
RIEMANNIAN GEOMETRY

MATT KOSTER

1. Riemannian Metrics

Definition 1. A Riemannian metric on a smooth manifold M is the assignment of an inner
product gp to TpM for every p ∈M such that for every X,Y ∈ X (M) the function M → R defined
by p 7→ gp(X(p), Y (p)) is smooth. We sometimes use the notation ⟨, ⟩p for gp and sometimes omit
the p.

Remark 2. Let V be a real finite dimensional vector space and B(V ) the space of bilinear maps
V ×V → R. The bilinear map V ∗ ×V ∗ → B(V ) given by (f, g) 7→ ((u, v) 7→ f(u)g(v)) descends to
an isomorphism V ∗ ⊗ V ∗ → B(V ). On the other hand, every bilinear map V × V → R descends
to a linear map V ⊗ V → R, i.e. an element of (V ⊗ V )∗. Thus we see that V ∗ ⊗ V ∗ is canonically
isomorphic to (V ⊗ V )∗ even though V is not canonically isomorphic to V ∗.

By restricting, this provides a canonical identification between symmetric bilinear maps V ×V →
R and Sym2(V ∗). For u, v ∈ V let uv denote Sym(u⊗ v) ∈ Sym2(V ) (and similar for V ∗). If {ei}
is a basis for V with dual basis {fi} for V ∗ then the symmetric bilinear B is identified with:

∑
i,j

B(ei, ej)fi ⊗ fj =
∑
k

B(ek, ek)fk ⊗ fk +
∑
i ̸=j

B(ei, ej)fi ⊗ fj

=
∑
k

B(ek, ek)fk ⊗ fk +
∑
i<j

B(ei, ej)(fi ⊗ fj + fj ⊗ fi)

=
∑
i≤j

B(ei, ej)fifj .

A Riemannian metric can therefore be identified with a section of Sym2(T ∗M).

Example 3.

(1) We can make Rn into a Riemannian manifold by letting gp(u, v) = ⟨u, v⟩ be the standard
Euclidean inner product at each TpRn ∼= Rn.

(2) Given a Riemannian manifold (M, gM ) and a smooth submanifold N ⊂ M , we can make
N into a Riemannian manifold by defining gN (u, v) = gM (u, v).

(3) Given a Riemannian manifold (M, gM ) and an immersion f : N → M we can make N
into a Riemannian manifold by defining gN (u, v)p = gM (dfp(u), dfp(v))f(p). That f is an
immersion guarantees us that gN is an inner product.

(4) Let G be a Lie group with Lie algebra g = TeG. For x ∈ G denote by Lx the diffeomorphism
Lx(y) = xy. We can turn an inner product gg on g into a left invariant Riemannian metric
g (i.e. g(u, v)y = g(dyLx(u), dyLx(v))xy for all x, y ∈ G, u, v ∈ TyG) on G by defining
g(u, v)x = gg(dLx−1(u), dLx−1(v)). A right invariant metric is defined and constructed in a
similar way. A metric that is both right and left invariant is called bi-invariant. If G has a
bi-invariant metric g we have the important relation:

(∗) g([X,Y ], Z) = g(X, [Y,Z])
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It is not hard to show conversely that the left invariant metric associated to any inner
product gg on g that satisfies (*) is bi-invariant. Then the bi-invariant metrics on G are
classified by the inner products on g satisfying (*).

If G is compact let gL be a left invariant Riemannian metric and ω a volume form (Lie
groups are always orientable so such an ω exists). Moreover we can take ω = ω1 ∧ · · ·ωn

where ωi are left-invariant 1-forms. Define a new metric g by:

gp(u, v) =

∫
gL(dpRx(u), dpRx(v)) · ω∫

G ω

One can check that g is both left and right invariant, showing that every compact Lie
group has a bi-invariant Riemannian metric. After showing that Adg : G→ G is an isometry
we can compute the differential at e and conclude that adX : g → g is an isometry. One
then can use this fact to show (*) above.

(5) Let G be given by:

G = {f : R → R : f(t) = yt+ x, x, y ∈ R}
One can show that G is a Lie group with the group operation given by composition, and

is diffeomorphic to:

H+ = {(x, y) ∈ R2 : y > 0}
as a smooth manifold. The identity element is given by f(t) = t corresponding to

(0, 1) ∈ R2. Let gL denote the left invariant metric on G induced by the Euclidean metric
on g ∼= T(0,1)R2. This turns H+ into a Riemannian manifold not isometric to H+ with the
Euclidean metric sometimes called the Poincare half-plane model.

(6) If (M, g) is a Riemannian manifold and G is a group acting freely and properly on M by
isometries (i.e. for all g ∈ G the map g :M →M given by g(x) = g · x is an isometry) then
the collection of cosets, denoted M = M/G, is a smooth manifold such that the quotient
map π :M →M is a submersion. In this case there exists a unique metric g on M making
(M, g) into a Riemannian manifold and π a Riemannian submersion.

1.1. The metric tensor. Given a frame {Xi} and coframe {σi} the identification of the metric
with a section of Sym2(T ∗M) allows us to represent the metric as:∑

i,j

g(Xi, Xj)σ
i ⊗ σj =

∑
i≤j

g(Xi, Xj)σ
iσj

We simplify sums using the Einstein summation convention:

g(Xi, Xj)σ
iσj :=

∑
i≤j

g(Xi, Xj)σ
iσj

And further simplify gij = g(Xi, Xj) so we get metric tensor the metric tensor notation:

gijσ
iσj

Example 4.
(1) The standard metric tensor on Rn in the identity chart is

∑n
i=1 dxidxi and the matrix gij(p)

is given by the identity.
(2) In polar coordinate on R2 \ {(0, x) : x > 0} given by x = r cos θ, y = r sin θ we have

dx = cos θdr − r sin θdθ and dy = sin θdr + r cos θdθ so:
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dxdx = (cos θdr − r sin θdθ)(cos θdr − r sin θdθ)

= cos2 θdrdr + r2 sin2 θdθdθ − r cos θ sin θdrdθ − r cos θ sin θdθdr

and similarly:

dydy = sin2 θdrdr + r2 cos2 θdθdθ + r cos θ sin θdrdθ + r cos θ sin θdθdr

so the standard metric tensor in polar coordinates is given by:

g = dxdx+ dydy = drdr + r2dθdθ

with matrix gij given by: (
1 0
0 r2

)
(3) Given I ⊂ R an interval and a smooth curve γ : I → R2, γ(t) = (r(t), z(t)) such that

r(t) > 0 for all t, let f : I × [0, 2π] → R3 be the function:

f(t, θ) = (r(t) cos θ, r(t) sin θ, z(t)).

Then M = f(I × [0, 2π]) is a smooth 2 dimension submanifold of R3 that we will call
the surface of revolution for γ. Restricting the standard metric on R3 to M (as in example
3.2.ii) we compute the metric tensor on M :

dx = ṙ cos θdt− r sin θdθ

dy = ṙ sin θdt+ r cos θdθ

dz = żdt

so in these coordinates:

g = dx2 + dy2 + dz2 = (ṙ2 + ż2)dtdt+ r2dθdθ

If γ is parametrized by arc length (meaning γ̇ = 1) we have ṙ2 + ż2 = 1 so in this case:

g = dt2 + r2dθ2.

As a particular case of this example, if γ(ϕ) = (sin(ϕ), cos(ϕ)) then the surface of revo-
lution is S2 with the metric tensor:

gϕ,θ = dϕ2 + sin2(ϕ)dθ2

LetA : S2 → S2 be defined byA(p) = −p. TpS2 is given by p⊥ = (−p)⊥ so TpS
2 = T−pS

2.
Then we can see dpA : TpS

2 → T−pS
2 = TpS

2 is dpA(v) = −v. From this we conclude that
for u, v ∈ TpS

2:

g−p(dpA(u), dpA(v)) = g−p(−u,−v) = g−p(u, v) = gp(u, v)
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so A is an isometry of S2. In fact replacing 2 with n changes nothing, so the antipodal
map is always an isometry of Sn. Another way to see that A is an isometry on S2 is to see
what happens to the metric tensor. We note first that the inverse of f is given by:

(θ, ϕ) = f−1(x, y, z) = (arctan(

√
x2 + y2

z
), arctan(

y

x
))

then since A(x, y, z) = (−x,−y,−z) after applying f we see:

(θ, ϕ) 7→ f ◦A(x, y, z) = (arctan(

√
(−x)2 + (−y)2

−z
), arctan(

−y
−x

), ) = (−θ, ϕ).

Then since d(−θ) = −dθ we have that the metric tensor becomes:

g = dϕ2 + sin2(ϕ)d(−θ)2 = dϕ2 + sin2(ϕ)dθ2

(4) We can construct RP (2) as the quotient of S2/A, i.e. x ∼ x and x ∼ A(x) = −x. Then we
write ±x = {x,−x} for an element in RP (2) where x ∈ S2 and write let π : S2 → RP (2)
denote the projection map π(x) = ±x.

We make RP (2) into a Riemannian manifold with the metric g(u, v)±x = gS2((dxπ)
−1(u), (dxπ)

−1(v))x.
This is well defined by what was done in the previous example. Moreover it is clear from
the definition of this metric that π is locally an isometry. Similar to the previous example
the 2 can be replaced with n to see that RP (n) can be made into a Riemannian manifold
such that π : Sn → RP (n) is a local isometry.

(5) More generally than the previous example note that U(1) ⊂ C acts by isometries on S2n+1

and Cn+1 via scalar multiplication. Then since CP (n) = S2n+1/U(1) we get a Riemannian
metric on CP (n) such that the projection map π : S2n+1 → CP (n) is a local isometry.
We call this the Fubini-Study metric except when n = 1, in which case we call it the Hopf
fibration.

(6) If G is a Lie group with {X1, .., Xn} an orthonormal basis for g with respect to the inner
product gg and {Y1, ..., Yn} the left-invariant vector fields on G associated to Xi, then the
left invariant metric g is given by:

g = ω2
Y1

+ · · ·+ ω2
Yn

where ωYi ∈ Ω1(G) is the 1-form dual to Yi, i.e. ωi(Yj) = δij .
(7) If M = M1 ×M2 (as in example 3.2.iv) where M1 has metric tensor g1 in U1 and M2 has

metric tensor g2 in U2, then the metric tensor on M in U1 × U2 is simply g1 + g2.
(8) If M = I × Sn, where I ⊂ R is an interval with the standard metric denoted dt2 and Sn

has the standard metric which we will denote by ds2, then the metric tensor on M given by
dt2 +φ2(t)ds2n where φ ∈ C∞(I) is called a warped product metric. If φ satisfies the second
order ODE:

φ′′(t) + kφ(t) = 0

φ′(0) = 1

φ(0) = 0

for some k ∈ R then we denote it by φ = sn2k. If we parametrize Sn ⊂ Rn × R by
F : [0, π)× Sn−1 → Rn → R with F (θ, v) = (sin(θ)v, cos(θ)) a brief calculation shows that
the standard metric on Rn+1 restricted to Sn is given by:
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ds2n = dx21 + · · ·+ dx2n = dθ2 + sin2(θ)ds2n−1

thus the standard metric on Sn is given by a warped product metric. Moreover the
solution to the above ODE with k = 1 is φ(t) = sin(t), so Sn is the warped product metric
associated to sn21. One can check that Rn with the usual metric is the warped product
metric associated to sn20.

(9) If M = I × Sn × Sm then metrics of the form g = dt2 + φ2(t)ds2p + ψ2(t)ds2q are called

doubly warped product metrics. Using the diffeomorphism Rn+1 \ {0} ∼= (0, b)× Sn we can
see that under suitable conditions we may extend a metric on I ×Sn to a metric on Rn (as
we only need to define it on a single point). This corresponds to the extension of I = (0, b)
to I = [0, b). or I = (0, b]. Using the diffeomorphism Sn+1 \ {p, q} ∼= I ×Sn we can see that
under suitable conditions we may extend metric on I ×Sn to a metric on Sn+1 (as we only
need to define it on two points). Finally using an embedding I × Sn × Sm → Sn+m+1 (one
example described below) we can use g to get a metric on Sn+m+1.

We show how to write the standard metric on Sn as a doubly warped product. Write
n = p+ q + 1. Since Sp ⊂ Rp+1 and Sq ⊂ Rq+1 the function:

(0,
π

2
)× Sp × Sq → Rp+1 × Rq+1

(t, x, y) 7→ (x sin(t), y cos(t))

is an embedding whose image is the unit sphere in Rp+1 × Rq+1 = Rp+q+2, i.e. Sp+q+1.
In this case we see that:

g = dt2 + sin2(t)ds2p + cos2(t)ds2q

(10) Using the product construction can define a metric on T 2 = S1 × S1 from the standard
metric on S1. Alternatively consider the subset of R3 given by:

T 2 = {(x, y, z) : (
√
x2 + y2 − 1)2 + z2 = 1}

and give it the metric induced as a submanifold of R3. These two manifolds are diffeo-
morphic but not isometric as Riemannian manifolds. We refer to the first one as the flat
torus.

(11) Consider the Lobachevksy metric from before:

G = {g(t) = yt+ x : (x, y) ∈ R2}
from before. Using the identity coordinates we have:

gij(x, y) =

(
1
y2

0

0 1
y2

)
with metric tensor:

g =
1

y2
dx2 +

1

y2
dy2.

One can show that this is equivalent to the warped product metric on I × S1 given
by dt2 + sn2−1(t)ds

2
1. Another useful way of writing g is as follows. Write z = x + iy so

z = x− iy. Then dz = dx+ idy and dz = dx− idy.
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dzdz

(z − z)2
=

(dx+ idy)(dx− idy)

(2iy)2
= −dx

2 − idxdy + idydx+ dy2

4y2
= −dx

2 + dy2

4y2
= −1

4
g

thus g = −4 dzdz
(z−z)2

.

1.2. The gradient. Now that we have a metric we can associate to each f ∈ C∞(M) a vector
field ∇f ∈ X (M), which we will call the gradient of f .

Definition 5. Given f ∈ C∞(M) we define a vector field called the gradient of f , denoted
∇f ∈ X (M), implicitly by the equation:

gp(v,∇fp) = dpf(v), v ∈ TpM.

If (x1, ..., xn) is a chart near p we have that:

∇f =
∑
i,j

gij
∂f

∂i

∂

∂j

where gij is the inverse matrix to gij . If U ⊂ M is open and f : U → R satisfies |∇f | = 1 on
U then we will call f a distance function, equivalently |∇f |2 = ⟨∇f,∇f⟩ = 1. If we consider
the Hamiltonian H(q, p) = 1

2⟨p, p⟩q on M then we see that distance functions are solutions to the
Hamilton-Jacobi equation associated to H. Satisfying such a PDE is a mildly restrictive condition
(for example, which functions satisfy this on M = R2?).

