
NOTES FROM �INTRODUCTION TO RANDOM MATRICES� BY ANDERSON,

GUIONNET AND ZEITOUNI

De�nition 1. Let {Zi,j}1≤i<j and {Yi}1≤i be collections of i.i.d. mean zero random variables. Suppose morevoer
that E(Z2

i,j) = 1 and that both Y and Z have �nite moments of every order. For any n ∈ N now, we can make an
n × n random symmetric matrix by putting the Z's above the diagonal, and the Y 's on the diagonal (below the
diagonal is the same as above, since the matrix is symetric) This is:

Xn =
1√
n


Y1 Z1,2 Z1,3 Z1,n

Z1,2 Y2 Z2,3 . . . Z2,n

Z1,3 Z2,3 Y3 Z3,n

...
. . .

Z1,n Z2,n Z3,n Yn


This is called a Wigner Matrix. If Z and Y have a Gaussian distribution, we call it a Gaussian Wigner Matrix.

Remark 2. We will be interested in the eigenvalues of the Wigner matrix, as there are some interesting convergence
results to be had as n→∞.

De�nition 3. Let Xn be a Wigner matrix and let λn1 ≤ λn2 ≤ . . . ≤ λnn be its eigenvalues. (They are real because
the matrix is symmetric). We de�ne the empirical distribution of the eigenvalues as the measure (here δ is the unit
mass):

Ln =
1

n

n∑
i=1

δλn
i

So that Ln measures the number of eigenvalues in any set. i.e.:

Ln (a, b) =
1

n
|{i : λni ∈ (a, b)}|

This is something like �the density� of the eigenvalues in (a, b) since n is the total number of eigenvalues.

De�nition 4. The semicircle distribution is the probability distribution σ(x)dx which is given by a density with
respect to the Lebesgue measure on R:

σ(x) =
1√
2π

√
4− x21|x|≤2

If you were to graph this, you would see it is a semicircle!

Theorem 5. [Wigner] For a Wigner matrix Xn the empirical measure Ln converges weakly, in probability, to the
semicircle distribution. I.e. for any continuous bounded function f : R→ R we have:

P (|〈Ln, f〉 − 〈σ, f〉| > ε)→ 0

Where 〈Ln, f〉 =
´
fdLn.

Remark 6. The above terminology can be a bit confusing because �converges weakly� in a a probabilisitc setting
ordinarily means that for probability measures Pn and P means that 〈Pn, f〉 → 〈P, f〉 for every bounded continuous
functions f (There are lots of other equivalent ways to phrase this, e.g, Pn(a, b)→ P(a, b) for continuity sets (a, b)
of P). However for us the object Ln is a random probability measure (i.e. a probability measure valued random
variable), so we have to specify in what sense (e.g. in probability, almost surely etc.) we mean 〈Ln, f〉 → 〈σ, f〉
when we say �Ln goes to σ weakly�. Wigner's theorem tells us that the convergence is in the sense of convergence
in probability.

Example 7. Here is an example to make sure our heads are screwed on right for this convergence in distribution.
Let Ai be a sequence of i.i.d. random variables and let En = 1

n

∑n
i=1 δAi

be the empirical distribution of the �rst n
random variables. This is a random measure! If P is the law of the Ai's, one can check that En goes to P weakly,

almost surely. This is true since En(a, b) = 1
n |{i : Ai ∈ (a, b)| = 1

n

∑n
i=1 1{Ai∈(a,b)}

a.s.→ E
(
1{A∈(a,b)

)
= P(a, b). The

almost sure convergence here is from the strong law of large numbers since the indicator random variables 1{Ai∈(a,b))
are all i.i.d.

1
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Remark 8. We will now set out to prove Wigner's theorem. The proof we give here will be based on combinatorial
arguments. We �rst prove a few facts about the semi-circle law.

