KIRILLOV'S ORBIT METHOD

MATT KOSTER

1. Preliminaries.

1.1. **Definition.** Let G be a Lie group. Two unitary representations $\rho_1 : G \to u(\mathcal{H}_1), \rho_2 : G \to u(\mathcal{H}_2)$ are **unitary equivalent** if there exists a unitary isomorphism $T : \mathcal{H}_1 \to \mathcal{H}_2$ such that $T \circ \rho_1(g) = \rho_2(g) \circ T$ for all $g \in G$. That this is an equivalence relation allows us to define the **unitary dual** \widehat{G} to be the set of equivalence classes of irreducible unitary representations of G.

1.2. Remark.

- (1) If G is a Lie group and $\pi : G \to U(\mathcal{H})$ is an irreducible unitary representation then \mathcal{H} is necessarily separable.
- (2) If G is a Lie group then $L^2(G)$ is separable (the measure on G being Haar measure).
- (3) If \mathcal{H} is separable with an at most countable orthonormal basis β , then $\mathcal{H} \cong \ell^2(\beta)$ as Hilbert spaces so any two separable Hilbert spaces of the same dimension are (unitarily) isomorphic.

From the above we see that if $\pi : G \to U(\mathcal{H})$ is an irreducible unitary representation of the Lie group G there is no loss in generality in assuming $\mathcal{H} \subseteq L^2(\mathbb{R})$.

Let G be a nilpotent Lie group and let $\operatorname{Ad}^* : G \to \operatorname{Aut}(\mathfrak{g}^*)$ be the coadjoint representation. For $F \in \mathfrak{g}^*$ let \mathcal{O}_F denote the orbit of F under the coadjoint action and let \mathfrak{g}^*/G be the space of orbits endowed with the quotient topology.

1.3. Kirillov's User Guide. Let G be a nilpotent Lie group. We highlight some important pieces of Kirillov's *orbit method* - a tool for identifying elements of \widehat{G} with coadjoint orbits.

- (a) $\mathfrak{g}^*/G \cong \widehat{G}$ as topological spaces (the topology on \widehat{G} under consideration here will be a black box).
- (b) The character of π_F is given by:

$$\langle \chi, \varphi \rangle = \int_F \varphi^* F e^\omega$$

- (c) For $A \in Z(\mathfrak{g})$ (the center of $U(\mathfrak{g})$), let $P_A \in \text{Sym}(\mathfrak{g}^*)$ be the *G*-invariant polynomial on \mathfrak{g}^* corresponding to *A* under the Harish-Chandra homomorphism. Then for $\mathcal{O}_F \in \mathfrak{g}^*/G$, the infinitesimal character of π_F on *A* is given by $P_A(F)$.
- (d) For $\mathcal{O}_F \in \mathfrak{g}^*/G$, π_F and π_{-F} are dual representations.
- (e) The Plancherel measure μ on \widehat{G} is given by the decomposition of Lebesgue measure on \mathfrak{g}^* canonically on the coadjoint orbits.

1.4. The Correspondence. If G is a Lie group, $H \leq G$ a closed subgroup and $\rho : H \to U(1)$ a 1-dimension unitary representation of H then there exists an irreducible unitary representation ρ' of G called the **induced representation of** ρ . To construct ρ' we let M = H/G denote the coset space, let $L = |\Lambda_M|^{\frac{1}{2}}$ be the $\frac{1}{2}$ -density line bundle over M and define $\mathcal{H} = L^2(|\Lambda_M|^{\frac{1}{2}})$ (the L^2 -sections of L). Next we let $(U, (x_1, ..., x_n))$ be a coordinate chart covering a sufficient amount of M (sufficient for the purpose of integration) and let $s : U \to G$ be a section of $G \to M$ so we may identify $G \cong U \times H$ and define a function $h_s : U \times G \to H$ by the master equation:

$$s(m)g = h_s(m,g)s(y) \quad (*)$$

where y = mg. Since $m \in M = H/G$, $m = Hg_1$ and so $y = mg = Hg_1g$. For Haar measures μ_G, μ_H on G, H, in the identification $G \cong U \times H$ we have:

$$d\mu_G(x,h) = r(x)d\mu_H(h)dx(x)$$

for some $r \in C^{\infty}(U)$. With this we define a measure $\mu_s = r(x)\Delta_G(s(x))dx(x)$ on U where Δ is the Haar modulus. In U, a $\frac{1}{2}$ -density ω can be written $\omega = f(x)\sqrt{dx_1 \wedge \cdots \wedge dx_n}$ for some $f \in L^2(U, \mu_s)$ giving an identification $\mathcal{H} \cong L^2(U, \mu_s)$ and so we (finally) define the representation $\rho' : G \to L^2(U, d\mu_s)$ by:

$$[\rho'(g)f](m) = \left(\frac{\Delta_H(h_s(m,g))}{\Delta_G(h_s(m,g))}\right)\rho(h_s(m,g))f(mg)$$