Lemma 6. For U ⊂ M open, r : U → R is a distance function if and only if r is a Riemannian
submersion.

Proof. Suppose r : U → R is smooth and fix p ∈ U . Then dp(v) = gp(∇r, v)∂t = 0 if and only if
v ∈ ∇r hence v ∈ ker dpr if and only if v ∈ span(∇r). But v = c∇r if and only if:

dpr(v) = dpr(c∇r) = cdpr(∇r) = cgp(∇r,∇r)∂t = c|∇r|2∂t
By definition r is a Riemannian submersion if and only if gp(u, v)U = gr(p)(dp(u), dp(v))R. Com-

bining this with the above we have that r is a Riemannian submersion if and only if c|∇| = c|∇r|2
i.e. |∇r| = 1 as desired.

□

Example 7.
Let M = R3, U =M \ {0}, and f : U → R given by:

f(x, y, z) =
√
x2 + y2 + z2

Then ∇f is the usual (Rn version) gradient given by:

∇f =
x√

x2 + y2 + z2
∂

∂x
+

y√
x2 + y2 + z2

∂

∂y
+

z√
x2 + y2 + z2

∂

∂z

thus:

|∇f | = x2 + y2 + z2

x2 + y2 + z2
= 1

so f is a distance function.
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More generally let M ⊂ Rn be a smooth submanifold and define f : Rn → R by:

f(x) = d(x,M) = inf
y∈M

{|x− y|}

Then one can show that there exists an open M ⊂ U ⊂ Rn such that |∇f | = 1 on U , hence f is
a distance function there. From this we conclude that every smooth submanifold of Rn is a level
set of some distance function. Letting M = (0) ∈ R3 then f(x) = d(x,M) is the function from the
previous example and f−1(r) gives the sphere of radius r.
As a specific case of the previous example assume M ⊂ Rn is an orientable n−1 dimension smooth
submanifold and let f : U → R be the distance function such that f−1(0) = M . Since M is ori-
entable it has a unit normal vector field N :M → TM⊥ (where TM⊥ denotes the normal bundle).
Since M = f−1(0) we know from multivariable calculus that TpM has a basis given by kerDpf , i.e.
v ∈ TpM if and only if Dpf(v) = 0 if and only if ⟨v,∇f⟩ = 0. But since M is an n− 1 dimension

submanifold, TpM
⊥ is dimension 1 and as was previously noted it is spanned by the unit normal

N . Then we conclude that∇f = ±N thus it is possible to pick a sign forN such that∇f = N onM .

We conclude by summarizing the above as:

Every smooth submanifold of Rn is the level set of a distance function, and the unit
normal vector fields of orientable hypersurfaces are (up to a sign) the gradient vector
fields of these distance functions.
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2. Connections and curvature

2.1. Connections.

Definition 8. A map ∇ : X (M)×X (M) → X (M) satisfying:

i)∇fX+gZY = f∇XY + g∇ZY (tensorial in X)

ii)∇X(Y + Z) = ∇XY +∇XZ

iii)∇X(fY ) = f∇XY +X(f)Y

is called an affine connection on M. If γ : I →M is a smooth curve and ∇γ̇(t)X(γ(t)) = 0 for
all t ∈ I then we say that X is parallel along γ. It doesn’t matter that γ̇ isn’t a vector field on
X as ∇ is tensorial in that argument.

Definition 9. Let γ : I →M be a smooth curve. A lift of γ to a map I → TM is called a vector
field along γ.

Example 10. The tangent vector γ̇ defines a vector field along γ.

Proposition 11. Let M be a smooth manifold with affine connection ∇. If γ : I →M is a smooth
curve and V : I → TM is a vector field along γ then there exists a unique vector field DγV along
γ such that:

Dγ(V +W ) = DγV +DγW

Dγ(fV ) = ḟV + fDγV

DγV = ∇γ̇Y

where Y ∈ X (M) is any extension of V to a vector field on M , i.e. V (t) = Y (γ(t)). Recall that
∇ is tensorial in the lower argument so we need not extend γ̇ to a vector field on M .

Proof. Let p ∈ M and let (x1, ..., xn) be a chart for U near p. In these coordinates write V =∑n
i=1 vj

∂
∂xi

and γ = (c1, ..., cn). Define:

DγV =
n∑

k=1

dvk
dt

∂

∂xk
+
∑
i,j

dci
dt
vj∇ ∂

∂xi

∂

∂xj

□

Definition 12. If T is a (0,m) tensor we define the covariant derivative of T to be the (0,m+1)
tensor:

∇T (Y1, ..., Ym, Z) = Z(T (Y1, ..., Ym))−
m∑
i=1

T (Y1, ...,∇ZYi, ..., Ym)

If ∇T ≡ 0 we say that T is parallel.

Example 13.
(1) If f is a (0, 0) tensor (i.e. f ∈ C∞(M)) then the Covariant derivative of f is simply the

gradient:

∇f(Z) = Z(f)

hence the choice of notation makes sense.
(2) For any Riemannian metric g it is always the case that ∇g ≡ 0 hence g is always parallel.
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(3) For any coordinate vector field ∂
∂xi

on Rn, the covariant derivative ∇ ∂
∂xi

is given by:

∇ ∂

∂xi
(Z) = Z(

∂

∂xi
) = 0

so coordinate vector fields are parallel. More generally one can show any vector field of
the form V =

∑n
i=1 ai

∂
∂xi

where ai are constants is parallel (the converse is also true).

Proposition 14. Given a smooth manifold M with an affine connection ∇, let γ : I → M be a
smooth curve and v0 ∈ Tγ(t0)M . Then there exists a unique parallel vector field V along γ such that
V (t0) = v0 called the parallel transport of v0 along γ.

Proof. Let γ : I → M be a smooth curve and v0 ∈ Tγ(t0)M . Suppose there exists a single

chart x for an open U such that γ(I) ⊂ U . In these coordinates write v0 =
∑n

i=1 vi
∂
∂xi

and

γ(t) = (x1(t), ..., xn(t)). Consider the differential equation:

n∑
i=1

dvi
dt

∂

∂xi
+

n∑
i,j=1

dxi
dt
vj∇ ∂

∂xi

∂

∂xj
= 0

Since ∇ ∂
∂xi

∂
∂xj

∈ X (U) we can write ∇ ∂
∂xi

∂
∂xj

=
∑n

k=1 Γ
k
ij

∂
∂xk

and so the system becomes:

n∑
i=1

dvi
dt

∂

∂xi
+

n∑
i,j=1

dxi
dt
vj

n∑
k=1

Γk
ij

∂

∂xk
= 0

which we re arrange to:

n∑
k=1

dvk
dt

+

n∑
i,j=1

vj
dxi
dt

Γk
ij

 ∂

∂xk
= 0

Since the ∂
∂xk

are linearly independent the above equation gives us n linear first order ODE’s:

dvk
dt

+

n∑
i,j=1

vj
dxi
dt

Γk
ij = 0

.
The Picard existence and uniqueness theorem for linear first order ODE’s gives us a unique so-

lution V =
∑n

i=1 vi defined for all time satisfying the initial condition V (t0) = v0.

If γ(I) is not contained in a single chart, for any t ∈ I the interval [t0, t] is compact so it can
be covered with finitely many open sets Ui, in each of which we may define V . By uniqueness,
how V is defined in each Ui must agree when the Ui’s have nonempty intersection, thus giving us
a definition of V on all of I.

□

Definition 15. For an affine connection ∇ on M , we have the (1, 2) tensor T : X (M)×X (M) →
X (M):

T (X,Y ) = ∇XY −∇YX − [X,Y ]

called the torsion tensor measuring the torsion of the connection ∇. If T (X,Y ) ≡ 0 we call ∇
torsion free.

Remark 16. Recall that ∇XY is tensorial in X. One could antisymmetrize ∇ to make a new
operator ∇XY = ∇XY − ∇YX so that ∇XY = −∇YX, removing the tensorial nature of the X
argument and giving us a of skew symmetric directional derivative. But observe that:
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∇XY = ∇XY −∇YX = T (X,Y ) + [X,Y ] = T (X,Y ) + LXY

showing that antisymmetrizing a torsion free connection reduces to the Lie derivative.

Theorem 17. There exists a unique, torsion free, affine connection ∇ on M such that:

d

dt
⟨X,Y ⟩ = ⟨DX

dt
, Y ⟩+ ⟨X, DY

dt
⟩

called the Levi-Civita connection.

Proof. The directional derivative of vector fields on Rn satisfies:

2g(∇XY,Z) = LY g(X,Z) + (dωY )(X,Z)

so defining our connection on M implicitly from this equation seems fruitful. We first note the
useful Koszul formula:

2g(∇XY, Z) = LY g(X,Z) + (dωY )(X,Z)

= Y g(X,Z)− g([Y,X], Z)− g(X, [Y,Z]) +XωY (Z)− ZωY (X)− ωY ([X,Z])

= Y g(X,Z)− g([Y,X], Z)− g(X, [Y,Z]) +Xg(Y,Z)− Zg(Y,X)− g(Y, [X,Z])

= Y g(X,Z) +Xg(Y, Z)− Zg(Y,X)− g([Y,X], Z)− g([X,Z], Y ) + g([Z, Y ], X)

Now to check that ∇ is torsion free we use the Koszul formula:

2g(∇XY −∇YX,Z) =Y g(X,Z) +Xg(Z, Y )− Zg(Y,X)− g([Y,X], Z)− g([X,Z], Y ) + g([Z, Y ], X)

−Xg(Y,Z)− Y g(Z,X) + Zg(X,Y ) + g([X,Y ], Z) + g([Y,Z], X)− g([Z,X], Y )

= 2g([X,Y ], Z)

and since X,Y, Z are arbitrary we conclude T (X,Y ) = ∇XY −∇YX = 0. Checking that ∇ is
metric we again use the Kozsul formula and one sees:

2g(∇XY,Z) + 2g(Y,∇XZ) = 2Xg(Y,Z).

To see uniqueness suppose ∇ is a torsion free, metric connection. Then by the Kozsul formula
again:

2g(∇XY, Z) = Y g(X,Z) +Xg(Y, Z)− Zg(Y,X)− g([Y,X], Z)− g([X,Z], Y ) + g([Z, Y ], X)

= g(∇YX,Z) + g(X,∇Y Z) + g(∇XZ, Y ) + g(Z,∇XY )

− g(∇ZY,X)− g(Y,∇ZX) + g(∇ZY,X)− g(∇Y Z,X)

− g(∇YX,Z) + g(∇XY,Z)− g(∇XZ, Y ) + g(∇ZX,Y )

= 2g(∇XY,Z)

thus ∇XY = ∇XY .
□

The Kozsul formula used in the previous proof is so important we extract it as a separate result.

Corollary 18 (Koszul formula). The Levi-Civita connection ∇ on M satisfies:

2g(∇XY,Z) = X(g(Y, Z)) + Y (g(X,Z))− Z(g(X,Y )) + g([X,Y ], Z)− g([X,Z], Y )− g([Y,Z], X)
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If ∇ is an affine connection on M then ∇XY = Z for some Z ∈ X (M). If (x1, ..., xn) is a chart
for U near p then:

∇ ∂
∂xi

∂

∂xj
=

n∑
k=1

Γk
ij

∂

∂xk

We call Γk
ij : U → R the Christoffel symbols of ∇ in U . If ∇ is torsion free then Γk

ij = Γk
ji for

all i, j, k. Because of this, a torsion free is sometimes referred to as a symmetric connection. In
the case that ∇ is the Levi-Civita connection we have the important formula for computing the
Christoffel symbols:

∗ Γk
ij =

1

2

n∑
m=1

gmk

(
∂

∂xi
gjm +

∂

∂xj
gmi −

∂

∂xm
gij

)
∗

Example 19.
(1) A quick glance at the above formula shows that the Levi-Civita connection on Rn with

the Euclidean metric has Γk
ij = 0 for all i, j, k - recall that gij was the identity matrix so

∂
∂xi
gab = 0 for all i, a, b.

(2) Let G = H+ as in example 3.3.xi. We compute the Christoffel symbols using the above
formula. First recall that:

gij =

(
1
y2

0

0 1
y2

)
so:

gij =

(
y2 0
0 y2

)
hence g11 = g22 = y2 and g12 = g21 = 0. Moreover it is clear that ∂

∂xgab = 0 for all a, b.

Then we immediately conclude that Γ1
11 = Γ1

22 = Γ2
12 = 0. However:

Γ2
11 =

1

2

n∑
m=1

gm2(
∂

∂x
g1m +

∂

∂y
gm1 −

∂

∂xm
g11) =

1

2
g12(

∂

∂y
g11 −

∂

∂x
g11) +

1

2
g22(

∂

∂y
g21 −

∂

∂y
g11)

= +
1

2
y2(− ∂

∂y

1

y2
)

=
1

y

A similar calculation shows that Γ1
12 = Γ2

22 = − 1
y .

(3) Let G be the Heisenberg group, ie the 3× 3 matrices of the form:

M =

1 x z
0 1 y
0 0 1


with the operation of matrix multiplication. There is a natural choice of coordinates

G→ R3 given by M 7→ (x, y, z). Take the inner product on g given by gg = δij and let g be
the left-invariant Riemannian metric on G induced by gg. One can compute that in these

Page 11
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coordinates:

gij =

1 0 0
0 x2 + 1 −x
0 −x 1


Applying the formula from the previous section we find that:

Γk
1,1 = Γk

2,2 = Γk
3,3 = 0

Γ1
1,2 = Γ1

1,3 = 0

Γ1
2,3 = Γ2

1,3 =
1

2

Γ2
1,2 =

x

2

Γ2
2,3 = 0

Γ3
1,2 =

x2 − 1

2

Γ3
1,3 = −x

2

Γ3
2,3 = 0

(4) Let γ : I → R2 be a curve γ(t) = (r(t), z(t)) and let M be the surface of revolution for γ.
Then:

Γ1
1,1 = 0

Γ1
1,2 = 0

Γ1
2,2 =

1

2
(− ∂

∂t
r2) = −rr′

Γ2
1,1 = 0

Γ2
1,2 =

1

2r2
(
∂

∂t
r2(t)) =

rr′

r2
=
r′

r

Γ2
2,2 = 0

2.2. Various tensor quantities. Armed with the means to differentiate vector fields along ea-
chother, we now generalize a few concepts from Rn to M .

