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1. Preliminaries.

1.1. Definition. Let G be a Lie group. Two unitary representations ρ1 : G → u(H1), ρ2 : G →
u(H2) are unitary equivalent if there exists a unitary isomorphism T : H1 → H2 such that
T ◦ ρ1(g) = ρ2(g) ◦ T for all g ∈ G. That this is an equivalence relation allows us to define the

unitary dual Ĝ to be the set of equivalence classes of irreducible unitary representations of G.

1.2. Remark.

(1) If G is a Lie group and π : G → U(H) is an irreducible unitary representation then H is
necessarily separable.

(2) If G is a Lie group then L2(G) is separable (the measure on G being Haar measure).
(3) If H is separable with an at most countable orthonormal basis β, then H ∼= ℓ2(β) as Hilbert

spaces so any two separable Hilbert spaces of the same dimension are (unitarily) isomorphic.

From the above we see that if π : G → U(H) is an irreducible unitary representation of the Lie
group G there is no loss in generality in assuming H ⊆ L2(R).

Let G be a nilpotent Lie group and let Ad∗ : G → Aut(g∗) be the coadjoint representation. For
F ∈ g∗ let OF denote the orbit of F under the coadjoint action and let g∗/G be the space of orbits
endowed with the quotient topology.

1.3. Kirillov’s User Guide. Let G be a nilpotent Lie group. We highlight some important pieces

of Kirillov’s orbit method - a tool for identifying elements of Ĝ with coadjoint orbits.

(a) g∗/G ∼= Ĝ as topological spaces (the topology on Ĝ under consideration here will be a black
box).

(b) The character of πF is given by:

⟨χ, φ⟩ =
∫
F
φ∗Feω

(c) For A ∈ Z(g) (the center of U(g)), let PA ∈ Sym(g∗) be the G-invariant polynomial on g∗

corresponding to A under the Harish-Chandra homomorphism. Then for OF ∈ g∗/G, the
infinitesimal character of πF on A is given by PA(F ).

(d) For OF ∈ g∗/G, πF and π−F are dual representations.

(e) The Plancherel measure µ on Ĝ is given by the decompostion of Lebesgue measure on g∗

canonically on the coadjoint orbits.

1.4. The Correspondence. If G is a Lie group, H ≤ G a closed subgroup and ρ : H → U(1)
a 1-dimension unitary representation of H then there exists an irreducible unitary representation
ρ′ of G called the induced representation of ρ. To construct ρ′ we let M = H/G denote the

coset space, let L = |ΛM |
1
2 be the 1

2 -density line bundle over M and define H = L2(|ΛM |
1
2 ) (the

L2-sections of L). Next we let (U, (x1, ..., xn)) be a coordinate chart covering a sufficient amount
of M (sufficient for the purpose of integration) and let s : U → G be a section of G → M so we
may identify G ∼= U ×H and define a function hs : U ×G → H by the master equation:

s(m)g = hs(m, g)s(y) (∗)
1
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where y = mg. Since m ∈ M = H/G, m = Hg1 and so y = mg = Hg1g. For Haar measures
µG, µH on G,H, in the identification G ∼= U ×H we have:

dµG(x, h) = r(x)dµH(h)dx(x)

for some r ∈ C∞(U). With this we define a measure µs = r(x)∆G(s(x))dx(x) on U where
∆ is the Haar modulus. In U , a 1

2 -density ω can be written ω = f(x)
√
dx1 ∧ · · · ∧ dxn for some

f ∈ L2(U, µs) giving an identification H ∼= L2(U, µs) and so we (finally) define the representation
ρ′ : G → L2(U, dµs) by:

[ρ′(g)f ](m) =

(
∆H(hs(m, g))

∆G(hs(m, g))

)
ρ(hs(m, g))f(mg)

In particular if G is unimodular we have:

[ρ′(g)f ](m) = ρ(hs(x, g))f(mg)

To give the correspondence between g∗/G and Ĝ let ΩF ⊆ g∗ be a coadjoint orbit and let
hF ⊆ g be a maximal subalgebra satisfying F |[h,h] = 0. We define a 1-dimensional unitary rep-
resentation πF,H : h → u(1) by πF,H(X) = ⟨F,X⟩ (that this is a representation of h is equiv-
alent to the condition F |[h,h] = 0) and exponentiate to get a 1-dimensional unitary representa-

tion ρF,H(exp(X)) = e2πi⟨F,X⟩ (by a theorem of Chevalley there exists a unique closed connected
ι : H → G such that dιe(H) = h and moreover H is generated by exp(h)). With this in hand the

correspondence g∗/G ∼= Ĝ is given by:

ΩF 7→ ρ′F,H

2. A worked example.

We consider the Heisenberg group H given by:

H = {

1 x z
0 1 y
0 0 1

 , x, y, z ∈ R}

with Lie algebra:

h = {

0 x z
0 0 y
0 0 0

 , x, y, z ∈ R}

having as a basis:

{X =

0 1 0
0 0 0
0 0 0

 , Y =

0 0 0
0 0 1
0 0 0

 , Z =

0 0 1
0 0 0
0 0 0

}

and bracket relations:

[X,Y ] = Z, [X,Z] = [Y, Z] = 0

We also note here that:

Z(H) = exp(zZ) =

1 0 z
0 1 0
0 0 1

 , H/Z(H) ∼= {

1 x ∗
0 1 y
0 0 1

 , x, y ∈ R}

and since:
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1 x ∗
0 1 y
0 0 1

1 a ∗
0 1 b
0 0 1

 =

1 x+ a ∗
0 1 y + b
0 0 1


we see H/Z(H) ∼= R2.