Lemma 9. [Moments of the Semi-Circle Law] Let mk =
〈
σ, xk

〉
be the k−th moment of the semi-circle law. The

odd moments vanish, and the even moments are equal to the Catalan numbers. That is:

m2k+1 = 0

m2k = Ck

Where Ck is the k−th Catalan number Ck = 1
k+1

(
2k
k

)
.

Proof. m2k+1 is clear since σ(x)xk+1 is an odd function. To see m2k = Ck look at
´
σ(x)x2kdx and do a change of

variable to polar coordinates, and then integrate by parts in a clever way to get a recurrence relation. Have:

m2k =

ˆ 2

−2
x2kσ(x)dx

=
2 · 22k

π

ˆ π/2

−π/2
sin2k(θ) cos2(θ)dθ

=
2 · 22k

π

ˆ π/2

−π/2
sin2k(θ)dθ − 2 · 22k

π

ˆ π/2

−π/2
sin2k+2(θ)dθ

=
2 · 22k

π

ˆ π/2

−π/2
sin2k(θ)dθ − 2 · 22k

π

ˆ π/2

−π/2

[
sin2k+1(θ)

]
[sin(θ)]dθ

=
2 · 22k

π

ˆ π/2

−π/2
sin2k(θ)dθ − (2k + 1)m2k

The last equality comes from doing integration by parts, di�erentiating sin2k+1 and integrating sin, and then
recognizing m2k ∼

´
sin2k cos2. From here we get:

m2k =
1

2k + 2

2 · 22k

π

ˆ π/2

−π/2
sin2k(θ)dθ

=
4(2k − 1)

2k + 2
m2k−2

Where we use the same integration by parts trick again to see that m2k−2 ∼
´

sin2k ∼
´

sin2k−2 cos2. From this

recurrence relationship we can easily prove (by induction for instance) that m2k = Ck = 1
k+1

(
2k
k

)
�

Remark 10. [About the Catalan Numbers] The Catalan numbers arise in all sort of combinatorial enumeration
problems. One is the number of NE-SE paths (the type you normally consider for random walks). The number of
paths which have 2k total steps, k NE steps, k SE steps and which never go under zero is Ck. These are called
Dyck paths. (You can derive this with the re�ection principle). One of the most important properties of the Catalan
number is the recurrance:

Ck =

k∑
j=1

Ck−jCj−1

One can also show that the generating function β(z) =
∑∞
k=0 Ckz

k is (the convention is C0 = 1):

β(z) =
1−
√

1− 4z

2z

This is done by writing Ck =
∑k
j=1 Ck−jCj−1 because the Dyck paths of length 2k can be divided by the �rst

time they touch zero. If this �rst time is 2j then there are Cj−1 paths possible on the left of the �rst hitting
time and Ck−j paths possible on the right. Summing gives the formula above, and then some generating function
manipulation yields a quadratic equation β(z) = 1 + zβ(z)2 which we can then solve for β(z).

This recurrence property of the Catalan number also lets us see the Catalan numbers appearing in other places,
for example the number of rooted planar trees with k edges and k + 1 vertices, because it is not hard to exhibit
the same recurrence for these objects. (A rooted planar tree is a tree with a root and a choice of ordering on the
children of every node) (For the rooted planar trees, look at the root and its �rst child. Let j − 1 be the number of
edges in the subtree coming from the child so there are k − j in the subtree coming from the root which does not
contain the child. These subtrees are exactly rooted planar trees, so summing over j now gives the same recurrence
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relation as above. Another way to see this is a dircet bijection betwen roothed planar trees and Dyck paths. To do
this you �explore� around the outside of the tree, and create a Dyck path by taking a step up every time you move
down a generation, and a step down every time you move up a generation. )

One can show that non-crossing partitions of {1, . . . k}have the same recurrence and so are counted by Ck as
well. This is because if j is the largest element connected to 1 in the partition, then the non-crossing property
means that we will induce a non-crossinng partion on {1 . . . j − 1}and {j + 1, . . . , k}too. Summing over j gives the
same recurrence.