Definition 20. Given f :M → R we define the Hessian of f , denoted Hessf , to be the symmetric
(0, 2) tensor 1

2L∇fg. The (1, 1) version of the Hessian is given by S(X) = ∇X∇f . We note the
identity:

Hessf(X,Y ) =
1

2
L∇fg(X,Y ) = g(S(X), Y ) = g(∇X∇f, Y ) = (∇X∇f)(Y )

The usual Hessian of f on Rn is given by the symmetric n× n matrix Hij = ( ∂2f
∂xi∂xj

). Then the

trace of Hij gives us the usual Laplacian ∆f =
∑n

i=1
∂2

∂x2
i
f . We generalize the Laplacian to M in

this way.
The Laplacian of f , denoted ∆f is given by the trace of the Hessian and the divergence of a

vector field X is given by the trace of the map Y → ∇YX.
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2.3. Curvature. Having sufficiently generalized the gradient, Hessian, and Laplacian to functions
and vector fields on M we now attempt to extend these definitions to tensors. Recall that:

(∗) ∇g(X,Y, Z) = ⟨∇g(Y,Z), X⟩ = g(∇XY,Z) + g(Y,∇XZ)

so we see that the Levi-Civita connection ∇ for g already itself acts a gradient of the metric.
What about the Hessian and Laplacian of g? We defined the Hessian of a function f (ie, a (0, 0)
tensor) as the (0, 2) tensor:

(△) Hessf(X,Y ) = g(∇X∇f, Y ) = (∇X∇f)(Y ) = [∇X ,∇f ](Y )

.
so it makes sense to define Hessg to be a (0, 4) tensor by combining (∗) and △ letting f = g:

Hessg(X,Y, Z,W ) = (∇X∇g)(Y, Z,W )

= [∇X ,∇g](Y,Z,W )

= ∇X(∇g(Y,Z,W ))−∇g(∇XY,Z,W )−∇g(Y,∇XY,W )−∇g(Y,Z,∇XW )

= g(∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z,W )

where the last equality follows from a very long and tedious expansion of ∇g and a simplification
using properties of the Levi-Civita connection. With this heuristic in mind (guided by a search for
an appropriate Hessian of the metric) we are led to the following definition.

Definition 21. The curvature tensor R for (M, g) is the (1, 3) tensor:

R(X,Y )Z = R(X,Y, Z) = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z

that can be turned into a (0, 4) tensor (also denoted R) in the usual way by:

R(X,Y, Z,W ) = g(R(X,Y )Z,W )

2.3.1. Proposition. The curvature tensor R satisfies the following four identities:

(1) R(X,Y, Z,W ) = −R(Y,X,Z,W ) = R(Y,X,W,Z)
(2) R(X,Y, Z,W ) = R(Z,W,X, Y )
(3) R(X,Y )Z +R(Z,X)Y +R(Y,Z)X = 0
(4) (∇ZR)(X,Y )(W ) + (∇XR)(Y,Z)W + (∇YR)(Z,X)W = 0

Given the first two properties in the previous proposition we see that we don’t need to evaluate
R on all n4 possible combinations of 4-tuples of basis vectors in each TpM - there exists a smaller
collection of them we can check to get a full description of the curvature. The following is one such
useful reformulation of the curvature tensor - as an operator on bivectors.

Definition 22. Given a Riemannian manifold (M, g) we extend g to an inner product on the space
of bivectors Λ2M by g(x∧y, v∧w) = g(x, v)g(y, w)−g(x,w)g(y, v). If {e1, ..., en} is an orthonormal
basis for TpM then {ei ∧ ej | i < n} forms an orthonormal basis for Λ2

pM . We also extend R to a

symmetric bilinear form R : Λ2
pM ×Λ2

pM → R given by R(x∧ y, z ∧w) = R(x, y, w, z) and further

extend this to a bilinear map on Λ2M × Λ2M → R by R(X ∧ Y, Z ∧W ) = R(X,Y,W,Z). This
induces a self adjoint linear operator R : Λ2M → Λ2M defined implicitly by:

g(R(X ∧ Y ), Z ∧W ) = R(X ∧ Y,Z ∧W ) = R(X,Y,W,Z)

that we call the curvature operator. As R is self adjoint there exists an orthonormal basis
of eigenvectors for R. If all of the eigenvalues are positive (resp. nonnegative) we say that R is
positive (resp. nonnegative).Since we have a symmetric bilinear form R : Λ2

pM × Λ2
pM → R,
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recall from section 2.2 that there is an associated quadratic form S : Λ2
pM → R given by S(σ) =

g(R(σ), σ).

2.3.2. Remark. Given a basis β = {e1, ..., en} for a vector space V we get a basis β′ = {ei∧ej | i < j}
for Λ2V and if β is orthonormal then β′ is too. If T : Λ2V → Λ2V is a self adjoint linear operator we
know from linear algebra that there exists an orthonormal basis of eigenvectors for T . It is not true
however that these eigenvectors are necessarily of the form ei ∧ ej with {e1, ..., en} an orthonormal
basis for V - in general we will need to take linear combinations.

Definition 23. Given p ∈ M and u, v ∈ TpM we define the sectional curvature at p with
respect to the two plane σ generated by u, v to be:

secp(σ) =
R(v, u, u, v)

g(u, u)g(v, v)− g(u, v)2

If we pick an orthonormal basis for σ we see that secp(σ) = S(σ) = g(R(σ), σ).

Theorem 24. The following are equivalent:

(1) secp(σ) = k for all σ ⊂ TpM
(2) R(u, v)w = k(g(u,w)v − g(v, w)u) for all u, v, w ∈ TpM
(3) R(ω) = kω for all ω ∈ Λ2

pM

If (M, g) satisfies any of the above for all p ∈M we say M has constant curvature k. If k = 0
we call M flat. One can easily see Rn with the Euclidean metric is flat.

It is easy to see that if R is positive then sec > 0. The converse, however, is not true. To see this,
note that S

∣∣
Gr2(TpM)

= secp. So it can happen that the restriction of S to Gr2(TpM) is positive,

but since Gr2(TpM) ⊊ Λ2(TpM) there may be σ ∈ Λ2(TpM) with S(σ) = 0 but σ /∈ Gr2(TpM).

Definition 25. The (0, 2) tensor Ric given by:

Ric(Y, Z) = tr(R(X,Y )Z)

(we are taking the trace of the map T : TpM → TpM where T (x) = R(x, y)z). Since the
curvature was the appropriate generalization of the Hessian to the metric tensor of M , this is the
appropriate generalization of the Laplacian. If {e1, ..., en} is an orthonormal basis for TpM then
we have the (1, 1) version of Ric:

Ric(X) =
n∑

i=1

R(X, ei)ei

Since the (0, 2) and (1, 1) versions of Ric are related by:

Ric(X,Y ) = g(Ric(X), Y )

we let {X, e2, ..., en} be an orthonormal basis for TpM and see:

Ricp(X,X) = g(

n∑
i=1

R(X, ei)ei, X) =

n∑
i=1

g(R(X, ei)ei, X) =

n∑
i=2

sec(X, ei)

so the Ricci curvature can be viewed as the sum of the sectional curvatures. If all the eigen-
values λj of the (1, 1) version satisfy λj ≥ k then we say that Ric ≥ k. Equivalently Ric ≥ k
when Ric(X,X) ≥ kg(X,X). If Ric(X) = kX for all X then we call M an Einstein manifold
with Einstein constant k. In (0, 2) language this is Ric(X,Y ) = kg(X,Y ). It is clear from the
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definitions that manifolds with constant curvature k are Einstein with Einstein constant (n − 1)k
and manifolds with positive sectional curvature have positive Ricci curvature (although we will see
that the converse of both statements need not hold).

Definition 26. Let {e1, ..., en} be an orthonormal frame. Then the scalar curvature is defined
by:

scal =
∑
i ̸=j

sec(ei, ej)

Note that this does not depend on the choice of orthonormal frame.
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3. Curvature formulas

If M is a Riemannian manifold, U ⊂ M is open and r : U → R is a distance function, denote
the level sets of r in U by Ur. Recall that r is a Riemannian sumbersion so Ur is an embedded
submanifold for all r ∈ R. We write ∇r for the connection on Ur, gr for the metric on Ur by
restricting g, and Rr for the curvature tensor. In this section we will develop some equations
involving ∇r and Rr on one side, but ∇ and R on the other. This will allow us to compute R given
Rr, and conversely to compute Rr given R. Because R ≡ 0 on Rn with the Euclidean metric, this
will greatly aid us in computing the curvature of embedded hypersurfaces. For readability we will
sometimes write the gradient of r (formerly denoted ∇r) as ∂r.

3.1. Riemannian Submersions.

Definition 27. Given a Riemannian manifold M , an open U ⊂ M and a distance function r :
U → R, we call the (1, 1) tensor S defined by:

S(X) = ∇X∂r

the shape operator or second fundamental form.

Note the similarity with the (1,1) version of the Hessian; in fact Hessr(X,Y ) = g(S(X), Y ).
Since ∂r is normal to Ur, S(X) will tell us information about gr by computing changes in the unit
normal to Ur. This is an extrinsic quantity - S(X) tells us about Ur as a Riemannian submanifold
of Rn (since it depends on r). This is in contrast to the curvature tensor R, defined intrinsically in
terms of the metric and Levi-Civita connection.

Given X,Y ∈ X (Ur), we decompose the connection ∇XY = (∇XY )T +(∇XY )N . The tangential
part is equal to the Levi-Civita connection on Ur, (∇XY )T = ∇r

XY , and the normal part is a (1, 2)
tensor sometimes also referred to as the second fundmantal form for r. There is a third operator
sometimes referred to as the second fundamental form II(X) = g((∇XX)N , ∂r).

Theorem 28. Given an open U ⊂ M and distance function r : U → R we have that for all
X ∈ X (U):

∇∂rS(X) + S(S(X)) = −R(X, ∂r)∂r

Proof.

∇∂rS(X) + S(S(X)) = ∇∂r∇X∂r −∇∇∂rX
∂r +∇∇X∂r∂r

= ∇∂r∇X∂r −∇[∂r,X]∂r (∗)
= −R(X, ∂r)∂r −∇X∇∂r∂r

= −R(X, ∂r)∂r

where the final equality follows from S(∂r) = ∇∂r∂r = 0.
□

Theorem 29 (Gauss Equations). For X ∈ X (U) we write X = XT +XN where XT ∈ TUr and
XN ∈ TN = (TUr)

⊥. Then for X,Y, Z,W ∈ X (U) ∩ X (Ur):

(R(X,Y )Z)T = Rr(X,Y )Z + g(S(X), Z)S(Y )− g(S(Y ), Z)S(X)

R(X,Y, Z,W ) = Rr(X,Y, Z,W ) + g(S(X), Z)g(S(Y ),W )− g(S(Y ), Z)g(S(X),W )
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Theorem 30 (Codazzi-Mainardi Equations). Given X,Y, Z as in the previous theorem:

R(X,Y, Z, ∂r) = g(∇Y S(X)−∇XS(Y ), Z) = g(∇Y S(X), Z)− g(∇XS(Y ), Z)

Theorem 31 (Gauss’s Theorema Egregium). If M ⊂ R3 is a hypersurface then for all p ∈M :

secp(σ) = detS

where S is the shape operator for M .

Proof. Let {X,Y } be an orthonormal basis for σ. Since R ≡ 0 on R3 we have by theorem 5.1.3:

secp(σ) = Rr(X,Y, Y,X) = g(S(X), X)g(S(Y ), Y )− g(S(X), Y )g(S(Y ), X) = detS

□

This says that the product of the eigenvalues for S, (sometimes referred to as the Gaussian
curvature of M) an extrinsic quantity defined in terms of the distance function r, is actually
intrinsic to M and invariant under the choice of embedding.

Proposition 32. The curvature tensor can be recovered from the sectional curvature by:

6R(X,Y, V,W ) = R(X +W,Y + V )−R(X,Y + V )−R(W,Y + V )−R(X +W,V )

−R(X +W,Y ) +R(X,V ) +R(W,Y )−R(X + V, Y +W ) +R(X,Y +W )

+R(V, Y +W ) +R(X + V, Y ) +R(X + V,W )−R(V, Y )−R(X,W )
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4. Computing the curvature

In this section we compute some curvature quantities for a selection of Riemannian metrics.

Example 33.
(1) We first compute the curvature tensor R of Sn(r). Let r : Rn+1 \ 0 → R be given by

r(v) = |v|. As was described in section 3, r is a distance function with Ur = Sn(r), so we
compute Rr. Recall (3.3.1.viii) that the metric tensor for Rn+1 was given by the warped
product metric associated to sn20. The k = 0 solution to that ODE is φ(r) = r hence we
may write:

g = dr2 + r2ds2n = dr2 + gr

Since R ≡ 0 on Rn the first Gauss equation (theorem 5.1.3) says:

0 = Rr(X,Y )Z + g(S(X), Z)S(Y )− g(S(Y ), Z)S(X)

i.e.

Rr(X,Y )Z = g(S(Y ), Z)S(X)− g(S(X), Z)S(Y )

As was noted in definition 5.1.1 g(S(X), Y ) = Hessr(X,Y ), so we compute the Hessian:

Hessr =
1

2
L∂rg =

1

2
(L∂r(dr

2) + L∂r(r
2ds2n)) =

1

2
(L∂r(dr)dr + drL∂r(dr) + ∂r(r

2)ds2n + r2L∂r(ds
2
n))

=
1

2
(d(L∂rr)dr + drd(L∂rr) + 2rds2n)

=
1

2
(d(1)dr + drd(1) + 2rds2n)

= rds2n

=
gr
r
.

Now since:

∂r =
1

r

n+1∑
i=1

xi
∂

∂xi

then:

S(X) = ∇X∂r = ∇X(
1

r

n+1∑
i=1

xi
∂

∂xi
) =

X

r

so S is the identity. Putting all of this into our equation for Rr:

Rr(X,Y )Z = g(S(Y ), Z)S(X)− g(S(X), Z)S(Y ) = Hessr(Y,Z)S(X)−Hessr(X,Z)S(Y )

=

(
gr(Y,Z)

r

)(
X

r

)
−
(
gr(X,Z)

r

)(
Y

r

)
=

1

r2
(gr(Y,Z)X − gr(X,Z)Y )

hence we apply theorem 4.3.3 and conclude Sn(r) has constant curvature 1/r2 and is
therefore also Einstein with Ric(X) = n−1

r2
X.

