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1. Introduction.

1.1. Riemannian Manifolds. Let (M, g) be a Riemannian manifold of dimension n. Since g is
a symmetric (0, 2) tensor (ie. g is a smooth section of Sym2

+T
∗M over M), we can write it in a

coordinate chart (U, x) as:

g = gij(x1, ..., xn)dx
idxj

where i) here (and everywhere) we are using Einstein’s summation convention and ii) for brevity
we drop the ⊗ when it is not necessary. Adding a dependence on a new parameter t (often referred
to as ’time’) to our metric g, we get a family of Riemannian metrics gt on M that we can write in
local coordinates as:

gt = gij(x1, ..., xn, t)dx
idxj

ie. g is a smooth section of Sym2
+T

∗M seen as a vector bundle overM× [0,∞) now as opposed to
M . Each metric gt on M gives rise to a preferred torsion free connection ∇ that is compatible with
the metric (the Levi-Civita connection) which is then used to define the (1, 3) curvature tensor:

Rt(X,Y, Z) = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z.

From this we can define the Ricci curvature tensor. For p ∈M let {e1, ..., en} be an orthonormal
(with respect to gt) basis of TpM , and define the (symmetric (0, 2)) Ricci tensor by:

Rictp(v, w) =
n∑

i=1

gt(Rt(ei, w)v, ei)

and we say that (M, g) is Einstein with Einstein constant λ when Ricp(v, w) = λg(v, w) for all
p ∈M , v, w ∈ TpM .

1.2. Vector Calculus on Riemannian Manifolds. Given a smooth function f : Rn → R, the
gradient of f , denoted ∇f , is often defined to be the vector field whose components are the first
partial derivatives of f :

∇f =


∂f
∂x1

.

.
∂f
∂xn


Because general smooth manifolds do not possess global coordinate frames (such as ∂

∂xi
on Rn)

this particular definition does not lend itself well to a coordinate free generalization onM . However,
with a simple change of perspective we note that:

Df = (
∂f

∂x1
, ...,

∂f

∂xn
) = (∇f)t

1
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thus ⟨∇f, v⟩ = Df(v). We see then that we could define ∇f to be the vector field on Rn such that
⟨∇f, v⟩ = Df(v) for all v. This definition is coordinate independent although it involves a choice
of inner product. The setting of Riemannian geometry is then sufficient to define the gradient of
f ∈ C∞(M).

1.2.1. Definition. If (M, g) is a Riemannian manifold and f ∈ C∞(M) we define the gradient of f
to be the vector field ∇f ∈ Γ(TM) such that g(∇f, v) = df(v).

The next step after defining the gradient of a smooth function is to then look at second derivatives
- the Hessian. As was the case with the gradient, the classical Rn definition of the Hessian as ”the
matrix of second order partial derivatives” is not well suited to generalization to smooth manifolds.
But notice that 1) for any smooth (in fact C2 is sufficient) function f ∈ C∞(Rn), the second
order partials commute so classical Rn Hessian matrix is symmetri and 2) each entry (cij) of the

Hessian matrix corresponds to the choice of a pair of partial derivatives - cij = ∂f2

∂xi∂xj
. But a

symmetric matrix whose (i, j) entry corresponds to the choice of some pair of basis vectors is
exactly a symmetric bilinear form. Then to define the Hessian of f ∈ C∞(M) we ought to find the
relevant symmetric bilinear form.