1. First Proof OF Wigner's Theorem

De�nition 11. Recall the de�nition of Ln the empirical distribution of the eigenvalues for the Wigner matrix.
Let L̄n = E (Ln) be the (non-random) measure on R given by L̄n(a, b) = E (Ln (a, b)) or equivalently

〈
L̄n, f

〉
=

E (〈Ln, f〉). Recall that mkwas the k− th moment of the semi-circle lawσ. Let mn
k =

〈
L̄n, x

k
〉
be the k-th moment.

Remark 12. To prove that Ln
P→ σ weakly, we will show that as n gets large, Ln is very close to L̄n and that L̄n is

very close to σ. To make this precise, we will prove the following two lemmas:

Lemma 13. For every k ∈ N:

lim
n→∞

mn
k = mk

lim
n→∞

〈
L̄n, x

k
〉

=
〈
σ, xk

〉
Lemma 14. For every k ∈ N and every ε > 0:

lim
n→∞

P
(∣∣〈Ln, xk〉− 〈L̄n, xk〉∣∣ > ε

)
= 0

We will now prove Wigner's theorem assuming these two lemmas have been proven, and then we will come back
to the proof of these lemmas afterward.

Theorem 15. [Wigner] For a Wigner matrix Xn the empirical measure Ln converges weakly, in probability, to the
semicircle distribution. I.e. for any continuous bounded function f : R→ R we have:

lim
n→∞

P (|〈Ln, f〉 − 〈σ, f〉| > ε) = 0

Proof. (Assuming the two lemmas) We will �rst prove that:

lim sup
n→∞

P
(〈
Ln, |x|k1|x|>5

〉
> ε
)

= 0

By Chebyshev inequality, we have:

P
(〈
Ln, |x|k1|x|>B

〉
> ε
)
≤ 1

ε
E
(〈
Ln, |x|k1|x|>B

〉)
≤ 1

ε
E

(〈
Ln,
|x|2k

Bk
1|x|>B

〉)
≤ 1

εBk
E
(〈
Ln, x

2k
〉)

=
mn

2k

εBk

Have then, since limn→∞mn
k = mk, that:

lim sup
n→∞

P
(〈
Ln, |x|k1|x|>B

〉
> ε
)
≤ lim sup

n→∞

mn
2k

εBk
=
m2k

εBk
=

Ck
εBk

If we choose B = 5 and then use the simple inequality Ck ≤ 4k (Ck is the number of Dyck paths, while 4nis
the total number of NE-SE paths of length 2n) then we see the right hand side is going to zero as k → ∞. Since
|x|k1|x|>B is increasing in k when B = 5, we have then that:

lim sup
n→∞

P
(〈
Ln, |x|k1|x|>5

〉
> ε
)
≤ lim sup

n→∞
P
(〈
Ln, |x|k+l1|x|>5

〉
> ε
)

≤ Ck+l
ε5k+l

→ 0 as l→∞

So we conclude that:

lim sup
n→∞

P
(〈
Ln, |x|k1|x|>5

〉
> ε
)

= 0
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We will now show that this reduces the problem to examining only functions f which are supported in [−5, 5].
Choosing k = 0 gives us that limn→∞P

(〈
Ln,K1|x|>5

〉
> ε
)

= 0, so for bounded continuos functions f we have:

P (|〈Ln, f〉 − 〈σ, f〉| > ε) = P
(∣∣〈Ln, f1|x|≤5 + f1|x|>5

〉
−
〈
σ, f1|x|≤5 + f1|x|>5

〉∣∣ > ε
)

= P
(∣∣(〈Ln, f1|x|≤5〉− 〈σ, f1|x|≤5〉)+

(〈
Ln, f1|x|>5

〉
−
〈
σ, f1|x|>5

〉)∣∣ > ε
)