Page 18



Matt Koster RIEMANNIAN GEOMETRY

(2) Let M1,M2 be Riemannian manifolds with metrics g1, g2 and M = M1 × M2 with the
product metric. Since TM = TM1×TM2 any vector fieldX :M → TM can be decomposed
into X = X1 + X2 where X1 : M → TM1 and X2 : M → TM2. Let R1, R2 denote the
curvature tensors in M1,M2. Under this decomposition we have:

R(X1 +X2, Y1 + Y2, Z1 + Z2) = R1(X1, Y1, Z1) +R2(X2, Y2, Z2)

It is easy to see from this formula that for all p ∈M there exists u, v such that secp(u, v) =
0.

(3) Consider T 2 = S1×S1 with the product metric induced by the standard metric on S1 (the
flat torus). Using example 2 we decompose the curvature tensor into R = R1 + R2. If
X,Y :M → TS1 then Y = fX for some f ∈ C∞(M). Thus:

R(X1 +X2, Y1 + Y2, Z1 + Z2) = R1(X1, Y1, Z1) +R2(X2, Y2, Z2) = 0

since for example:

R1(X1, Y1, Z1) = R1(X1, fX1, gX1) = fgR1(X1, X1, X1) = 0

So R ≡ 0 on T 2 justifying the name. A similar calculation can be done for Tn.
(4) (Sn( 1√

p)×S
m( 1√

q )). Example 1 gave us that the metric on Sn(r) is the metric on Sn = Sn(1)

scaled by r2 (the equality gr = r2ds2n). Then M = Sn( 1√
p)× Sm( 1√

q ) = (Sn × Sm, 1pds
2
n +

1
qds

2
m) as Riemannian manifolds. By the previous example we have R = Rn+Rm where Rn

and Rm were computed in example 1. If Xn, Yn, Zn : M → TSn and Xm, Ym, Zm : M →
TSm then:

R(Xn, Yn, Zn) = Rn(Xn, Yn, Zn) = p(gn(Yn, Zn)Xn − gn(Xn, Zn)Yn)

R(Xm, Ym, Zm) = Rm(Xm, Ym, Zm) = q(gm(Ym, Zm)Xm − gm(Xm, Zm)Ym)

R(Xn, Xm, Zn + Zm) = Rn(Xn, 0, Zn) +Rm(0, Xm, Zm) = 0 = R(Xm, Xn, Zn + Zm)

The final equation tells us that the only way for M to have constant sectional curvature
would be that it is identically zero everywhere (this could also be realized by what is written
at the end of example 2). If we choose Xn, Yn linearly independent at some p ∈ M then
gn(Yn, Zn)Xn − gn(Xn, Zn)Yn ̸= 0 unless both of the coefficients are. But if n > 1 we can
certainly always choose Zn in such a way that at least one of the coefficients is nonzero (for
example Zn = Yn) so M can never have constant curvature for n > 1. By symmetry this
applies to m thus a product of spheres cannot have constant curvature if either of n,m > 1.
If n = m = 1 we are reduced to the previous example where we saw that indeed S1 × S1

(with the product metric) has constant curvature 0.

The above also tell us that:

R(Xn ∧ Yn) = pXn ∧ Yn
R(Xm ∧ Ym) = qXm ∧ Ym
R(Xn ∧ Ym) = 0

Now by example 2 again we have that:
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Ric(Xn) = (n− 1)pXn

Ric(Xm) = (m− 1)qXm

Ric(Xn +Xm) = (n− 1)pXn + (m− 1)qXm

so M is Einstein if and only if p(n − 1) = q(m − 1). Thus we have an example of an
Einstein manifold that does not have constant curvature by taking p = q = 1 and any
n = m > 1, having Einstein constant n− 1 = m− 1. It is an open problem whether there
exists a different metric on S2 × S2 with strictly positive sectional curvature.

(5) (Surfaces of revolution). Let γ(t) = (φ(t), ψ(t)) be a curve into R2 and let M ⊂ R3 be the

surface of revolution for γ with metric tensor (φ̇2 + ψ̇2)dt2 + φ2dθ2 on I × S1. Since this is
not the product metric we cannot proceed as in the previous examples (R does not factor
into R1 +R2).

First parametrize γ by arc length so our metric takes on the form dt2 + φ2(t)dθ2. Then
letting r :M → R be r(t, θ) = t we see ∂r = ∇r = ∂

∂t so:

g(∇r,∇r) = dt2(
∂

∂t
,
∂

∂t
) ≡ 1

hence r is a distance function with level sets r−1(k) = {k}× S1. Since M has dimension
2 we need only compute R(∂θ, ∂r, ∂r) via theorem 5.1.2:

R(∂θ, ∂r, ∂r) = −∇∂rS(∂θ)− S(S(∂θ)) = −∇∂rS(∂θ) + S(∇∂r∂θ)− S(S(∂θ))

where ∂θ is counterclockwise angular field on S1. We computed the Christoffel symbols
for M in example 4.1.8.iv so we have:

S(∂θ) = ∇∂θ∂r =
φ′

φ
∂θ.

thus we conclude

R(∂θ, ∂r)∂r = −φ
′′

φ
∂θ.

The sectional curvature is then:

sec =
R(∂θ, ∂r, ∂r, ∂θ)

φ2
=
g(−φ′′

φ ∂θ, ∂θ)

φ2
=

−φ′′

φ φ
2

φ2
= −φ

′′

φ
and the Ricci curvatures:

Ric(∂r) =
φ′′

φ
∂r

Ric(∂θ) = −φ
′′

φ
∂θ

(6) Consider M = H+ with curvature tensor:

dx2

y2
+
dy2

y2
.

This is equivalent to the warped product:
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dt2 + sn2−1ds
2
1

on I × S1. An inspection of the previous example reveals that this is merely a specific
case with φ = sn2−1. The ODE defining φ = sn2−1 is:

φ′′ − φ = 0, equivalently
φ′′

φ
= 1

φ′(0) = 1

φ(0) = 0

so we immediately conclude the curature tensor is:

R(∂θ, ∂r)∂r = −∂θ
so the sectional curvature is sec = −1 and we see M has constant curvature −1.

(7) More generally suppose G is a Lie group with a bi-invariant metric. Then:

∇XY =
1

2
[X,Y ]

R(X,Y )Z = −1

4
[[X,Y ], Z]

R(X,Y, Z,W ) =
1

4
g([X,Y ], [W,Z]) ≥ 0

The first follows from the Koszul formula and the second two follow from the first.
(8) Let H be the Heisenberg group from example 4.1.8.iii. We first note that (using the calcu-

lation of the Christofel symbols done there) that [X,Y ] = Z but:

∇XY (x, y, z) =
x

2
Y +

x2 − 1

2
Z ̸= Z

hence (by the previous example) our metric is not bi-inariant.
(9) (Berger spheres) The special unitary group SU(2) is defined by:

SU(2) = {M ∈M2(C) | MM∗ = I, det(M) = 1}

= {
(
z w

−w z

)
: |z|2 + |w|2 = 1}

= S3

and is a 3 dimension (real) Lie group. The Lie algebra su(2) is given by:

su(2) = {M ∈M2 | M∗ = −M, tr(M) = 0}

= {
(

ix iz + y
iz − y −ix

)
| x, y, z ∈ R}

with basis:

X =

(
i 0
0 −i

)
, Y =

(
0 1
−1 0

)
, Z =

(
0 i
i 0

)
If we let g1 be the inner product on su(2) satisfying g1(X,Y ) = g1(X,Z) = g1(Y, Z) = 0

and g1(X,X) = g1(Y, Y ) = g1(Z,Z) = 1 (i.e. making {X,Y, Z} into an orthonormal basis)
then the induced left-invariant metric on SU(2) makes SU(2) into a Riemannian manifold
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isometric to S3 with its usual round metric.

If we instead let g be the inner product on su(2) such that g(X,Y ) = g(X,Z) = g(Y,Z) =
0 (i.e. X,Y, Z are orthogonal) and g(Y, Y ) = g(Z,Z) = 1 but g(X,X) = ϵ2 > 0 we call
SU(2) with the induced left-invariant metric gϵ the ϵ-Berger sphere. The metric tensor for
(SU(2), gϵ) is:

ϵ2dX2 + dY 2 + dZ2

By the Koszul formula ∇V V = 0. Computing the rest:

∇XY = (2− ϵ2)Z

∇YX = −ϵ2Z
∇XZ = (ϵ2 − 2)Y

∇ZX = ϵ2Y

∇Y Z = X

∇ZY = −X
therefore:

R(X,Y )Y = ϵ2X

R(Z,X)X = ϵ4Z

R(Y, Z)Z = (4− 3ϵ2)Y

and:

R(X,Y )Z = R(Y,Z)X = R(Z,X)Y = 0

.
Finally we compute R. Since g(X,X) = ϵ2 and g(Y, Y ) = g(Z,Z) = 1 we have that

{X
ϵ , Y, Z} forms an orthonormal basis for su(2) that we take (by abuse of notation) to be

left invariant vector fields on SU(2). This defines an orthonormal basis {X
ϵ ∧Y,

X
ϵ ∧Z, Y ∧Z}

for Λ2M . Now:

g(R(
X

ϵ
∧ Y ),

X

ϵ
∧ Y ) = R(

X

ϵ
, Y, Y,

X

ϵ
) =

1

ϵ2
R(X,Y, Y,X) =

1

ϵ2
g(ϵ2X,X) = ϵ2

g(R(
X

ϵ
∧ Y ),

X

ϵ
∧ Z) = R(

X

ϵ
, Y, Z,

X

ϵ
) = 0

g(R(
X

ϵ
∧ Y ), Y ∧ Z) = R(

X

ϵ
, Y, Z, Y ) = 0

so R(Xϵ ∧Y ) = ϵ2Xϵ ∧Y , equivalently R(X∧Y ) = ϵ2X∧Y . Similar calculations will show

that R(Z ∧X) = ϵ2Z ∧X and R(Y ∧ Z) = (4− 3ϵ2)Y ∧ Z. Thus we have an orthonormal
basis of eigenvectors to diagonalize R so ϵ2 ≤ secp ≤ 4− 3ϵ2 for all p ∈ SU(2).

(10) If F : M → N is a Riemannian submersion we can compute the curvature tensor for N
in terms of the curvature tensor for M . Given p ∈ M , dpF : TpM → TF (p)N is surjective

so TpM = ker(dpF ) ⊕ ker(dpF )
⊥ = Vp ⊕Hp

∼= Vp ⊕ TF (p)M . Then we can write v ∈ TpM

as v = vV + vH and call vV the vertical part and vH the horizontal part. Thus if
Page 22



Matt Koster RIEMANNIAN GEOMETRY

X ∈ X (N) there is a unique X ∈ X (M) with X
V ≡ 0 such that dF (X) = X called the

(basic) horizontal lift of X. With this notation we have the following result:

Theorem 34 (O’Neill’s formula). If R is the curvature tensor for N and R is the curvature
tensor for M then:

R(X,Y, Y,X) = R(X,Y , Y ,X) +
3

4

∣∣∣∣[X,Y ]V
∣∣∣∣2

We saw earlier that the quotients of Riemannian manifolds by certain group actions
give us Riemannian submersions, and we can now use the O’Neill formula to compute the
curvature tensor for them. To this end we will do the calculation for complex projective
space.

By the isomorphism Cn ∼= R2n we can see S2k−1 ⊂ Ck. We have an action of S1 ⊂ C
on S2k−1 by scalar multiplication that satisfies the conditions given previously. Under this
action we have CP (n) = S2n+1/S1 with π : S2n+1 → CP (n) a Riemannian submersion. We
can write the metric on S2n+1 (letting p = 2n− 1, q = 1) as:

g = dr2 + sin2(r)ds22n−1 + cos2(r)dθ2

and see S1 acting independently on S2n−1 and S1. We then write the metric on CP (n)
as:

g = dr2 + sin2(r)(g + cos2(r)h)

which we call the Fubini-Study metric. Using the O’Neill formula we see that the
sectional curvatures in CP (n) must be larger than 1 as Sm has constant curvature equal
to 1. Conversely fix p ∈ CP (n), let X,Y ∈ TpCP (n) be orthonormal and denote by N
the unit vector field on S2n+1 that is tangent to the action of S1. Then one can show that
g(12 [X,Y ], V ) = g(Y , iX) ≤ 1 so by the O’Neill formula secp(X,Y ) = 1 + 3

4 |[X,Y ]V |2 =

1 + 3g(iX, Y ) ≤ 4. Thus we conclude that for all p ∈ CP (n) we have 1 ≤ secp ≤ 4.

To compute the Ricci curvature fix p ∈M , let X ∈ TpCP (2) satisfy |X| = 1 and extend

X to an orthonormal basis X,E2, ..., E2n such that iX = E2. Then by the O’Neill formula:

Ricp(X,X) =

2n∑
i=2

secp(X,Ei)

= secp(X,E2) +

2n∑
i=3

secp(X,Ei)

= 1 + 3|g(E2, iX)|2 +
2n∑
i=3

(1 + 3|g(Ei, iX)|2)

= 1 + 3 +
2n∑
i=3

1

= 4 + (2n− 2)

= 2n+ 2

thus CP (2) is Einstein with Einstein constant 2n + 2. Finally consider an orthonormal
basis for TpCP (2) of the form X, iX, Y, iY . Then the following basis β:
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X ∧ iX + Y ∧ iY, X ∧ iX − Y ∧ iY
X ∧ Y + iX ∧ iY, X ∧ Y − iX ∧ iY
X ∧ iY + Y ∧ iX, X ∧ iY − Y ∧ iX

diagonalizes R, whose matrix in these coordinates is:

[R]β =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 6 0 0 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 2


To see this, we first evaluate R(Y, iY, iX,X) as it will come up frequently in the compu-

tation. Using proposition 5.1.6 we have:

6R(Y, iY, iX,X) =4 sec(X + Y, iX + iY )− 2 sec(Y, iX + iY )− 2 sec(X, iX + iY )

− 2 sec(X + Y, iX)− 2 sec(X + Y, iY ) + sec(Y, iX) + sec(X, iY )

− 4 sec(Y + iX, iY +X) + 2 sec(Y, iY +X) + 2 sec(iX, iY +X)

+ 2 sec(Y + iX, iY ) + 2 sec(Y + iX,X)− sec(iX, iY )− sec(Y,X)

and applying the formula for sec above the right hand side is 12 so R(Y, iY, iX,X) = 2.
Armed with this we will do an example calculation for R. First assume that the β given
are all eigenvectors for R. Then:

g(R(X ∧ iX ± Y ∧ iY ), X ∧ iX ± Y ∧ iY )

= R(X, iX, iX,X) +R(Y, iY, iY, Y )± 2R(X, iX, iY, Y )

= sec(X, iX) + sec(Y, iY )± 2R(X, iX, iY, Y )

= 8± 4

and:

g(R(X ∧ iX ± Y ∧ iY ), X ∧ iX ± Y ∧ iY ) = cg(X ∧ iX ± Y ∧ iY,X ∧ iX ± Y ∧ iY ) = 2c

2c = 8± 4 i.e. c = 4± 2 giving us the 6 and one of the 2 entries in the matrix above.
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5. Hypersurfaces and isometric immersions.