1.2.2. Definition. If (M, g) is a Riemanniain manifold and f ∈ C∞(M) we define the Hessian of f
to be the symmetric (0, 2) tensor:

Hessf(X,Y ) =
1

2
L∇fg(X,Y )

A quick computation shows that this agrees with our usual Hessian on Rn:

L∇fg(
∂

∂xi
,
∂

∂xj
) = ∇fg( ∂

∂xj
,
∂

∂xi
)− g([∇f, ∂

∂xi
],

∂

∂xj
)− g(

∂

∂xi
, [∇f, ∂

∂xj
])

= −g(∇f ∂

∂xi
− ∂

∂xi
∇f, ∂

∂xj
)− g(

∂

∂xi
,∇f ∂

∂xj
− ∂

∂xj
∇f)

= g(
∂

∂xi
∇f, ∂

∂xj
) + g(

∂

∂xi
,
∂

∂xj
∇f)

=
∂2f

∂xi∂xj
+

∂2f

∂xj∂xi

= 2
∂2f

∂xi∂xj

The usual Laplacian of a smooth function on Rn is given by the trace of the Hessian matrix, so
taking the trace of the symmetric Hessian tensor on M gives us a way to define the Laplacian on
C∞(M).

Our next step is to extend these concepts to the metric itself. What should the gradient of the
Riemannian metric be? We defined the gradient of a smooth function by

g(∇f,X) = df(X) = X(f)

In principle this equation can also help us generalize the gradient to g. Plugging g in for f and
letting X,Y, Z ∈ X (M):

⟨∇g(Y,Z), X⟩ = dg(Y,Z)(X) = X(g(Y,Z))

But recall that the Levi-Civita connection for g satisfies:
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X(g(Y, Z)) = g(∇XY,Z) + g(Y,∇XZ)

then we see that the Levi-Civita connection ∇ for g already itself acts as a gradient of the metric.
What about the Hessian of g? We defined the Hessian of a function f (ie, a (0, 0) tensor) as the
(0, 2) tensor:

Hessf(X,Y ) = g(∇X∇f, Y ) = (∇X∇f)(Y ) = [∇X ,∇f ](Y )

.
So it seems to make sense to define Hessg to be a (0, 4) tensor by combining these ideas:

Hessg(X,Y, Z,W ) = (∇X∇g)(Y, Z,W )

= [∇X ,∇g](Y,Z,W )

= ∇X(∇g(Y,Z,W ))−∇g(∇XY,Z,W )−∇g(Y,∇XY,W )−∇g(Y,Z,∇XW )

= g(∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z,W )

This is simply the (0, 4) version of the curvature tensor for (M, g).

Finally, we come to the Laplacian of the metric. Since the Laplacian of f : Rn → R is the trace
of Hess f , the Laplacian of the metric ought to be the trace of the curvature tensor. But we have
already defined such a notion - the Ricci curvature.

1.3. The Ricci Flow. Now that we have suitable generalizations of the gradient, the Hessian,
and the Laplacian to Riemannian manifolds, we can now make sense of classical PDE’s. For
u ∈ C∞(Rn × [0,∞)), written u(x, t) for x ∈ Rn and t ∈ [0,∞) the heat equation is the PDE:

∂

∂t
u+∆u = 0

where ∆u denotes the Laplacian of u. If gt is a one parameter family of Riemannian metrics
parametrized by t, what should a heat equation for gt look like? We discussed above that the Ricci
curvature is the right candidate to act as the Laplacian of a the metric, so the heat equation for gt
ought to have the form:

∂

∂t
gt +Rict = 0

ie.
∂

∂t
gt = −Rict

which leads to our main definition.

1.3.1. Definition. Given a Riemannian manifold (M, g), the Ricci flow is the PDE:

d

dt
gt = −2Rict

with initial condition g0 = g. The −2 coefficient is mainly there for conventional and historical
purposes, any negative number would suffice (positive numbers too, but the time interval would
become negative).
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1.3.2. Examples.

