KIRILLOV’S ORBIT METHOD

MATT KOSTER

1. PRELIMINARIES.

1.1. Definition. Let G be a Lie group. Two unitary representations p; : G — u(H1), p2 : G —
u(H2) are unitary equivalent if there exists a unitary isomorphism 7' : H; — Hs such that
T opi(g) = p2(g) o T for all g € G. That this is an equivalence relation allows us to define the

~

unitary dual G to be the set of equivalence classes of irreducible unitary representations of G.

1.2. Remark.

(1) If G is a Lie group and 7w : G — U(H) is an irreducible unitary representation then H is
necessarily separable.

(2) If G is a Lie group then L?(G) is separable (the measure on G being Haar measure).

(3) If H is separable with an at most countable orthonormal basis 3, then H = ¢2(3) as Hilbert
spaces so any two separable Hilbert spaces of the same dimension are (unitarily) isomorphic.

From the above we see that if 7 : G — U(H) is an irreducible unitary representation of the Lie
group G there is no loss in generality in assuming H C L?(R).

Let G be a nilpotent Lie group and let Ad* : G — Aut(g*) be the coadjoint representation. For
F € g* let Op denote the orbit of F' under the coadjoint action and let g*/G be the space of orbits
endowed with the quotient topology.

1.3. Kirillov’s User Guide. Let G be a nilpotent Lie group. We highlight some important pieces
of Kirillov’s orbit method - a tool for identifying elements of G with coadjoint orbits.

(a) g*/G = G as topological spaces (the topology on G under consideration here will be a black
box).
(b) The character of 7w is given by:
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(c) For A € Z(g) (the center of U(g)), let P4 € Sym(g*) be the G-invariant polynomial on g*
corresponding to A under the Harish-Chandra homomorphism. Then for Op € g*/G, the
infinitesimal character of 7 on A is given by P4(F).

(d) For Of € g*/G, mr and m_p are dual representations.

(e) The Plancherel measure p on G is given by the decompostion of Lebesgue measure on g*
canonically on the coadjoint orbits.

1.4. The Correspondence. If G is a Lie group, H < G a closed subgroup and p : H — U(1)
a 1-dimension unitary representation of H then there exists an irreducible unitary representation
p' of G called the induced representation of p. To construct p’ we let M = H/G denote the

coset space, let L = ]AM\% be the i-density line bundle over M and define H = L2(]AM]%) (the
L?-sections of L). Next we let (U, (z1,...,x,)) be a coordinate chart covering a sufficient amount
of M (sufficient for the purpose of integration) and let s : U — G be a section of G — M so we

may identify G =2 U x H and define a function hs : U x G — H by the master equation:

s(m)g = hs(m, g)s(y) (%)
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where y = mg. Since m € M = H/G, m = Hgy and so y = mg = Hgig. For Haar measures
ua, i on G, H, in the identification G = U x H we have:

duici(, h) = r(2)dpp () da(z)
for some r € C*>(U). With this we define a measure s = r(z)Ag(s(x))dz(zr) on U where
A is the Haar modulus. In U, a %—density w can be written w = f(x)y/dz1 A -+ Adz, for some

f € L*(U, us) giving an identification H = L?(U, us) and so we (finally) define the representation
o G — L*(U,dus) by:

[/ (9) fl(m) = (m

In particular if G is unimodular we have:

> p(hs(m, g)) f(mg)

[0'(9)£1(m) = p(hs(z, 9)) f (mg)

To give the correspondence between g*/G and G let Qp C g* be a coadjoint orbit and let
hr C g be a maximal subalgebra satisfying F' |[h7h] = 0. We define a 1-dimensional unitary rep-
resentation 7y : h — u(l) by mpg(X) = (F,X) (that this is a representation of b is equiv-
alent to the condition F[j s = 0) and exponentiate to get a 1-dimensional unitary representa-
tion pr g (exp(X)) = e>™FHX) (by a theorem of Chevalley there exists a unique closed connected
t: H — G such that di.(H) = bh and moreover H is generated by exp(fh)). With this in hand the

~

correspondence g*/G = G is given by:

/
QF — PFrH
2. A WORKED EXAMPLE.

We consider the Heisenberg group H given by:

1 » =z
0 0 1
with Lie algebra:
0 = =z
hb={[0 0 y|,z,y,z € R}
0 0 O
having as a basis:
010 0 00 0 01
{X=10 0 0),Y=|(0 0 1|, Z=(0 0 0]}
0 00 0 00 0 00
and bracket relations:
X,)Y]=2 [X,Z]=[Y,Z]=0
We also note here that:
1 0 =z 1 = =
Z(H)=exp(zZ)=10 1 0|, H/Z(H)={|0 1 y], z,yeR}
0 01 0 0 1

and since:
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1 =z = 1 a =« 1 z+a *
0 1 y 01 bl=1|0 1 y+b
0 0 1 0 0 1 0 0 1

we see H/Z(H) = R2.