If M is an Riemannian manifold of dimension n− 1 we would like to know when we can find a
Riemannian embedding or at least an isometric immersion F : M → Rn. Below we shall assume
we have found one and derive several necessary conditions to act as obstructions.

Definition 35. Given an isometric immersion F :M → Rn ifM is orientable we can choose a unit
vector field N ∈ X (Rn) normal to M . If M is not orientable we can instead pass to the oriented
double cover and fix N this way. Since |N(x)| = 1 we can view N as a map G : M → Sn−1 called
the Gauss map. Then we see that dG(v) = S(v).

Theorem 36. Suppose F :M → Rn is an isometric immersion with n > 2 and M is compact with-
out boundary. If the eigenvalues of S are always positive then G : M → Sn−1 is a diffeomorphism
and F is an embedding.

Proof. If the eigenvalues of S are always positive, in particular they are never zero. Since dG = S
we have that dG is invertible on M hence it is a local diffeomorphism. As M is compact and Sn is
connected this gives us that G is surjective. For x ∈ Sn compactness of M gives us that G−1(x) is
finite (of order m). For each pi ∈ G−1(x) we can find pairwise disjoint neighbourhoods Pi (as M
is Hausdorff) and by choosing smaller neighbourohods Ui if needed the inverse function theorem
gives us open neighbourhoods Vi of x such that G : Ui → Vi is a diffeomorphism. Then it is easy
to see that:

m⋂
i=1

Vi \G(M \
m⋃
i=1

)

is an evenly covered neighbourhood of x hence G is a covering map. But Sn is simply connected
so G must be a diffeomorphism.

It remains to show that F is an embedding. M is compact and F is an immersion so we need
only show that F is injective. Fix p0 ∈M and let g :M → R be given by:

f(p) = d(F (p), TF (p0)F (M)) = ⟨F (p)− F (p0), N(p0)⟩
where N is the unit normal to F (M). Hence:

df(v) = ⟨dF (v), N(p0)⟩.
But F is an immersion so df(v) ̸= 0 so the critical points for f are the two points p1, p2 such

that when N(pi) = ±N(p0), one of which is p2 = p0. Moreover f(p1) ̸= f(p0) else f ≡ 0. Then
with no loss in generality we may assume f ≥ 0. Now if F (p) = F (p0) then f(p) = f(p0) = 0 so
p = p0, thus F is injective hence an embedding. □

Proposition 37. Suppose F :M → Rn is an isometric immersion and let p ∈M . Let {e1, ..., en}
an orthonormal basis of eigenvectors for S : TpM → TpM with eigenvalues λi. Then R(ei ∧ ej) =
λiλjei ∧ ej.

Proof. Since S(ei) = λiei by theorem 5.1.3 we have:

g(R(ei ∧ ej), ek ∧ eℓ) = g(S(ej), eℓ)g(S(ei), ek)− g(S(ei), eℓ)g(S(ej), ek)

= λjλig(ej , eℓ)g(ei, ek)− λiλjg(ei, eℓ)g(ej , ek)

= λjλig(ei ∧ ej , ek ∧ el)
= δi,kδj,ℓλiλj

□
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Since λiλj = g(R(ei ∧ ej), ei ∧ ej) = sec(ei, ej) the previous result allows us to conclude that any
Riemannian hypersurface with positive sectional curvature must have positive curvature operator.
This shows that CP (2) does not have a Riemannian embedding into R5 as we saw that CP (2) has
0 as an eigenvalue but 1 ≤ sec ≤ 4.

Now we give a result that can be used to rule out the existence of isometric immersions for
manifolds of dimension n ≥ 3.

Proposition 38. Suppose F :M → Rn+1 is an isometric immersion and n ≥ 3. If R : Λ2(TpM) →
λ2(TpM) is positive then we can compute S : TpM → TpM independently of F .

Proof. Let β = {e1, e2, e3} be an orthonormal basis for TpM and let (sij) = [S]β. Since (sij) =
g(S(ei), ej) we can apply the previous proposition with no loss in generality to conclude that all
the eigenvalues are positive. By theorem 5.1.3 we have:

g(R(ei ∧ ej), ek ∧ eℓ) = g(S(ej), eℓ)g(S(ei), ek)− g(S(ei), eℓ)g(S(ej), ek)

This allows us to compute S−1 by first computing the cofactor matrix (where the subscripts are
taken mod 3):

(cij) = (−1)i+j(si+1,j+1si+2,j+2 − si+2,j+1si+1,j+2)

along with detS = det(cij)
n−1.

□

To see an application of the previous result we will show that the Berger spheres cannot be
isometrically immersed into R4. We saw that R is positive if 0 < ϵ < 1. Following the computation
in the proof in the previous proposition we see that:

S(
X

ϵ
) =

ϵ2√
4− 3ϵ2

X

ϵ

S(Y ) =
√

4− 3ϵ2Y

S(Z) =
√

4− 3ϵ2Z

We know (∇Y S)(Z) = (∇ZS)(Y ), but:

(∇Y S)(Z) = (
√

4− 3ϵ2 − ϵ2√
4− 3ϵ2

)ϵX ̸= −(
√
4− 3ϵ2 − ϵ2√

4− 3ϵ2
)ϵX = (∇ZS)(Y )

Now we show that n ≥ 3 in the previous proposition was necessary. LetM be the warped product
with metric tensor dt2+(a sin(t))2dθ2. Then as was computed earlier we have that M has constant

curvature equal to 1. But letting x(t) =
∫ t
0

√
1− a cos(x)2dx and y(t) = a sin(t) we have ẋ2+ẏ2 = 1

and y = a sin(t) so we can write M as a surface of revolution F (t, θ) = (cos θy(t), sin θy(t), x(t)).
Computing a basis for TpM we have:

TF (t,θ)M = span{(ẋ(t), cos θẏ(t), sin θẏ(t)), (0,− sin θ, cos θ)}

so M has unit normal NF (t,θ) = (ẏ(t),− cos θẋ(t),− sin θẋ(t)). Recalling that we have the Gauss

map G = N and dG = S we see that S(∂t) ̸= ∂t so S ̸= I. But M = S2 is another surface with
constant curvature equal to 1 and on S2 we have S = I, so we conclude that S does depend on F .
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Theorem 39 (Gauss-Bonnet). If M is a compact orientable 2 dimension Riemannian manifold:∫
M

scal dV = 4πχ(M)

Page 27



Matt Koster

6. Geodesics

Let (M, g) be a Riemannian manifold and p, q ∈ M . By a path from p to q we mean a
continuous map γ : [0, a] → M with γ(0) = p, γ(a) = q such that the restriction of γ to (0, a) is
smooth. We define the length of γ to be:

ℓ(γ) =

∫ a

0
|γ̇(t)|dt

and the distance from p to q by:

d(p, q) = inf
γ
ℓ(γ)

where the infimum is taken over paths from p to q. Observe that d is a metric on M making
(M,d) into a metric space. Note also that, although d(p, q) is well defined, it may not be attained
by any path from p to q (take for example M = R2 \ 0 with the Euclidean metric, and p = (−1, 0),
q = (1, 0)). Before continuing we make an observation about smooth curves into Rn. Let p, q ∈ Rn

and α(t) = (1− t)p+ tq defined on [0, 1]. Then:

ℓ(α) =

∫ 1

0
|α̇|dt =

∫ 1

0
|q − p|dt = |q − p| = d(q, p)

Let r : Rn → R be the function r(x) = d(p, x). We know from earlier discussions that r is a
distance function and α is an integral curve for ∇r. Now suppose γ : [0, 1] → Rn is some other
smooth curve from p to q and |γ̇| > 0. Then:

ℓ(γ) =

∫ 1

0
|γ̇|dt =

∫ 1

0
|γ̇| · |(∇r)◦γ|dt ≥

∫ 1

0
⟨(∇r)◦γ, γ̇⟩dt =

∫ 1

0
dr(γ̇) = r(γ(1))−r(γ(0)) = d(p, q)

where the inequality comes from Cauchy-Schwarz. Since that inequality is an equality if and
only if kγ̇ = (∇r) ◦ γ then we must have that γ is a reparametrization of α .

6.1. Covariant differentiation and geodesics.

Definition 40. If γ : I →M is a smooth curve and Dγ γ̇(t0) = 0 then γ is called geodesic at t0.
If γ is geodesic at t for all t ∈ I then we simply call γ a geodesic. In coordinates (x1, ..., xn) this
is equivalent to the geodesic equation:

d2xk
dt2

+
∑
i,j

Γk
ij

dxi
dt

dxj
dt

= 0

for all k = 1, ..., n. The image of a geodesic is also called a geodesic.

The geodesic equation has a solution for any pair of initial conditions p, v defined on (−δ, δ) for
some δ > 0. Since Γk

ij = 0 on Rn we see that geodesics in Euclidean space are exactly the straight

lines. An alternative characterization of geodesics is sometimes convenient. Let X ∈ X (TM) be
given in coordinates (x1, ..., xn, y1, ..., yn) by:

dxk
dt

= yk

dyk
dt

= −
∑
ij

Γk
ijyiyj

Then γ : I →M is a geodesic if and only if (γ, γ̇) is an integral curve for X. What we conclude
is that for any p ∈ M there exists ϵ > 0 such that for any v ∈ TpM with |v| < ϵ there exist δ > 0
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and a unique geodesic γ : (−δ, δ) → M with γ(0) = p, γ̇(0) = v. For a choice of p ∈ M , v ∈ TpM ,
we denote the unique geodesic through p with velocity v by γ(p, v, t). We note here that if γ is a
geodesic:

d

dt
g(γ̇, γ̇) = 2g(∇γ̇ γ̇, γ̇) = 0

so |γ̇| = c is constant. It follows that:

s(t) =

∫ t

0
|γ̇|dt =

∫ t

0
c dt = ct

i.e. the arc length of γ is proportional to the velocity.

Proposition 41. If γ(p, v, t) is defined on (−δ, δ) then for any a > 0 the geodesic γ(p, av, t) is
defined on (−δ/a, δ/a) and moreover:

γ(p, v, at) = γ(p, av, t)

Proof. Define c(−δ/a, δ/a) → M by c(t) = γ(p, v, at). Then c(0) = γ(0) = p, ċ(0) = aγ̇(0) = av,
and:

Dc(ċ) = a2∇γ̇(at)γ̇(at) = 0

so c is a geodesic through p with velocity av. By uniqueness c(t) = γ(p, av, t).
□

This proposition tells us that we have a tradeoff we can make between the domain of definition
(−δ, δ) for a geodesic γ and the ϵ > 0 of choice for v ∈ TpM . In particular we can demand that our
geodesics γ be defined on (at least) I = (−2, 2). This allows us to make the following definition:

Definition 42. Given p ∈M we have the exponential map at p, expp : B(0, ϵ) →M given by:

expp(v) = γ(p, v, 1)

defined on the appropriate ball of radius ϵ that allows our geodesics to be defined on (−2, 2).

It is clear that expp is smooth and expp(0) = p. We also have the following important fact.

Proposition 43. For all p ∈M the exponential map is a local diffeomorphism near 0 ∈ TpM .

Proof. A quick computation shows:

d0 expp(v) =
d

dt

∣∣
t=0

(expp(tv)) =
d

dt

∣∣
t=0

γ(p, tv, 1) =
d

dt

∣∣
t=0

γ(p, v, t) = v

as claimed. □

Definition 44. Fix p ∈M and let ϵ > 0 is such that expp is a diffeomorphism from Bϵ(0) onto its
image. Then we call expp(Bϵ(0)) = Bϵ(p) the normal (or geodesic) ϵ-neighbourhood (or ϵ-ball or
simply just ball) of p. We call the boundary of this ball the normal (or geodesic) ϵ-sphere at p.

Let β = {e1, ..., en} be an orthonormal basis for TpM . We have an isomorphism φ : Rn → TpM
given by φ(x1, ..., xn) = x1e1 + · · ·xnen. We can combine this with the exponential map to get
a diffeomorphism φ−1 ◦ exp−1 : Bp(ϵ) → Rn. We call the coordinate chart (Bp(ϵ), φ

−1 ◦ exp−1)
normal coordinates at p.

Page 29



Matt Koster

Let U be a normal neighbourhood of p. If x : U → Rn is a normal coordinate chart for p then the
coordinate basis { ∂

∂xi
} is orthonormal. Conversely if {e1, ..., en} is an orthonormal basis for TpM

there exists a unique normal coordinate chart x for U such that ∂
∂xi

= ei. Finally if x and x are

two normal coordinate charts on U then xj = Ai,jxi for some orthogonal matrix (Aij). In normal
coordinates the metric tensor becomes:

g = dr2 + gr

where gr is the restriction of g to Sn−1 (recall earlier discussions of distance functions).

Proposition 45. Fix p ∈ M and let (U, x) be normal coordinates for p. Then gij(p) = I and

Γk
ij(p) = 0. Moreover if v = v1

∂
∂x1

+ · · · + vn
∂

∂xn
∈ TpM then γ(p, v, t) = (tv1, ..., tvn) in these

coordinates. Finally all first partial derivatives of gij vanish at p.

6.2. Geodesics as length minimizing curves.

Theorem 46 (The Gauss Lemma). Fix p ∈ M and ϵ > 0 such that expp : B0(ϵ) → Bp(ϵ) is a

diffeomorphism. Let v ∈ B0(ϵ) and write q = expp(v). Define r : Bp(ϵ) → R by r(q) = | exp−1(q)|.
Let {e1, ..., en} be an orthonormal basis for TpM and let x : Bp(ϵ) → TpM be the associated normal
coordinates. For v ∈ B0(ϵ) identify Tv(TpM) ∼= TpM , write q = expp(v) and define the vector field
∂r on Bp(ϵ) by ∂r(q) = dv expp(v). Then the following hold:

(1) r, ∂r are well defined on Bp(ϵ) (independent of the choice of normal coordinates).
(2) r, ∂r are smooth on Bp(ϵ) \ p.
(3) r2 is smooth on Bp(ϵ).
(4) ∇r(q) = ∂r(q).