(1) Let (M, g) = (Sn, s2n) with the induced metric as a submanifold of Rn+1. In tensor notation
we can write the Euclidean metric on Rn+1 as a warped product g = dr2 + r2ds2n. If we
add a time dependence f2(t) to the metric on Sn (which is constant so this is essentially a
separation of variables) this becomes g = dr2+r2f2(t)ds2n, and after a brief computation we
conclude that for a fixed t, (Sn, gt) = (Sn, f2(t)s2n) has constant sectional curvature equal
to 1/f2(t) and thus Rict = n−1

f2(t)
gt = (n− 1)s2n. The Ricci flow equation

d

dt
f2(t)s2n = −2Rict = −2(n− 1)s2n.

ie. d
dtf

2(t) = −2(n− 1). But this is a separable ODE and is easily solvable:

2
df

dt
(t)f(t) = −2(n− 1)

2df(t)f(t) = −2(n− 1)dt

f2(t) = −2(n− 1)t+ C

and since we would like g0 = s2n we see that f2(0) = 1 so f(t) =
√
1− 2(n− 1)t. In

conclusion we see that the solution to the Ricci flow PDE on Sn with initial condition
g0 = s2n is given by:

(Sn, (1− 2(n− 1)t)s2n).

But the induced metric on rSn (spheres of radius r) from Rn+1 is given by r2s2n so we

see that the Ricci flow on Sn has given us spheres of radius
√

1− 2(n− 1)t, and that they
degenerate to a point when t = 1/2(n− 1).

Inspection of the previous example reveals that the solution depended entirely on the
fact that Sn is Einstein. Then we can generalize this to say that if (M, g) is Einstein
with Einstein constant λ then a solution to the Ricci flow is given by gt = (1 − 2λt)g.
By tensorality of the Ricci curvature we can further generalize this to the situation that
Ric = f · g for f ∈ C∞(M) as gt = (1− 2ft)g satisfies d

dtgt = −2fg = −2Ric.
(2) Let (M, g) be a Riemannian manifold, φt : M → M a one parameter family of diffeo-

morphisms and c : R≥0 → R>0 a smooth map with c(0) = 1. A Ricci flow of the form
gt = c(t)φ∗

t gt0 is called a Ricci soliton. If c′(0) > 0 it is called expanding, if c′(0) < 1 it is
called shrinking and if c′(0) = 0 it is called static or steady.

(3) Let M = R2 and g = dx2+dy2

1+x2+y2
= k(x, y)−1(dx2 + dy2). Since R2 has global coordinate fields

∂x, ∂y we can compute the Ricci tensor globally in these coordinates using the formula
(written with Einstein convention):

Ricij =
∂

∂xk
Γk
ij + Γk

kmΓm
ij −

∂

∂xj
Γk
ik − Γk

jmΓm
ik (∗)

A brief computation gives Ric = dx2+dy2

(1+x2+y2)2
= k(x, y)−2(dx2 + dy2). Noting that a

function f of the form f(x, y, t) = (k(x, y) + λ(t))−1 would satisfy d
dtf = −λ′(t)(k(x, y) +

λ(t))−2 we try to find such a solution to the Ricci flow. Such λ must satisfy λ(0) = 0 and
λ′(0) = 1. Moreover, using (∗) again we see that gt = (k(x, y)+λ(t))−1(dx2+dy2) has Ricci
curvature Rict = 2(λ(t) + 1)(k(x, y) + λ(t))−2. Since we need −λ′(t)(k(x, y) + λ(t))−2 =
d
dtf = −2Rict = −4(λ(t) + 1)(k(x, y) + λ(t))−2 we have reduced the problem to the ODE

λ′ = 4(λ+ 1) with initial condition λ(0) = 0, which is easily solvable by λ(t) = e4t. Thus a
solution to the Ricci flow on (M, g) is given by:
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gt =
dx2 + dy2

e4t + x2 + y2

Let φt : R2 → R2 be given by φt(x, y) = (e−2tx, e−2ty) = e−2t(x, y). Then:

D(x,y) =

(
e−2t 0
0 e−2t

)
so φt is a diffeomorphism. Moreover we see φ∗

t g(ei, ei) =
e−4t

1+x2e−4t+y2e−4t = 1
e4t+x2+y2

=

gt(ei, ei) and φ
∗
t g(e1, e2) = 0 so gt = φ∗

t g. Thus (M, g) is a static Ricci soliton.