In particular if G is unimodular we have:

$$[\rho'(g)f](m) = \rho(h_s(x,g))f(mg)$$

To give the correspondence between \mathfrak{g}^*/G and \widehat{G} let $\Omega_F \subseteq \mathfrak{g}^*$ be a coadjoint orbit and let $\mathfrak{h}_F \subseteq \mathfrak{g}$ be a maximal subalgebra satisfying $F|_{[\mathfrak{h},\mathfrak{h}]} = 0$. We define a 1-dimensional unitary representation $\pi_{F,H} : \mathfrak{h} \to \mathfrak{u}(1)$ by $\pi_{F,H}(X) = \langle F, X \rangle$ (that this is a representation of \mathfrak{h} is equivalent to the condition $F|_{[\mathfrak{h},\mathfrak{h}]} = 0$) and exponentiate to get a 1-dimensional unitary representation $\rho_{F,H}(\exp(X)) = e^{2\pi i \langle F, X \rangle}$ (by a theorem of Chevalley there exists a unique closed connected $\iota : H \to G$ such that $d\iota_e(H) = \mathfrak{h}$ and moreover H is generated by $\exp(\mathfrak{h})$). With this in hand the correspondence $\mathfrak{g}^*/G \cong \widehat{G}$ is given by:

$$\Omega_F \mapsto \rho'_{F,H}$$

2. A WORKED EXAMPLE.

We consider the Heisenberg group H given by:

$$H = \{ \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix}, \ x, y, z \in \mathbb{R} \}$$

with Lie algebra:

$$\mathfrak{h} = \{ \begin{pmatrix} 0 & x & z \\ 0 & 0 & y \\ 0 & 0 & 0 \end{pmatrix}, x, y, z \in \mathbb{R} \}$$

having as a basis:

$$\{X = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, Y = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, Z = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}\}$$

and bracket relations:

$$[X,Y]=Z, \quad [X,Z]=[Y,Z]=0$$

We also note here that:

$$Z(H) = \exp(zZ) = \begin{pmatrix} 1 & 0 & z \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad H/Z(H) \cong \{ \begin{pmatrix} 1 & x & * \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix}, \ x, y \in \mathbb{R} \}$$

and since:

$$\begin{pmatrix} 1 & x & * \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & a & * \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & x+a & * \\ 0 & 1 & y+b \\ 0 & 0 & 1 \end{pmatrix}$$

we see $H/Z(H) \cong \mathbb{R}^2$.

2.1. Representations of H.. Let $\pi : H \to U(L^2(\mathbb{R}))$ be a complex irreducible unitary representation. For any complex irreducible representation it is a consequence of Schur's lemma that elements of the center act by scalar multiplication so $\pi(\exp(zZ)) : L^2(\mathbb{R}) \to L^2(\mathbb{R})$ is given by $f \mapsto e^{2\pi i z \lambda} f$ for some $\lambda \in \mathbb{R}$.

(1) If $\lambda \neq 0$ it is a consequence of the Stone-von Neumann theorem that there exists a unique representation ρ_{λ} on $L^2(\mathbb{R})$ given by:

$$\rho_{\lambda} \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} (f)(s) = e^{2\pi i (sy+\lambda z)} f(s+\lambda x)$$

that is unitarily equivalent to π .

(2) If $\lambda = 0$ then $\pi|_{Z(H)}$ is the trivial representation so π is equivalent to the induced representation $\tilde{\pi}$ on $H/Z(H) \cong \mathbb{R}^2$. Since H/Z(H) is abelian we get (by Schur's lemma) that $\tilde{\pi}$ is 1-dimensional so there exists (α, β) such that:

$$\pi\begin{pmatrix} 1 & x & * \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix}) = e^{2\pi i x \alpha} e^{2\pi i y \beta} = e^{2\pi i (x\alpha + y\beta)}$$

In conclusion we see there are two families of unitary equivalence classes of representations of H- the 1-dimensional representations $\rho_{\alpha,\beta}$ each corresponding to a pair $(\alpha,\beta) \in \mathbb{R}^2$, and the infinite dimensional representations ρ_{λ} corresponding to some $\lambda \neq 0$ so:

$$\widehat{H} \cong \mathbb{R}^2 \sqcup (\mathbb{R} \setminus \{0\})$$

for an appropriate choice of \cong .