Proof. i), ii) and iii) follow from earlier discussions. To prove iv) we need to show that gq(∂r(q), v) =
dqr(v) for all q ∈ U , v ∈ TqU . Writing q = (x1, ..., xn) in U we note that in these coordinates:

r2 = x21 + · · ·+ x2n

so 2rdr = 2x1dx1 + · · ·+ 2xndxn therefore:

dqr =
1

r
(x1dx1 + · · ·+ xndxn).

and also:

∂r =

n∑
i=1

xi
r

∂

∂xi
.

Consider v = ∂r. Then gq(∂r(q), v) = 1 by proposition 8.1.8. Conversely we see:

dqr(v) =
1

r
(x1dx1 + · · ·+ xndxn)(∂r) =

1

r
(x1dx1 + · · ·+ xndxn)

n∑
i=1

xi
r

∂

∂xi

=
x21 + · · ·x2n

r2

= 1

so the result is true for v = ∂r. Now let J =
∑n

i<j=1−xi
∂

∂xj
+ xj

∂
∂xi

(in R2 this is the familiar

rotational field x ∂
∂y − y ∂

∂x). Then:
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drq(J) =
1

r
(x1dx1 + · · ·+ xndxn)(

n∑
i<j

xi
∂

∂xj
− xj

∂

∂xi
) = 0

To compute gq(∂r(q), J) requires a couple steps. First see that g(∂r, J) is constant along geodesics
of the form γ(p, v, t) since:

∂rg(∂r, J) = g(∇∂r∂r, J) + g(∂r,∇∂rJ) = g(∂r,∇J∂r) =
1

2
Jg(∂r, ∂r) = 0

Now we compute:

|g(∂r, J)| ≤ |∂r| · |J | = |J | ≤
n∑

i<j

|xi| ·
∣∣∣∣ ∂∂xj

∣∣∣∣+ |xj | ·
∣∣∣∣ ∂∂xi

∣∣∣∣ ≤ r

(∣∣∣∣ ∂∂xi
∣∣∣∣+ ∣∣∣∣ ∂∂xj

∣∣∣∣)
so by taking limx→p of both sides we see that g(∂r(p), J) = 0 and since it is constant along

geodesics based at p we must have that g(∂r(q), J) = 0 for all q.

What we have shown thus far is that for any q ∈ U , drq(∂r(q)) = gq(∂r(q), ∂r(q)) and drq(J) =
gq(∂r(q), J). But for all v ∈ TqU we can write v as a linear combination of ∂r and J , concluding
the proof. □

Corollary 47. Fix p ∈ M and let ϵ > 0 sufficiently small that exp:B0(ϵ) → Bp(ϵ) is a diffeomor-
phism. Then for all v ∈ B0(ϵ) we have expp(tv) = γ(p, v, t) is the unique shortest path connecting
p to expp(v).

Proof. By the Gauss lemma we see that r is a distance function. Now fix q ∈ Bp(ϵ) and suppose
c : [a, b] →M is a smooth curve with c(a) = p and c(b) = q. A short computation shows:

ℓ(c) =

∫ b

a
|ċ|dt =

∫ b

a
|ċ| · |∇r| ≥

∫ b

a
dr(ċ) = r(c(b)) = d(p, q)

and equality holds if and only if ċ is proportional to ∇r, i.e. c is a reparametrization of exp
(hence a geodesic).

□

Remark 48. In short, we conclude that a smooth path γ from p to q is a geodesic if and only if
ℓ(γ) = d(p, q).

6.3. Computing geodesics. In this section we will compute the geodesics for a few Riemannian
manifolds.

Example 49.
(1) (Rn) As mentioned before for p, v ∈ Rn let γ(t) = vt + p. Then γ̈ ≡ 0 so γ is the geodesic

through p in the direction of v.
(2) (S2) Define γ : [0, 2π] → [0, π] × [0, 2π] by γ(t) = (π2 , t). Then one checks that Dγ(γ̇) ≡ 0

with the Riemannian metric tensor given by dt2 + sin2(t)dθ so γ is a geodesic. But in S2,
γ(t) = (cos(t), sin(t), 0) thus the equator is a geodesic on S2. Since SO(3) acts on S2 by
isometries and brings great circles to great circles we get (by uniqueness) that the geodeics
on S2 are given by great circles.

This example shows that not all geodesics connecting p to q are minimizing geodesics.
Consider p = (1, 0, 0) and q = (0, 1, 0). Then γ : [0, π2 ] → M where γ(t) = (cos(t), sin(t), 0)
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is a geodesic with γ(0) = p, γ(π2 ) = q with ℓ(γ) = π
2 and α(t) = (cos(t),− sin(t), 0) is

another geodesic connecting p to q with ℓ(α) = 3π
2 .

(3) (H+) Let H+ as previously defined. Let γ : [a, b] → H+ be given by γ(t) = (0, t) and suppose
α : [a, b] → H+ satisfies α(a) = (0, a) and α(b) = (0, b) and write α(t) = (x(t), y(t)). Then:

ℓ(α) =

∫ b

a
|α̇|dt =

∫ b

a

√
(
dx

dt
)2 + (

dy

dt
)2
dt

y
≥
∫ b

a

∣∣∣∣dydt
∣∣∣∣dty ≥

∫ b

a

dy

y
= ℓ(γ)

thus γ is a geodesic. Recall that (by the calculation in example 3.3.1.xi) we can write:

g = −4
dzdz

(z − z)2
.

Then any map φ : H+ → H+ of the form:

φ(z) =
az + b

cz + d
, ad− bc = 1

is an isometry that sends the y-axis to a semicircle whose diameter lies on the x-axis,
and in fact for every p ∈ H+ and v ∈ TpH+ we can construct such a circle, giving us a full
description of geodesics in H+.

(4) (Lie groups) Suppose G is a Lie group with bi-invariant metric g. Let X be a left-invariant
vector field on G and suppose γ is an integral curve for X through p, i.e. γ̇(t) = X(t). Then
γ is a geodesic as ∇γ̇ γ̇ = ∇XX = 1

2 [X,X] = 0.
When the metric is not bi-invariant, integral curves for left-invariant vector fields are not

necessarily geodesics (the computation for H+ above gives a counterexample).
(5) (Riemannian submersions) Suppose F :M → N is a Riemannin submersion. Then we may

compute the geodesics of N by lifting to M using the following:
(a) Fix p ∈ M and let α : (a, b) → N be a geodesic with α(0) = F (p). Then there exists

a unique horizontal lift γ : (a, b) →M such that γ(0) = p such that γ is a geodesic on
M .

(b) If γ : (a, b) → M is a geodesic and γ̇(0) is horizontal then γ̇(t) is horizontal for all
t ∈ (a, b) and F ◦ γ : (a, b) → N is a geodesic and ℓ(F ◦ γ) = ℓ(γ).

Proof. (a) Given t0 ∈ (a, b) there exists ϵ > 0 such that L = α((t0 − ϵ, t0 + ϵ)) is a smooth
1 dimension submanifold of N . Then V = F−1(L) is a smooth 1-dimension submanifold of
M . Let X be the horizontal vector field on V defined by:

X(x) = (dxF )
−1(α̇(F (x)))

Define γ to be the integral curve forX through p. Then one can check that γ is a geodesic.

(b) Let v = dγ(0)F (γ̇(0)) and define α(t) = α(F (γ(0)), v, t) to be the geodesic through
F (γ(0)) in the direction of v. Let β be the unique horizontal lift of α from part i. Then

β(0) = γ(0) and β̇(0) = γ̇(0) so by uniqueness we have β = γ. Since β was a lift of α we
have α = F ◦ β = F ◦ γ as claimed.

□

We use this to compute the geodesics on CP (2). First we note that as a real inner product
space, under the standard inner product on C3 we have for all v ∈ C3 that ⟨v, iv⟩ = 0. Then
we can extend any v ̸= 0 to an orthonormal basis on C3 of the form {v, iv, w3, w4, w5, w6}.
If v ∈ S5 ↪→ C3 then TvS

5 ∼= span{iv, w3, w4, w5, w6}. If p : S5 → CP (2) is the natural
projection z 7→ [z] then dvp(iv) = 0 so T[v]CP (2) ∼= span{w3, w4, w5, w6} = {v, iv}⊥.
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Now suppose [v] ∈ CP (2) and let w ∈ T[v]CP (2) i.e. w ∈ {v, iv}⊥. Then by the previous
result we have that α(t) = γ([v], w, t) = p(cos(t)v+sin(t)w) and so all geodesics are periodic
with period π as:

α(t+ π) = p(cos(t+ π)v + sin(t+ π)w) = p(− cos(t)v − sin(t)w) = p(cos(t)v + sin(t)w) = α(t)

Let α, γ : (0, π) → CP (2) be two geodesics with α(0) = γ(0) = [v], let u = α̇(0) and
w = γ̇(0). Then we have two cases. Either u = λw for λ ∈ C or not. If u = λw then
[u] = [w] so p(u) = p(w).

i) If u = λw then:

α(
π

2
) = p(u) = p(w) = γ(

π

2
).

ii) If u ̸= λw then α(π) = γ(π) and α(t) ̸= γ(t) for 0 < t < π.

Notice that a geodesic is only minimizing on [t0, t0 +
π
2 ] since β(t) = γ(t0 − t) will be a

shorter path connecting γ(t0) to γ(t0 + t1) as it has length t1 − π
2 for t1 >

π
2 .

6.4. Riemannian manifolds as a metric space.

Proposition 50. The topology induced by the metric d(p, q) = infγ ℓ(γ) is homeomorphic to the
manifold topology on M .

Corollary 51. M with the metric topology is a complete metric space if and only if for all p, q ∈M
there exists a geodesic γ : [a, b] →M with γ(a) = p, γ(b) = q.

Theorem 52. Suppose U ⊂ M is open and r : U → R is a distance function. Then the integral
curves for ∂r = ∇r are geodesics.

Proof. Since |∇r| ≡ 1 we see that ∇∂r∂r ≡ 0. Then if γ is an integral curve for ∂r, since γ̇ = ∂r we
conclude ∇γ̇ γ̇ ≡ 0. □

Theorem 53 (Hopf-Rinow). The following are equivalent:

(1) For all p ∈M , expp is defined for all v ∈ TpM .
(2) There exists p ∈M such that expp is defined for all v ∈ TpM .
(3) Every closed and bounded subspace of M is compact.
(4) (M,d) is a complete metric space.

Moreover any of the above imply that for all p, q ∈ M there exists a minimizing geodesic con-
necting p to q.
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7. Jacobi fields and variations.

Let N ∈ S2 be the north pole. The tangent space TNS
2 has an orthonormal basis v1 = ∂

∂x ,

v2 =
∂
∂y with respect to the usual round metric on S2. Notice that:

||tv1 − tv2|| ≥ d(expN (tv1), expN (tv2))

with strict inequality for t > 0. That is to say, two orthogonal geodesics starting at N get “closer
together”.

Similarly, consider i ∈ H+. The tangent vectors v1 =
∂
∂x , v2 =

∂
∂y form an orthonormal basis for

TiH+ with its hyperbolic metric but this time:

||tv1 − tv2|| ≤ d(expi(tv1), expi(tv2))

i.e. the geodesics spread further apart.
Finally, v1 =

∂
∂x , v2 =

∂
∂y form an orthonormal basis for R2 with its Euclidean metric and:

||tv1 − tv2|| = d(exp0(tv1), exp0(tv2)).

Recall that S2 has constant curvature equal to 1, H+ has constant curvature equal to −1, and
R2 has constant curvature equal to 0.

7.1. Jacobi fields. Given p ∈M let ϵ > 0 such that Bp(ϵ) is a normal neighbourhood, let γ1(t) =
γ1(p, v, t) and γ2(t) = γ2(p, w, t) for some v, w ∈ TpM such that expp(v) and expp(w) are defined.
Suppose α : I → TpM is a smooth curve with α(0) = v, α̇(0) = w − v. Then:

J(t) = dtv expp(t(w − v))

is a vector field along γ1 and (by the Gauss lemma):

expp(J(t)) = γ2(t)

So we see |J(t)| measures the rate that γ1 and γ2 diverge in M . A quick computation shows
that:

D2
γ1J +R(γ̇1, J)γ̇1 = 0.

Definition 54. Given an open U ⊂M and a distance function r : U → R a Jacobi field for r is
a vector field J ∈ X (U) such that:

∇∂r∇∂rJ = −R(J, ∂r)∂r
Equivalently we can define Jacobi fields as follows. Let γ : [0, a] → M be a geodesic. Then a

vector field J along γ is called a Jacobi field if it satisfies the Jacobi equation:

D2
γJ +R(γ̇, J)γ̇ = DγDγJ +R(γ̇, J)γ̇ = 0.

Example 55.
(1) For any geodesic γ, γ̇ and tγ̇ are both clearly Jacobi fields.
(2) Suppose M has constant curvature equal to k and let J be a Jacobi field along some γ.

Then:

g(R(γ̇, J)γ̇, V ) = K(g(γ̇, γ̇)g(J, V )− g(γ̇, V )g(J, γ̇)) = kg(J, V )

thus we have R(γ̇, J)γ̇ = kJ therefore we have reduced the Jacobi equation to:

D2
γJ + kJ = 0,
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an easily solvable system.

Proposition 56. Fix p ∈ M and let γ : [0, a] → M be a geodesic with γ̇(0) = v. Let J be a
Jacobi field along γ such that J(0) = 0. Let w = DγJ(0) and α : I → TpM be a smooth curve with

α(0) = av, α̇(0) = w. Define f(t, s) = expp(
t
aα(s)) and define J(t) = ∂f

∂s (t, 0). Then J = J .

Thus we see the only Jacobi fields along a geodesic γ satisfying J(0) = 0 are the kind described
at the beginning of this section.

We now give the first fundamental relationship between curvature and geodesics.

Proposition 57. Fix p ∈ M and let γ = γ(p, v, t). Let w ∈ Tv(TpM) satisfy |w| = 1 and define
J(t) = dtv expp(tw). Then:

|J(t)|2 = t2 − 1

3
R(v, w, v, w)t4 + r(t)

where r ∈ O(t4).

Corollary 58. If γ is as in the previous proposition but is also parametrized by arc length (i.e.
|γ̇(0)| = |v| = 1) then:

|J(t)|2 = t2 − 1

3
secp(σ)t

4 + r(t).

where σ is the 2-plane generated by v, w. Hence:

|J(t)| = t− 1

6
secp(σ)t

3 + r(t)

where r(t) ∈ O(t3).