The most important application of the Ricci flow thus far has been its use in proving Thurston’s
geometrization conjecture. By the 1960’s it had been shown that every smooth, compact, orientable
3-manifold has a unique decomposition into a connected sum of prime 3-manifolds, where prime
means that it cannot be written as a nontrivial connected sum. This reduced the classification of
3-manifolds to the prime 3-manifolds. Thurston conjectured that every prime, closed 3-manifold
could be decomposed into a different type of connected sum (where the gluing is along T 2 rather
than S2) with finitely many pieces, each piece having the geometric structure of one of the eight
Thurston geometries. He then proved [4] the conjecture in the case that M is a Haken manifold,
(something we will not define here).

Shortly thereafter, Richard Hamilton introduced [1] the Ricci flow. As we saw in example (1)
above, the Ricci flow on Sn degenerates it to a point in finite time. Given that the flow acts locally,
any piece of a manifold that looks like Sn (in the sense of Riemannian geometry) will degenerate to
a point in finite time. But the first goal was to decompose 3-manifolds into pieces glued together
by spheres! Collapsing pieces that look like S2 to a point is progress - what appears on ’either side’
of the collapsed S2 ought to be the prime pieces we desire.

At this point, we need to further decompose the prime pieces into the Thurston geometries that
are glued together along T 2. One could see this process as dual to the previous one. Since the
gluing is expected to happen along T 2 and T 2 × I is flat, running the Ricci flow near regions that
resemble T 2 × I will appear to have no effect. However, the pieces that remain end up expanding
so if we divide the flow by a time dependent scaling factor to keep the total volume constant, the
parts that look like T 2 × I collapse and the Thurston geometries are all that remain.

2. Existence.

In order for this program to be successful, we first need to know that solutions to the Ricci flow
actually exist (in general). To do this, we first need to be more precise about PDE’s on manifolds.

2.1. PDE’s/PDO’s on Manifolds.

2.1.1. Definition. Let E,F be smooth vector bundles over M of ranks m,n (respectively). We say
that P : Γ(E) → Γ(F ) is a differential operator of order k and write P ∈ DOk(E,F ) if

(1) For all u ∈ Γ(E), suppPu ⊂ suppu.
(2) For any U ⊂M and trivializations E|U , F |U , P is given by:

(Pu)(x) =
∑
|α|≤k

Aα(x)(D
αu)(x)

where the sum is taken over multi indices α and Aα(x) : E|U → F |U is an n×m matrix
valued function of x.

Given P ∈ DOk(E,F ) and f1, ..., fk ∈ C∞(M), it is a consequence of polarization that ad(f1) · · · ad(fk)P ∈
Γ(E∗ ⊗F ) is symmetric in the fi so ad(f1) · · · ad(fk)P = ad(f)kP . Furthermore, by Taylor’s theo-
rem the value of ad(f)kP at x depends only on dxf . Thus, the following is well defined.



6 MATT KOSTER

2.1.2. Definition. Let π : T ∗M → M denote the bundle projection. If P ∈ DOk(E,F ), the
principal symbol σP ∈ Γ(π∗(E∗ ⊗ F )) is given by:

σP (ξ) =
1

k!
ad(f)kP

where f is any function satisfying dxf = ξ.

2.1.3. Remark. The above definition involves two standard identifications - the first being E∗⊗F ∼=
Hom(E,F ) and the the second being that sections of a pullback bundle f∗s ∈ Γ(f∗E) are given by
composing f with section s of E: f∗s = s ◦ f .

2.1.4. Example. In local trivializations, Pu =
∑

|α|≤k Aα(x)(D
αu). Then ad(f)kP = k!