2.2. **Orbits.** We recall the explicit determination of the coadjoint action of H from lecture. Let $\{X^*, Y^*, Z^*\}$ denote the dual basis to $\{X, Y, Z\}$. There is an identification of \mathfrak{h}^* with matrices of the form:

$$\begin{pmatrix} * & * & * \\ x & * & * \\ z & y & * \end{pmatrix}$$

via the map $p: \mathfrak{g}^* \to \mathfrak{gl}(3, \mathbb{R})$:

$$X^* \mapsto \begin{pmatrix} * & * & * \\ 1 & * & * \\ 0 & 0 & * \end{pmatrix}, \quad Y^* \mapsto \begin{pmatrix} * & * & * \\ 0 & * & * \\ 0 & 1 & * \end{pmatrix}, \quad Z^* \mapsto \begin{pmatrix} * & * & * \\ 0 & * & * \\ 1 & 0 & * \end{pmatrix}$$

using:

$$\langle F, X \rangle = \operatorname{Tr}(\rho(F)X) \quad (*)$$

since:

$$\operatorname{Tr}\left(\begin{pmatrix} * & * & * \\ x & * & * \\ z & y & * \end{pmatrix} \begin{pmatrix} 0 & a & c \\ 0 & 0 & b \\ 0 & 0 & 0 \end{pmatrix} \right) = ax + by + cz$$

We use stars rather than zeroes in the matrix entries as this is really the quotient $\mathfrak{gl}(3,\mathbb{R})/U$ where U are the upper triangular matrices. Checking the coadjoint action using (*) we see:

$$\langle Ad_g^*(F), X \rangle = \langle F, Ad_{g^{-1}}X \rangle = \langle F, g^{-1}Xg \rangle = \operatorname{Tr}(\rho(F)g^{-1}Xg)$$
$$= \operatorname{Tr}(Xg\rho(F)g^{-1})$$
$$= \operatorname{Tr}(g\rho(F)g^{-1}X)$$
$$= \operatorname{Tr}(\operatorname{Ad}_g(\rho(F))X)$$

so under the given identification we see that the coadjoint action becomes the adjoint action on matrices. So we compute the action:

$$\begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} * & * & * \\ x & * & * \\ z & y & * \end{pmatrix} \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 0 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} * & * & * \\ x & * & * \\ z & y & * \end{pmatrix} \begin{pmatrix} 1 & -a & ab - c \\ 0 & 1 & -b \\ 0 & 0 & 0 \end{pmatrix}^{-1}$$
$$= \begin{pmatrix} * & * & * \\ x + bz & * & * \\ z & y - az & * \end{pmatrix}$$

so in these coordinates the orbit of $F = (x, y, z) \in \mathfrak{g}^*$ is given by:

$$\Omega_F = \{ (x + bz, y - az, z), \ a, b \in \mathbb{R} \}$$

If $z \neq 0$ then Ω_F is the affine plane at height z, and if z = 0 then Ω_F is the single point (x, y, 0). In conclusion we see there are two families of orbits - the affine planes corresponding to $z \neq 0$, and the points (x, y, 0) corresponding to a pair $(x, y) \in \mathbb{R}^2$ so:

$$\mathfrak{g}/G \cong \mathbb{R}^2 \sqcup (\mathbb{R} \setminus \{0\})$$

as topological spaces.

2.3. The correspondence. Now let $\Omega_F \subset \mathfrak{g}^*$ be a 2-dimensional orbit and first consider the case F = (0,0,1). Since $\langle F, Z \rangle = 1$ and [X,Y] = Z we choose $\mathfrak{h}_F = \operatorname{span}\{Y,Z\}$. Then since $M = H/H_F \cong \mathbb{R}$ we let $s : M \to H$ be the section $s(x) = \exp(xX)$ allowing us to identify $H \cong M \times H = H/H_F \times H_F$. Then we compute h_s from (*):

$$\begin{pmatrix} 1 & x & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & \gamma \\ 0 & 1 & \beta \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & y & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & y & \gamma \\ 0 & 1 & \beta \\ 0 & 0 & 1 \end{pmatrix}$$

so $\beta = b$, $\gamma = c + bx$ and y = x + a. Since H is unimodular we then have:

$$[\rho'_{F,H}(g)f](x) = \rho_{F,H}(h_s(x,g))f(y) = e^{2\pi i \langle F, (c+bx)Z \rangle} f(x+a) = e^{2\pi i (c+bx)} f(x+a)$$

= ρ_1

from 2.1 choosing $\lambda = 1$. The case of arbitrary (x, y, z) with $z \neq 0$ follows from an investigation of the dependence of the induced representation on the choice of coset representative of Ω_F and subalgebra \mathfrak{h}_F . Now let Ω_F be the 0-dimension orbit of F = (x, y, 0). Then $\mathfrak{h}_F = \mathfrak{g}$ so the induced representation of $\rho_{F,H}$ on G is simply $\rho_{F,H}$ itself (there is nothing to "induce"). More specifically, $\rho'_{F,H} = \rho_{F,H}$ is the 1-dimensional representation on G:

$$\rho'_{F,H}(\exp(v)) = e^{2\pi i \langle F, v \rangle} = e^{2\pi i} = e^{2\pi i (xv_1 + yv_2)}$$

= $\exp^{2\pi i xv_1} \exp^{2\pi i yv_2}$
= $\rho_{x,y}$

where $v = (v_1, v_2, v_3) \in \mathfrak{g}$.

MATT KOSTER

References

[1] Alexandre Kirillov, Lectures on the Orbit Method. American Mathematical Society, 2004.