The equation |J(t)| = t− 1
6 secp(σ)t

3+R(t) gives the desired relationship between curvature and
geodesics. It says that the rate of divergence of geodesics in M originating at p differs from the
respective geodesics in TpM originating at 0 by 1

6 secp(σ) times a third order term. This explains
the behaviour outlined previously - on manifolds with positive constant curvature |J(t)| ≤ t i.e. the
rate of divergence is smaller than it would be in TpM , and on manifolds with negative constant
curvature |J(t)| ≥ t i.e. the rate of divergence is larger than it would be on TpM .

Proposition 59. Let J be a Jacobi field along γ. Then:

g(J(t), γ̇(t)) = g(J ′(0), γ̇(0))t+ g(J(0), γ̇(0))

Definition 60. If γ : [0, a] →M is a geodesic and t0 ∈ [0, a) we say that γ(0) is conjugate to γ(t0)
if there exists Jacobi field J along γ that is not identically zero such that J(0) = 0 and J(t0) = 0.

Proposition 61. Let γ : [0, a] → M be a geodesic with v1 ∈ Tγ(0)M , v2 ∈ Tγ(a)M . If γ(0) is not
conjugate to γ(a) then there exists a unique Jacobi field J such that J(0) = v1, J(a) = v2.

7.2. Variations. Having a relationship between the curvature and geodesics, we seek to develop
relationships between curvature and topology.

Definition 62. Let γ : [0, a] → M be a smooth curve. A variation of γ is a continuous function
f : (−ϵ, ϵ) × [0, a] → M such that f(0, t) = γ(t) and there exists a partition 0 = t0 < t1 < · · · <
tk+1 = a such that f |(ti,ti+1) is smooth for all i = 0, ..., k. We say that f is proper if f(s, 0) = γ(0)
and f(s, a) = γ(a) for all s ∈ (−ϵ, ϵ).
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The function fs(t) = f(s, t) is called a curve in the variation. The function ft(s) = f(s, t) is
called a transversal curve of the variation. The variational field of f is defined to be the
vector field V (t) along γ defined by V (t) = ∂f

∂s (0, t).

Proposition 63. If V is a piecewise smooth vector field along a smooth curve γ there exists a
variation f of γ such that V is the variational field of f . If moreover V (0) = V (a) then f can be
chosen to be a proper variation.

Definition 64. Given a smooth curve γ and a variation f of γ the length of fs denoted L(s) is:

L(s) =

∫ a

0

∣∣∣∣∂f∂t (s, t)
∣∣∣∣dt

and the energy of fs denoted E(s) is:

E(s) =

∫ a

0

∣∣∣∣∂f∂t (s, t)
∣∣∣∣2dt

For notational simplicity we also define the following two quantities:

L(γ) =

∫ a

0
|γ̇(t)|dt, E(γ) =

∫ a

0
|γ̇(t)|2dt

By the Cauchy-Schwarz inequality on L2([0, a]) we have:

L(γ)2 =

(∫ a

0

∣∣∣∣∂f∂t (s, t)
∣∣∣∣dt)2

≤
∫ a

0
dt

∫ a

0

∣∣∣∣∂f∂t (s, t)
∣∣∣∣2dt = aE(γ)

with equality if and only if |∂f∂t (s, t)| is constant.
Lemma 65. Let p, q ∈ M and let γ : [0, a] → M be a minimal geodesic connecting p to q. If
α : [0, a] →M is a smooth curve connecting p to q then:

E(γ) ≤ E(α)

with equality if and only if α is a minimal geodesic.

Theorem 66 (First Variation). If γ : [0, a] →M is a piecewise smooth curve and f is a variation
of γ then:

1

2
E′(0) = −

∫ a

0
g(V (t), Dγ γ̇(t))dt− g(V (0), γ̇(0)) + g(V (a), γ̇(a))−

k∑
i=1

g(V (ti), γ̇(t
+
i )− γ̇(t−i ))

where γ̇(t+i ), γ̇(t
−
i ) are the right hand and left hand limits, respectively.

Corollary 67. A piecewise smooth curve γ : [0, a] →M is a geodesic if and only if for every proper
variation of γ we have E′(0) = 0.

The first variation formula characterises geodesics as critical points of the energy functional E.
If γ is a geodesic connecting a to b then any nearby curves also conencting a to b will have lengths
at most equal to that of γ, so L(0) is a local minimum. Since L(γ)2 ≤ aE(γ) we can see then
that being a critical point of E is being a local minimum of E, so one could say that geodesics are
energy minimizers.

Theorem 68 (Second Variation). With the same conditions as theorem 9.2.5:

1

2
E′′(0) = −

∫ a

0
g
(
V (t), D2

γV (t) +R(γ̇(t), V (t))γ̇(t)
)
dt−

k∑
i=1

g(V (ti), DγV (t+i )−DγV (t−i ))
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8. Sectional Curvature and comparisons.

We will now use the results of the previous sections to deduce some general topological properties
of Riemannian manifolds with nonpositive sectional curvature, and Riemannian manifolds with
nonnegative sectional curvature.

8.1. Nonpositive sectional curvature.

Theorem 69 (Ambrose). If f : M → N is a local isometry with M complete and N connected then
N is complete and f is a covering map.

Lemma 70. If (M, g) is complete and p ∈M , if dv expp is invertible for all v ∈ TpM then expp is
a covering map.

Proof. Since expp is invertible everywhere it is an immersion so we define a metric g′ on TpM by
g′((u, v))w = g(dw expp(u), dw expp(v))expp(w). This metric makes expp into a local Riemannian

isometry. But exp0 : T0TpM → TpM is defined for all v ∈ T0TpM so (TpM, g′) is complete hence
expp is a covering map. □

Theorem 71 (Cartan-Hadamard). If M is complete and connected with secp(σ) ≤ 0 for all p ∈M
and 2-plane σ ⊂ TpM , then expp : TpM →M is a covering map (hence Rn is the universal cover).

Proof. We need to show that dw expp is invertible for all p ∈ M , w ∈ TpM . To that end we show
|dw expp(v)| > 0. So fix p ∈M , w ∈ TpM and let γ(t) = expp(tw). Let J be a Jacobi field along γ
such that J(0) = 0 and J ′(0) = v so that |J(1)| = |dw expp(v)|. Then:

⟨J, J⟩′′ = 2⟨J ′, J ′⟩+ 2⟨J ′′, J⟩ = 2⟨J ′, J ′⟩ − 2⟨R(γ̇, J)γ̇, J⟩ = 2|J ′|2 − 2 secp(γ̇, J) ≥ 2|J ′|2

Integrating this inequality we get:

⟨J, J⟩′(t)− ⟨J, J⟩′(0) ≥ 2

∫ t

0
|J ′(t)|2

But ⟨J, J⟩′(0) = ⟨J ′(0), J(0)⟩ = 0 so this becomes:

⟨J, J⟩′ ≥ 2

∫ t

0
|J ′|2 > 0

thus ⟨J, J⟩ > 0 i.e. dv expp is invertible for all v ∈ TpM .
□

If M is complete and simply connected with sec ≤ 0 the previous theorem tells us that expp is a
diffeomorphism for all p ∈M . Hence we can take Bp(ϵ) =M so r(x) = d(x, p) is smooth on M \ p
and f = 1

2r
2 is smooth on M with Hessf = dr2 + rHessr.

Jacobi fields are a useful tool for computing the Hessian of distance functions. To see this
suppose γ is a geodesic such that γ(0) = p and let J be a Jacobi field along γ with J(0) = 0. If
α(t) = expp(tγ̇(0)) is a minimizing geodesic for 0 ≤ t < 1 then ċ(t) = ∇r(c(t)) so:

Hessr(J(t), J(t)) = g(∇J(t)∇r, J(t)) = g(
∂2γ

∂s∂t
, J)(0, t) = g(

∂2γ

∂s∂t
, J)(0, t) = g(J̇(t), J(t))

Since J can be arbitrary this allows us to compute Hessr in general. But:

g(J̇(t), J(t)) ≥
∫ t

0
|J̇(s)|2ds > 0

so Hessr is positive definite. Therefore:
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d2

dt
f(γ(t)) =

d

dt
g(∇f, γ̇) = g(∇γ̇∇f, γ̇) + g(∇f, γ̈) = Hessf(γ̇, γ̇) > 0

Theorem 72 (Cartan). IfM is a complete simply connected Riemannian manifold with secp(σ) ≤ 0
then any isometry of finite order has a fixed point.

Proof. Let F be an isometry of M of order k. Fix p ∈ M . Given q ∈ M define fq(x) =
1
2d(x, q)

2.
Let x so that the following function g(x) is minimized:

g(x) = max{fp(x), fF (p)(x), ..., fFk−1(p)(x)}
The existence of this x follows from the calculations proceeding the statement of the theorem

and moreover x is unique. However:

g(F (x)) = max{fp(F (x)), fF (p)(F (x)), ..., fFk−1(p)(F (x))} = g(x)

so by uniqueness F (x) = x as claimed.
□

Corollary 73. If M is a complete with sec ≤ 0 then the fundamental group is torsion free.

Proof. We induce the usual covering metric on M̃ making it into a simply connected Riemannian

manifold with sec ≤ 0. By theorem 10.1.3 any isometry of M̃ with finite order has a fixed point.

But isometries of M̃ are a foritori deck transformations thus cannot have any fixed points hence
the fundamental group of M cannot have any elements of finite order. □

Theorem 74 (Preissman). Let M be a compact Riemannian manifold with secp(σ) < 0 for all
p ∈M , 2-plane σ ⊂ TpM . If H ≤ π1(M) is nontrivial and abelian then H ∼= Z.

Corollary 75. If M,N are compact then there cannot exist a Riemannian metric on M ×N with
negative sectional curvature.

Proof. For contradiction suppose g has negative sectional curvature so the fundamental group is
torsion free. Since the fundamental group is torsion free, the fundamental theorem of finitely gen-
erated abelian group gives us that π1(M × N) ∼= Zm. If m ≥ 2 then we would have an abelian
subgroup that isn’t cyclic, contradicting Preissman’s theorem. Then any abelian subgroup A must
be equal to 0 or Z. In either case it must factor into subgroups A = AM × AN for Am ≤ π1(M),
AN ≤ π1(N) so one of AM , AN must be {0}. With no loss in generality assume it is AM . Since A
was arbitrary π1(M) has no abelian subgroups so M is simply connected.

The universal cover of M × N is the cartesian product of their universal covers. But by the
Cartan-Hadamard theorem, the universal cover of M × N is Rn, and by the previous paragraph
the universal cover is M is M , and M is compact, a contradiction.

□

8.2. Comparisons. Before dealing with positive sectional curvature we need an important in-
equality relating the curvature to the metric.

Theorem 76 (Riccati / Rauch Comparison). Let M is a Riemannian manifold of dimension n+1
with k ≤ secp ≤ K and in exponential coordinates write g = dr2 + gr. Then:

sn2K(r)ds2n ≤ gr ≤ sn2k(r)ds
2
n

sn′K(r)

snK(r)
gr ≤ Hessr ≤

sn′k(r)

snk(r)
gr
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8.3. Positive sectional curvature.

Theorem 77 (Bonnet-Synge). Suppose M is a Riemannian manifold with 0 < k ≤ secp(σ) for all
p ∈M and 2-plane σ ⊂ TpM . Then any geodesic γ such that ℓ(γ) > π√

k
is not length minimizing.

Proof. An application of the second variation of energy. Let γ : [0, a] →M be a geodesic of length
ℓ > π√

k
and let V (t) = sin(πℓ t)E(t) where E is a parallel field along γ. Since V (0) = V (a) = 0 there

exists a proper variation f of γ such that V is the variational field. By theorem 9.2.7:

1

2
E′′(0) =

∫ a

0
⟨V ′(t), V ′(t)⟩dt−

∫ a

0
(V (t), γ̇(t), γ̇(t), V (t))dt

= (
π

ℓ
)2
∫ a

0
cos2(

π

ℓ
t)dt−

∫ a

0
sin2(

π

ℓ
t) sec(E(t), γ̇)dt

≤ (
π

ℓ
)2
∫ a

0
cos2(

π

ℓ
t)dt− k

∫ a

0
sin2(

π

ℓ
t)dt

< k

∫ a

0
cos2(

π

ℓ
t)dt− k

∫ a

0
sin2(

π

ℓ
t)dt

= 0

Thus any curve α in the variation of f has ℓ(α) < ℓ(γ) so γ is not distance minimizing as claimed.
□

Corollary 78. If M is a complete Riemannian manifold and 0 < k ≤ secp(σ) then M is compact
with diam(M) ≤ π√

k
and |π1(M)| <∞.

Proof. By the Bonnet-Synge theorem M is bounded so by the Hopf-Rinow theorem M is compact.

With the metric induced by the covering map, applying the Bonnet-Synge theorem to M̃ allows us
to conclude the same things, thus |π1(M)| <∞. □

Theorem 79 (Myers). If M is a complete Riemannian manifold and 0 < k(n− 1) ≤ Ricp(σ) then
M is compact with diam(M) ≤ π√

k
and |π1(M)| <∞.

Proof. Let γ : [0, a] → M be a geodesic of length ℓ > π√
k
and define Vi(t) = sin(πℓ t)Ei(t) for i > 1

where Ei are parallel along γ and γ̇(t), E2(t), ..., En(t) are an orthonormal basis for Tγ(t)M . By the
second variational formula:

n∑
i=2

E′′(0) =
n∑

i=2

∫ a

0
⟨V ′

i (t), V
′
i (t)⟩dt−

∫ a

0
(Vi(t), γ̇(t), γ̇(t), Vi(t))dt

= (n− 1)(
π

ℓ
)2
∫ a

0
cos2(

π

ℓ
t)dt−

∫ a

0
sin2(

π

ℓ
t)Ric(γ̇(t), γ̇(t))dt

< (n− 1)k

∫ a

0
cos2(

π

ℓ
t)dt− (n− 1)k

∫ a

0
sin2(

π

ℓ
t)dt

< 0

so as before γ is not distance minimizing. By repeating the argument in 10.3.2 we conclude that
M is compact with diam(M) ≤ π√

k
and |π1(M)| <∞.

□

Theorem 80 (Synge). Suppose M is compact and secp(σ) > 0. Then:

(1) If dim(M) = 2k and M is orientable then M is simply connected.
(2) If dim(M) = 2k + 1 then M is orientable.
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Corollary 81. Suppose M is a compact Riemannian manifold with dim(M) = 2k, secp > 0 and
M is not orientable. Then π1(M) = Z2.