∑
|α|=k Aα(x)(D

αf)

so σP is given at x ∈ U by

σP (x, ξ) =
∑
|α|=k

Aα(x)ξ
α

2.1.5. Definition. Let (M, g) a Riemannian manifold and E a vector bundle over M with the

induced bundle metric gE on E and g∧ on T ∗M . Then P ∈ DO(k)(E,E) is said to be strongly
parabolic if there exists δ > 0 such that for all coordinate charts U ⊂ M , x ∈ U , ξ ∈ T ∗

xU \ 0, and
v ∈ Ex:

gE(σP (x, ξ)v, v) > δ|ξ|2∧|v|2E

2.1.6. Example. Let (M, g) be R2 with the canonical metric and E be the trivial rank 1 bundle so
Γ(E) ∼= C∞(R2). Let P : Γ(E) → Γ(E) be the differential operator P (u) = ∂2xu+ ∂2yu. In this case
P is of the form from example 2.1.4, with Aα = (0) except when α = (2, 0) and α = (0, 2) in which
case Aα = (1). Then σP : T ∗M → Hom(R,R) is given by:

σP ((x, y), (ξ1, ξ2)) = (ξ21 + ξ22)

Choosing δ = 1
2 we see that for (x, y) ∈M , ξ ∈ T ∗

(x,y)M , v ∈ E(x,y)
∼= R:

gE(σP (x, ξ)v, v) = (ξ21 + ξ22)gE(v, v) = |ξ|2∧|v|2E > δ|ξ|2∧|v|2E
so P is strongly parabolic.

2.1.7. Definition. Let L : Γ(E) → Γ(E) be a smooth map. If there exists a linear transformation
D[L] : Γ(E) → Γ(E) satisfying:

D[L](v) =
d

dt
L(γ(t))|t=0

for all v ∈ Γ(E) and γ : (−1, 1) → Γ(E) such that γ′(0) = v we call D[L] the linearization of

L. It is a fact that if D[L] exists then D[L] ∈ DO(k)(E,E) for some k. We say that L is strongly

parabolic when D[L] ∈ DO(k) is strongly parabolic.

2.1.8. Theorem. Let E be a vector bundle bundle overM×[0,∞). If L : Γ(E|M×{0}) → Γ(E|M×{0})
is strongly parabolic then for all u0 ∈ Γ(E|M×{0}) there exists T > 0 and unique u ∈ Γ(EM×[0,T ))
such that:

Pu =
∂u

∂t
and u(x, 0) = u0(x).
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2.1.9. Example. Since P = ∂2x + ∂2y is strongly parabolic, we see that for any g : R2 → R we have

T > 0 and a unique u : R2 × [0, T ) → R such that:

ut = P (u) = ∂2xu+ ∂2yu

and u(x, y, 0) = g(x, y). But P (u) = ∇u hence ut −∇u = 0. This is a familiar result - existence
of solutions to the heat equation given a boundary condition.

2.2. The Ricci Flow as a Parabolic Differential Operator. Given theorem 2.1.8, we would
like for the Ricci flow to be given by a parabolic differential operator on (M, g). As defined, this is
unfortunately not the case. To see this (and then remedy it) we need to first write the Ricci flow
as the appropriate differential operator.

For a Riemannian metric g, Ric(g) is a symmetric (0, 2) tensor. But the metric g itself is a
nondegenerate symmetric (0, 2) tensor, so we can view the Ricci curvature as a map:

Ric : Γ(Sym2
+(T

∗M)) → Γ(Sym2(T ∗M))

between those spaces. One can check in local coordinates that Ric /∈ DO(k) (it is very highly
nonlinear) so we need to take the linearization. Let γ : [0, 1] → Γ(Sym2(T ∗M)) be such that
γ(0) = g and write γ′(0) = h = hijdx

i ⊗ dxj . It is not hard to verify that:

(D[Ric](h))jk =
1

2
gpq(∇q∇jhkp +∇q∇khjp −∇q∇phjk −∇j∇khqp)

with principal symbol:

σRic(ξ)(h)jk =
1

2
gqp(ξqξjhkp + ξqξkhjp − ξqξphjk − ξjξkhqp)

But choosing any h ∈ Γ(Sym2(T ∗M)) with hij = ξiξj for all 1 ≤ i, j ≤ n we see that σRic(ξ)(h) =
0 so:

gE(σRic(ξ)(h), h) = 0 ≤ δ|ξ|2∧|h|2gE
for any δ > 0 hence Ric is not parabolic. To remedy this, we employ the following trick of

DeTurck introduced in [6].