2.1. Representations of H.. Let π : H → U(L2(R)) be a complex irreducible unitary representa-
tion. For any complex irreducible representation it is a consequence of Schur’s lemma that elements
of the center act by scalar multiplication so π(exp(zZ)) : L2(R) → L2(R) is given by f 7→ e2πizλf
for some λ ∈ R.

(1) If λ ̸= 0 it is a consequence of the Stone-von Neumann theorem that there exists a unique
representation ρλ on L2(R) given by:

ρλ(

1 x z
0 1 y
0 0 1

)(f)(s) = e2πi(sy+λz)f(s+ λx)

that is unitarily equivalent to π.
(2) If λ = 0 then π|Z(H) is the trivial representation so π is equivalent to the induced represen-

tation π̃ on H/Z(H) ∼= R2. Since H/Z(H) is abelian we get (by Schur’s lemma) that π̃ is
1-dimensional so there exists (α, β) such that:

π(

1 x ∗
0 1 y
0 0 1

) = e2πixαe2πiyβ = e2πi(xα+yβ)

In conclusion we see there are two families of unitary equivalence classes of representations of H
- the 1-dimensional representations ρα,β each corresponding to a pair (α, β) ∈ R2, and the infinite
dimensional representations ρλ corresponding to some λ ̸= 0 so:

Ĥ ∼= R2 ⊔ (R \ {0})
for an appropriate choice of ∼=.

2.2. Orbits. We recall the explicit determination of the coadjoint action of H from lecture. Let
{X∗, Y ∗, Z∗} denote the dual basis to {X,Y, Z}. There is an identification of h∗ with matrices of
the form: ∗ ∗ ∗

x ∗ ∗
z y ∗


via the map p : g∗ → gl(3,R):

X∗ 7→

∗ ∗ ∗
1 ∗ ∗
0 0 ∗

 , Y ∗ 7→

∗ ∗ ∗
0 ∗ ∗
0 1 ∗

 , Z∗ 7→

∗ ∗ ∗
0 ∗ ∗
1 0 ∗


using:

⟨F,X⟩ = Tr(ρ(F )X) (∗)
since:
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Tr(

∗ ∗ ∗
x ∗ ∗
z y ∗

0 a c
0 0 b
0 0 0

) = ax+ by + cz

We use stars rather than zeroes in the matrix entries as this is really the quotient gl(3,R)/U
where U are the upper triangular matrices. Checking the coadjoint action using (∗) we see:

⟨Ad∗g(F ), X⟩ = ⟨F,Adg−1X⟩ = ⟨F, g−1Xg⟩ = Tr(ρ(F )g−1Xg)

= Tr(Xgρ(F )g−1)

= Tr(gρ(F )g−1X)

= Tr(Adg(ρ(F ))X)

so under the given identification we see that the coadjoint action becomes the adjoint action on
matrices. So we compute the action:

1 a c
0 1 b
0 0 0

∗ ∗ ∗
x ∗ ∗
z y ∗

1 a c
0 1 b
0 0 0

−1

=

1 a c
0 1 b
0 0 0

∗ ∗ ∗
x ∗ ∗
z y ∗

1 −a ab− c
0 1 −b
0 0 0

−1

=

 ∗ ∗ ∗
x+ bz ∗ ∗

z y − az ∗


so in these coordinates the orbit of F = (x, y, z) ∈ g∗ is given by:

ΩF = {(x+ bz, y − az, z), a, b ∈ R}
If z ̸= 0 then ΩF is the affine plane at height z, and if z = 0 then ΩF is the single point (x, y, 0).

In conclusion we see there are two families of orbits - the affine planes corresponding to z ̸= 0, and
the points (x, y, 0) corresponding to a pair (x, y) ∈ R2 so:

g/G ∼= R2 ⊔ (R \ {0})
as topological spaces.

2.3. The correspondence. Now let ΩF ⊂ g∗ be a 2-dimensional orbit and first consider the
case F = (0, 0, 1). Since ⟨F,Z⟩ = 1 and [X,Y ] = Z we choose hF = span{Y,Z}. Then since
M = H/HF

∼= R we let s : M → H be the section s(x) = exp(xX) allowing us to identify
H ∼= M ×H = H/HF ×HF . Then we compute hs from (∗):1 x 0

0 1 0
0 0 1

1 a c
0 1 b
0 0 1

 =

1 0 γ
0 1 β
0 0 1

1 y 0
0 1 0
0 0 1

 =

1 y γ
0 1 β
0 0 1


so β = b, γ = c+ bx and y = x+ a. Since H is unimodular we then have:

[ρ′F,H(g)f ](x) = ρF,H(hs(x, g))f(y) = e2πi⟨F,(c+bx)Z⟩f(x+ a) = e2πi(c+bx)f(x+ a)

= ρ1

from 2.1 choosing λ = 1. The case of arbitrary (x, y, z) with z ̸= 0 follows from an investigation
of the dependence of the induced representation on the choice of coset representative of ΩF and
subalgebra hF .
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Now let ΩF be the 0-dimension orbit of F = (x, y, 0). Then hF = g so the induced representation
of ρF,H on G is simply ρF,H itself (there is nothing to “induce”). More specifically, ρ′F,H = ρF,H is
the 1-dimensional representation on G:

ρ′F,H(exp(v)) = e2πi⟨F,v⟩ = e2πi = e2πi(xv1+yv2)

= exp2πixv1 exp2πiyv2

= ρx,y

where v = (v1, v2, v3) ∈ g.



6 MATT KOSTER

References

[1] Alexandre Kirillov, Lectures on the Orbit Method. American Mathematical Society, 2004.