Proof. Let M̃ denote the oriented double cover of M with the induced Riemannian metric. It is

clear that M̃ is compact, orientable, and has secp > 0. By Synge’s theorem we conclude that M̃ is

simply connected and is thus the universal cover of M . But M̃ is double cover so π1(M) ∼= Z2 as
claimed. □

This tells us, for example, that RP (2) × RP (2) does not admit a metric with secp > 0 as
π1(RP (2) × RP (2)) = K4 ̸= Z2. Meanwhile, Preissman’s theorem gave us that there cannot exist
a metric on RP (2)× RP (2) with secp < 0.

Theorem 82. If secp ≤ K for some K > 0 then expp : B π
K
(0) →M has no critical points.

Theorem 83. If M is an orientable Riemannian manifold with dim(m) = 2k and 0 < secp ≤ 1
then inj(M) ≥ π. If M is not orientable then inj(M) ≥ π

2 .

Theorem 84. If f : M → R is smooth and proper, b is not a critical value and all critical points
in f−1([a, b]) have index ≥ m then:

f−1((−∞, a]) ⊂ f−1((−∞, b])

Theorem 85. If M is a complete Riemannian manifold and A ⊂M is a compact submanifold such
that every geodesic γ : [0, 1] →M such that γ(0), γ(1) ∈ A has index ≥ k then A is k-connected.

Theorem 86 (Sphere theorem). IfM is a closed n dimensional Riemannian manifold with secp ≥ 1
and injp >

π
2 for some p ∈M then M is (n− 1) connected and homotopy equivalent to Sn.

Corollary 87. If M is a closed simply connected n-dimension Riemannian manifold such that
1 ≤ secp < 4 then M is (n− 1) connected and homotopy equivalent to Sn.

Corollary 88. If M is a closed n-dimension Riemannian manifold with Ric ≥ (n−1) and injp >
π
2

for some p ∈M then M is simply connected.

Lemma 89. Let M be a complete n-dimension Riemannian manifold with secp > 0.

(1) If N ⊂M is a totally geodesic n−k-dimension submanifold then N is (n−2k+1)-connected.
(2) If N1, N2 are totally geodesic submanifolds of M of dimensions n − k1, n − k2 such that

k1 ≤ k2 and k1+k2 ≤ n then N1∩N2 is a nonempty totally geodesic (n−k1−k2)-connected.
submanifold.
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9. Bochner techniques

Given a smooth manifold M , the de Rham theorem provides a link between smooth differential
forms and the algebraic topology of M . Fixing a Riemannian metric, we will relate its curvature
to differential forms on M , allowing us to derive more topological constraints.

9.1. Killing Fields.

Definition 90. Let X ∈ X (M) and let Φt : M → M be the flow of X with t ∈ U ⊂ R . If Φt is
an isometry for all t ∈ U then we say X is a Killing field.

Proposition 91. A vector field X ∈ X (M) is a Killing field if and only if LXg ≡ 0 if and only if
v 7→ ∇xX is a skew symmetric (1, 1) tensor.

Proposition 92. For any p ∈ M , if X is a Killing field then X is uniquely determined by X(p)
and (∇X)(p).

Theorem 93. The zero set of a Killing field is a disjoint union of totally geodesic submanifolds,
each of which has even codimension.

Theorem 94. The space of Killing fields iso(M) is a Lie algebra of dimension ≤ n(n+1)/2. If M
is compact then iso(M) is the Lie algebra of Iso(M). Moreover if M is complete and the dimension
of Iso(M) is exactly n(n+ 1)/2 then M has constant curvature.

9.2. Killing fields and negative Ricci curvature.

Proposition 95. Given a (1, 1) tensor T we define |T |2 = tr(T ◦ T∗) =
∑n

i=1 g(T (Ei), T (Ei))
where {E1, ..., En} is an orthonormal frame. Let X denote a Killing field and define f :M → R by
f(p) = 1

2g(X(p), X(p)). Then:

(1) ∇f = −∇XX
(2) Hessf(V, V ) = g(∇VX,∇VX)−R(V,X,X, V )
(3) ∆f = |∇X|2 − Ric(X,X)

Theorem 96. If M is compact, oriented, and Ric ≤ 0 then every Killing field is parallel. If
moreover Ric < 0 then every Killing field vanishes identically.

Corollary 97. If M is as in the previous theorem and p = dim(Iso(M)) then M̃ = Rp ×N .

9.3. Killing fields and positive curvature.

Theorem 98. If M is a compact even dimension Riemannian manifold with positive curvature
then every Killing field has a zero.

Theorem 99. If there exists a nontrivial Killing field X on a compact manifold without boundary
M then the fundamental group of M has a cyclic subgroup of index ≤ c(n).

Theorem 100. If X is a Killing field on a compact Riemannian manifold M and Ni are the
components for the zero set of X:

(1) χ(M) =
∑

i χ(Ni)
(2)

∑
p b2p(M) ≥

∑
i

∑
p b2p(Ni)

(3)
∑

p b2p+1(M) ≥
∑

i

∑
p b2p+1(Ni)

Corollary 101. If M is a compact Riemannian manifold of dimension 6 with positive sectional
curvature that has a nontrivial Killing field then χ(M) > 0. IfM is compact orientable of dimension
4 with positive sectional curvature that has a nontrivial Killing field then χ(M) ≤ 3 and therefore
is either S4 or CP (2).
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Definition 102. The symmetry rank of a compact Riemannian manifold is the rank (as a
compact Lie group) of Iso(M). If h(M) ⊂ iso(M) is an Abelian subalgebra with dim(h(M)) equal
to the symmetry rank of M define Z(h(M)) to be the components for the zero sets of the Killing
fields in h(M).

Proposition 103.
(1) If N ∈ Z(h(M)) then all Killing fields in h(M) are tangent to N .
(2) N ∈ Z(h(M)) is maximal with respect to inclusion if and only if the restriction of h(M) to

N has dimesion equal to dim(h(M))− 1.
(3) If N ∈ Z(h(M)) then N is contained in finitely many maximal sets N1, ..., Nm and N =

N1 ∩ · · · ∩Nm.
(4) If N,N ′ ∈ Z(h(M)) then N ∩N ′ ∈ Z(h(M)).

9.4. Hodge.

Definition 104. Let M be a compact orientable Riemannian n dimension manifold. Write ω ∈
Ωk(M) as ω = f0 · df1 ∧ · · · ∧ dfk and define:

h(ω1, ω2) = h(f0 · df1 ∧ · · · ∧ dfk, g0 · dg1 ∧ · · · ∧ dgk) = f0g0 det (g(∇fi,∇hj)1≤i,j≤k)

and then extend g to an inner product on Ωk(M) by:

g(ω1, ω2) =

∫
M
h(ω1, ω2)dV

which we finally use to (implicitly) define the Hodge star operator:

∗ : Ωk(M) → Ωn−k(M)

by:

g(∗ω1, ω2) =

∫
M
h(∗ω1, ω2)dV =

∫
M
ω1 ∧ ω2

Lemma 105. The Hodge star operator satisfies ∗2 = (−1)k(n−k)
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10. Symmetric Spaces and Holonomy

10.1. Symmetric Spaces.

Definition 106. Given a Riemannian manifold M and p ∈ M we define the isotropy group of
M at p denoted Isop to be the isometries F : M → M such that F (p) = p. If for all p ∈ M there
exists F ∈ Isop such that dpF = −I then we call M symmetric. If for all p, q ∈ M there exists
F ∈ Iso such that F (p) = q we say that M is homogeneous.

Lemma 107. If M is symmetric it is homogeneous and complete.

The converse to the above is not true, but we do have the following:

Lemma 108. If M is a homogeneous Lie group with a bi-invariant metric then M is symmetric.

Definition 109. The rank of a geodesic γ is the dimension of the vector space of parallel vector
fields Ei along γ such that R(Ei(t), γ̇)γ̇ = 0 for all i, t. The rank of M is the minimum rank over
all geodesics in M .

Lemma 110. If M is symmetric then ∇R ≡ 0.

Proof. Let Ap ∈ Isop such that dpAp = −I. Then:

dpAp(∇XR)(Y,Z,W ) = (∇dpApXR)(dpApY, dpApZ, dpApW )

hence:

−(∇XR)(Y,Z,W ) = (∇−XR)(−Y,−Z,−W ) = (∇XR)(Y, Z,W )

i.e. ∇R = 0.
□

Definition 111. If ∇R ≡ 0 we call M locally symmetric.

Theorem 112 (Cartan). If M is locally symmetric then for all p ∈M there exists an isometry Ap

defined in a neighbourhood U of p such that dpAp = −I. If moreover M is simply connected and
complete Ap is defined on all of M so M is symmetric.

Theorem 113 (Cartan). Suppose M is a simply connected symmetric Riemannian manifold and
N is a complete locally symmetric Riemannian manifold and dim(M) = dim(N). Fix p ∈ M and
q ∈ N and let T : TpM → TqN be an isometry such that T (RM (x, y)z) = RN (T (x), T (y))T (z) for
all x, y, z ∈ TpM . Then there exists a unique isometry φ :M → N such that dpφ = T .

Theorem 114. M is symmetric if and only if there exists a Lie algebra g and a linear involution
L : g → g such that g = t⊕ k decomposes as a direct sum of the eigenspaces for L, and M = G/K
where g is the Lie algebra of G and k is the Lie algebra of K and moreover [k, k] ⊂ k, [t, t] ⊂ k, and
[k, t] ⊂ t.

Remark 115. We give two proofs of this fact, giving us two descriptions of symmetric spaces
involving the decomposition of a Lie algebra. The first is the algebraic description of symmetric
spaces and the second is the curvature descripion of symmetric spaces.

Proof. 1) Suppose M is symmetric, fix p ∈ M , and denote by iso the Killing fields on M , and
let isop denote those Killing fields whose flows fix p (i.e. the Lie algebra of Isop). The map
X 7→ (X(p), (∇X)(p)) gives us an injection iso → TpMso(TpM) that is surjective onto TpM .
This leads to a Lie algebra isomorphism iso ∼= TpM × isop. First note that X ∈ TpM if and only
if (∇X)(p) = 0 and X ∈ isop if and only if X(p) = 0. Then if we denote those X such that
(∇X)(p) = 0 by tp we can write iso = tp ⊕ isop.
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To see how the Lie bracket structure is, suppose X,Y ∈ tp or X,Y ∈ isop. Then [X,Y ](p) = 0
thus [X,Y ] ∈ isop. However if X ∈ tp and Y ∈ isop then [X,Y ](p) = (∇Y )(X(p)) ∈ tp.

Finally we define the involution L. First let σ : Iso → Iso be defined by σ(g) = Ap ◦ g ◦Ap. Then
σ is an isomorphism satisfying σ(g) = g if and only if g ∈ Isop and σ2 = I and so dσ(h) = h if
h ∈ isop and dσ(v) = −v for v ∈ tp. Thus we may let L = dσ.

Conversely suppose L : g → g is an involution on the Lie algebra g and write g = t ⊕ k
where t is the eigenspace for eigenvalue −1 and k is the eigenspace for eigenvalue 1. Since
L[X1, X2] = [L(X1), L(X2)] = [−X1,−X2] = [X1, X2] we have that k is a Lie subalgebra and
[k, k] ⊂ k, [t, t] ⊂ k and [k, t] ⊂ t.

Letting G,K be Lie groups such that K ≤ G is compact, k is the Lie algebra for K and g is
the Lie algebra for G we can make G/K into a simply connected Riemannian manifold as we can
fix a bi-invariant metric on K inducing a Euclidean inner product on g. Recall the long exact
sequence π1(K) → π1(G) → π1(G/K) → π0(K) → π0(G) → 1. Since G/K is simply connected
π1(G/K) = 0 so π0(K) → π0(G) is an isomorphism and π1(K) → π1(G) is surjective. This allows
us to find an involution σ : G→ G such that dσ = L.

2) If M is symmetric and p ∈ M , let rp denote the Lie algebra generated by maps of the form
R(x, y) : TpM → TpM and then define g = TpM⊕rp. If x, y ∈ TpM then we let [x, y] = R(x, y) ∈ rp.
If x, y ∈ rp then define [x, y] = (y ◦ x − x ◦ y) ∈ rp. Finally if x ∈ TpM and y ∈ rp define
[x, y] = y(x) ∈ TpM . Bianchi’s first identity will show that the Jacobi identity holds thus g is a Lie
algebra. Define L : g → g to be L(x) = x if x ∈ rp and L(y) = −y if y ∈ TpM . Then L is a linear
involution and the decomposition into Eigenspaces is as required.

□

10.2. Holonomy.

Definition 116. Suppose M is a Riemannian manifold and γ : [a, b] → M is a smooth loop (i.e.
γ(a) = γ(b) = p). Then the parallel transport map P : TpM → TpM is a linear isometry. We define
the holonomy group at p, denoted Holp, to be the Lie subgroup of O(TpM) generated by all such
linear isometries (i.e. indexed by the loops γ). We further define the restricted holonomy group
at p Hol0p ⊴ Holp to be the connected normal subgroup where each γ is taken to be contractible.

If E ⊂ TpM is invariant under the action of Hol0p then E⊥ is also invariant. Hence we can write
TpM = E1 ⊕ · · ·Ek where each Ei is irreducible and invariant. Since parallel transport from p to q
will preserve this decomposition we have:

TM = η1 ⊕ · · · ⊕ ηk

where each ηi is a distribution.

Theorem 117 (de Rham decomposition). For all p ∈M there exists an open U containing p such
that U = (U1×· · ·Uk) as a Riemannian manifold with metric g on U induced by the product metric
on the (Ui, gi) such that TUi = ηi|Ui. If moreover M is simply connected then we can take U =M .

Definition 118. Given the above decomposition TM = η1 ⊕ · · · ηk, if k = 1 we say that M is
irreducible.

Corollary 119. If M is irreducible and ∇R ≡ 0 then M is Einstein.

Theorem 120. If M is symmetric and irreducible then M is Einstein with Einstein constant k.
Then either k > 0, k = 0, or k < 0. If k > 0 then M is compact with nonnegative curvature
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operator. If k = 0 then M is flat so M = S1 or R. If k < 0 then M is noncompact with nonpositive
curvature operator.

Theorem 121. If M is locally symmetric the Lie algebra of Holp0, denoted holp, is generated by
R(v, w), i.e. holp = rp defined earlier in this section. Moreover holp ⊂ isop.

Corollary 122. If M is irreducible and symmetric holp = isop.
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