2.3. The DeTurck Trick. First, a useful proposition.

2.3.1. Proposition. The difference of two connections is a tensor.

Proof. Checking on smooth functions:

∇1
XfY −∇2

XfY = f∇1
XY +X(f)Y − f∇2

XY −X(f)Y = f∇1
XY − f∇2

XY = f(∇1
XY −∇2

XY )

and since connections are already tensorial in the lower argument we conclude ∇1 − ∇2 is a
tensor. □

Now let ∇̃ be an arbitrary connection onM with Christoffel symbols Γ̃j
pq in some local coordinate

U . Then Xi = −gpqgij(Γj
pq − Γ̃j

pq) (*) is the local expression (in U) of a (1, 0) tensor (ie. a vector
field) X on M . This leads to our next definition.
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2.3.2. Definition. Consider the vector bundle E = Sym2(T ∗M) over M × [0,∞) where M is com-
pact. The Ricci-DeTurck flow P : Γ(E) → Γ(E) is given by P (h)ij = −2Ric(h)ij +∇iX

t
j +∇jX

t
i

where Xt is a time dependent vector field defined in terms of h by (*) in the preceeding paragraph.
Since σP only depends on the highest order terms of P , by inspecting the principal symbol for Ric
and the definition of P we see that for any h ∈ Γ(E), σP (ξ)(h)ij = gpqξpξqhij so:

gE(σP (ξ)(h), h) = |ξ|2∧|h|2E
then we let δ = 1

2 and conclude that P is strongly parabolic. So by theorem 2.1.8 get T > 0 and
ht ∈ Γ(EM×[0,T )) such that P (ht) = ∂tht and h0 = g. Now since M is compact, there exists (see
eg. [5]) a one parameter family of diffeomorphisms φt :M →M for 0 ≤ t < T such that:

∂φt

∂t
(p) = Xt(φ(x))

and φ0(x) = IdM . Let gt = φ∗
tht. Then a computation shows:

∂

∂t
gt =

∂

∂s
(φ∗

t+sht(t+ s))s=0 = φ∗
t (
∂

∂t
ht) +

∂

∂s
(φ∗

t+sht)s=0

= φ∗
t (P (ht)) +

∂

∂s
(φ∗

t+sht)s=0

= φ∗
t (−2Ric(ht) + LXtht) +

∂

∂s
((φ−1

t ◦ φt+s)
∗φ∗

tht)s=0

= −2Ric(gt) + φ∗
t (LXtht)− L(φ−1

t )∗(Xt)(φ
∗
tht)

= −2Ric(gt)

and since φ0 = IdM , g0 = Id∗(h0) = g ie. gt is a solution to the Ricci flow on (M, g) for t ∈ [0, T ).

3. Closed 3-manifolds with Positive Ricci Curvature.

The goal of this section is to outline a proof of the following remarkable result of Hamilton:
Every closed Riemannian 3-manifold with positive Ricci curvature admits a metric with constant
curvature k > 0.

The Killing-Hopf theorem says that the universal cover of a Riemannian manifold with constant
curvature k is diffeomorphic to Hn (hyperbolic space) if k < 0, Rn if k = 0, or Sn if k > 0.
Combining this with Hamilton’s result we see that the only closed, simply connected Riemannian
3-manifold with positive Ricci curvature is Sn.