2.1. Representations of H.. Let 7 : H — U(L*(R)) be a complex irreducible unitary representa-
tion. For any complex irreducible representation it is a consequence of Schur’s lemma that elements
of the center act by scalar multiplication so m(exp(z22)) : L2(R) — L%(R) is given by f ~ e2™#A f
for some A\ € R.

(1) If X # 0 it is a consequence of the Stone-von Neumann theorem that there exists a unique
representation py on L?(R) given by:
1 =z 2 ‘
([0 1y ] )()(s) = 2D (s 4 A
0 0 1

that is unitarily equivalent to 7.

(2) If A =0 then =| z(#) 1s the trivial representation so 7 is equivalent to the induced represen-
tation @ on H/Z(H) = R2. Since H/Z(H) is abelian we get (by Schur’s lemma) that 7 is
1-dimensional so there exists («, ) such that:

1 x =

71'( 0 1 y ) _ e?mjxae%riyﬁ _ e?ﬂ'i(acoc—‘ryﬂ)

0 0 1
In conclusion we see there are two families of unitary equivalence classes of representations of H

- the 1-dimensional representations p, g each corresponding to a pair (o, ) € R?, and the infinite
dimensional representations p) corresponding to some A # 0 so:

H=R*U(R\{0})

for an appropriate choice of 2.

2.2. Orbits. We recall the explicit determination of the coadjoint action of H from lecture. Let
{X*,Y*, Z*} denote the dual basis to {X,Y, Z}. There is an identification of h* with matrices of
the form:

* ok ok
* %
z oy *
via the map p: g* — gl(3,R):
ko ok X% * * ok
X*—= 11 % x|, Y'— [0 , ZF—= |0 x
0 0 = 01 10

using:

since:
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* ok % 0 a ¢
Tr(|z * x 0 0 b|)=ar+by+cz
z Yy * 0 0 0

We use stars rather than zeroes in the matrix entries as this is really the quotient gl(3,R)/U
where U are the upper triangular matrices. Checking the coadjoint action using (*) we see:

(Ady(F),X) = (F, Ady- X) = (F,g7' Xg) = Tr(p(F)g ' Xg)
Xgp(F)g™!
gp(F)g~'X)
= Tr(Ady(p(F))X)

so under the given identification we see that the coadjoint action becomes the adjoint action on
matrices. So we compute the action:

:Tr(
:Tr(

-1

1 a c * ok 1 a ¢ 1 a c * % 1 —a ab—-c
0 1 b T % 01 b =[0 1 b T x 0 1 —b
0 0 O z vy 0 0 O 0 0 O z 0 0 0

so in these coordinates the orbit of F' = (z,y,2) € g* is given by:

Qp ={(x+bz,y —az,z), a,b e R}
If z # 0 then Qp is the affine plane at height z, and if z = 0 then Q is the single point (z,y,0).
In conclusion we see there are two families of orbits - the affine planes corresponding to z # 0, and
the points (x,,0) corresponding to a pair (z,y) € R? so:

/G =R*U(R\ {0})

as topological spaces.

2.3. The correspondence. Now let Qr C g* be a 2-dimensional orbit and first consider the
case F' = (0,0,1). Since (F,Z) = 1 and [X,Y] = Z we choose hr = span{Y,Z}. Then since
M = H/Hp = R we let s : M — H be the section s(x) = exp(zX) allowing us to identify
H=>=M x H=H/Hp x Hp. Then we compute hg from (x):

1 =z 0 1 a c 1 0 v 1 y O 1 vy v

010 01 bvl=(012 01 0)]=(01 23

0 0 1 0 0 1 0 0 1 0 01 0 0 1
so B =b,v=c+ bx and y = x 4+ a. Since H is unimodular we then have:

P (9)f1(2) = pr (hs(z, 9)) f(y) = 2 ETIND (0 4 q) = 2T f (g 4 q)
=p1

from 2.1 choosing A = 1. The case of arbitrary (x,y, z) with z # 0 follows from an investigation
of the dependence of the induced representation on the choice of coset representative of Qp and
subalgebra hp.
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Now let QF be the 0-dimension orbit of F' = (z,y,0). Then hr = g so the induced representation
of ppg on G is simply pr g itself (there is nothing to “induce”). More specifically, p’F’ = PF.H is
the 1-dimensional representation on G:

_ 627ri(F,11) 2mi 627ri(a:v1+yv2)

Pr 1 (exp(v)) =e

— eXp2mxv1 exp27rzyv2
= Pzy

where v = (v1,v2,v3) € g.
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