > 0, 0 € [0,27)). Equivalently w = (1 — re®). Then 2 =
1/2(14+/7e/2). If 2 is attractive then 1 > |f’ (2)| = [2(1/2(1£/re?/?)) = 1+/re?/2. Hence:

z =

0 0
1>](1+ \/;cos(g) +i rsin(g)\



ie:

1>(1+ \/Fcos(g))2 +rsin?(=) =1 i2\/;cos(2) +r

0
2
hence 0 < r < :t2\/77008(g). Thus r2 < 4r cos (g) 2r(1 4 cos(0)) so r < 2(1 + cos(d)) as
claimed.

3.3 Proposition.
1
Ho={weC : ]w+1\<1}

Proof. If f,, has a 2-cycle then:

fu(fuw(2)) = 2* + 2wz + w? +w = 2

SO:

A4owl+ 4wt +w=0

ie:

(22— z4+w)(Z2+z+w+1)=0.

But 22 — 2 + w = 0 means f,(z) = 2z so these form the l-cycles, so we conclude that
22+ z4+w+1=0. Now:

(fwo fu) (2) = 423 + 4wz = 42(2% + w) = 42fu(2)
and using that 22 +z+w +1 =0 we get f,(2) = 22 +w = —z — 1 hence:

(fwo fu) (2) = 42(—2 — 1) = ~4(z* +2) = 4(w + 1)

Finally if z is an attractive point:

1> |(fw o fu)(2)] = 4(w +1)]

so |lw+ 1| < 1/4 as claimed.



3.4 Definition.

We say that f,(2) is renormalizable if there exists an open U C C containing 0 and n € Z\ {0}
such that one connected component V' of f,"(U) is relatively compact in U, and f|y is
polynomial-like of degree 2, ie. for all z € U, #{(f2)];/*(2)} = 2, and:

{ze V| (fv)¥(z) € V for all k > 0}

is connected. In the case that f, ™|y is renormalizable, we say that f, twice or 2 times
renormalizable. Then it makes sense to define in the natural way what it means to be m-times
renormalizable. If f,, is m-times renormalizable for all m > 0 we say that f, is infinitely renor-
malizable, else it is finitely renormalizable.

These lead us to an important conjecture in Complex dynamics:

3.5 Density of Hyperbolicity Conjecture (DHC).

H={weC : f, has an attractive cycle}  is dense in M

3.6 Remark.

To this end, there are two key results. The first is by Douady and Hubbard from 1981-1982,
and the second complementary theorem is due to Yoccoz (1989):

3.7 Theorem.

If M is locally connected then H is dense in M.

3.8 Theorem.

M is locally connected at every w € M such that f,, is finitely renormalizable.