We follow the exposition of [3] (which was itself inspired by the exposition of [5]), although we
are only outlining the proof sketch so there are not many details given in what follows.

3.1. Normalized Ricci Curvature.

3.1.1. Definition. If M is a compact Riemannian manifold the normalized Ricci flow on M is the
following PDE:

∂

∂t
gt = −2Rict +

2st
n
gt

where st is the normalized average scalar curvature:

st =

∫
M scaltdVt∫

M dVt
.

Solutions to the normalized Ricci flow are given by time dependent metrics of the form g̃t = ψ(t)gt
where gt is a solution to the Ricci flow and ψ(0) = 1 where ψ is some rescaling factor to preserve the
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volume of M . The utility of the normalized Ricci flow comes from the following two propositions,
from which Hamilton’s theorem will follow immediately.

3.1.2. Proposition A.. Suppose (M, g) is a compact Riemannian 3-manifold with positive Ricci
curvature. Then the normalized Ricci flow g̃t exists for all time.

3.1.3. Proposition B.. If (M, g) is as above, the limit g∞ = limt→∞ g̃t exists and is a Riemannian
metric on M with constant curvature k > 0.

3.2. Proposition A. The proof of proposition A is done by the following two lemmas.

3.2.1. Lemma. Suppose (M, g) is a compact Riemannian manifold with positive Ricci curvature
and let gt be a solution to the Ricci flow. Then the scalar curvature of the normalized Ricci flow
g̃t is uniformly bounded, ie:

s = sup
x∈M,t>0

scalt(x) <∞

3.2.2. Lemma. If (M, g) is a compact Riemannian manifold and g̃t is the normalized Ricci flow,
defined on [0, T ). Then: ∫ T

0
sdt = ∞

where s = supx∈M,t>0 scalt(x).

3.2.3. Proof of proposition A.. Since s <∞,
∫ T
0 sdt = ∞ implies T = ∞.

3.3. Proposition B.. The proof of proposition B follows from the following series of results.

3.3.1. Lemma. If the traceless Ricci tensor E = Ric− 1
nscal g is identically 0 then (M, g) is Einstein.

3.3.2. Lemma. Let (M, g) be a compact Riemannian 3-manifold with positive Ricci curvature and
g̃t the normalized Ricci flow. Then there exists C, k > 0 such that the traceless Ricci tensor satisfies
|Et| ≤ Ce−kt.

3.3.3. Theorem. Suppose (M, g) is a compact Riemannian manifold with smooth, time dependent
metrics gt defined on [0, T ) where g0 = g. If there exists K > 0 such that:∫ T

0
| ∂
∂t
gt|dt ≤ K

then limt→T gt = gT exists, gt → gT uniformly, and:

g

ek
≤ gT ≤ ekg.

3.3.4. Theorem. If (M, g) is a compact Riemannian 3-manifold with positive Ricci curvature and
g̃t is the normalized Ricci flow, there exists K > 0 such that:∫ ∞

0
| ∂
∂t
g̃t|dt < K

3.3.5. Proposition. If (M, g) is as in the previous theorem, then the limit metric gT given by theorem
3.3.3 is smooth.
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3.3.6. Proof of proposition B.. By theorem 3.3.4 and 3.3.3, limt→∞ g̃t = g∞ exists and moreover
by proposition 3.3.5 g∞ is smooth. Then we see by lemma 3.3.2:

|E∞| = lim
t→∞

|Et| ≤ lim
t→∞

Ce−kt = 0

so by lemma 3.3.1, (M, g∞) is Einstein. But in dimension n ≤ 4, Einstein is equivalent to
constant curvature so we conclude (M, g∞) has constant curvature.

3.4. Proof of Hamilton’s theorem. If M is a closed Riemannian 3-manifold with positive Ricci
curvature, by proposition A the normalized Ricci flow g̃t exists for all time and by proposition B,
g∞ is a metric on M with constant curvature k > 0.
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