≤ P
(∣∣〈Ln, f1|x|≤5〉− 〈σ, f1|x|≤5〉∣∣ > ε

2

)
+ P

(∣∣〈Ln, f1|x|>5

〉
−
〈
σ, f1|x|>5

〉∣∣ > ε

2

)
Hence:

P (|〈Ln, f〉 − 〈σ, f〉| > ε)−P
(∣∣〈Ln, f1|x|≤5〉− 〈σ, f1|x|≤5〉∣∣ > ε

2

)
≤ P

(∣∣〈Ln, f1|x|>5

〉
−
〈
σ, f1|x|>5

〉∣∣ > ε

2

)
= P

(∣∣〈Ln, f1|x|>5

〉
− 0
∣∣ > ε

2

)
≤ P

(∣∣〈Ln, (sup f) 1|x|>5

〉∣∣ > ε

2

)
→ 0

So showing that P
(∣∣〈Ln, f1|x|≤5〉− 〈σ, f1|x|≤5〉∣∣ > ε

2

)
→ 0 is su�cient to show P (|〈Ln, f〉 − 〈σ, f〉| > ε) → 0.

This means we can restrict our attention to functions f supported on [−5, 5].
Fix such a function f and any δ > 0. By the Stone-Weierstrass theorem, we can �nd a polynomial Qδ(x) =∑L
i=0 cix

i (depending on δ) that approximated f in the sup norm to within δ/8 so that the di�erence ∆ = Qδ − f
has:

sup
|x|≤5

|∆(x)| = sup
|x|≤5

|Qδ(x)− f(x)| ≤ δ

8

Notice that since f is supported in [−5, 5] we may write f = Qδ −Qδ1|x|>5 + ∆1|x|<5. Have then:

P (|〈LN , f〉 − 〈σ, f〉| > δ) = P
(∣∣〈LN , Qδ −Qδ1|x|>5 + ∆1|x|<5

〉
−
〈
σ,Qδ −Qδ1|x|>5 + ∆1|x|<5

〉∣∣ > δ
)

≤ P
(
|〈LN , Qδ〉 − 〈σ,Qδ〉|+

∣∣〈LN , Qδ1|x|>5

〉∣∣+∣∣〈LN ,∆1|x|<5

〉∣∣+
∣∣〈σ,Qδ1|x|>5

〉∣∣+
∣∣〈σ,∆1|x|<5

〉∣∣ > δ
)

≤ P
(
|〈LN , Qδ〉 − 〈σ,Qδ〉|+

∣∣〈LN , Qδ1|x|>5

〉∣∣+
δ

8
+ 0 +

δ

8
> δ

)
≤ P

(∣∣〈LN , Qδ〉 − 〈L̄N , Qδ〉∣∣+
∣∣〈L̄N , Qδ〉− 〈σ,Qδ〉∣∣+

∣∣〈LN , Qδ1|x|>5

〉∣∣ > 3δ

4

)
≤ P

(∣∣〈LN , Qδ〉 − 〈L̄N , Qδ〉∣∣ > δ

4

)
+ P

(∣∣〈L̄N , Qδ〉− 〈σ,Qδ〉∣∣ > δ

4

)
+ P

(∣∣〈LN , Qδ1|x|>5

〉∣∣ > δ

4

)
:= P1 + P2 + P3

Since Qδ is a polynomial, the result of the second lemma 14 on the preceding page tells us that P1 → 0
and the result of the �rst lemma 13 on the previous page tells us that P2 → 0. We know that P3 → 0 by
P
(〈
Ln, |x|k1|x|>5

〉
> ε
)
→ 0 which we proved at the beginning of the proof, and again since Qδ is a polynomial.

Hence P (|〈LN , f〉 − 〈σ, f〉| > δ)→ 0 too. �

1.1. Proof of the Lemmas. The starting point of the proof of lemma 13 is to notice the following idenity :〈
L̄N , x

k
〉

=
1

N

∑
E
(
λki
)

=
1

N
E
(
Tr
(
Xk
N

))
=

1

N

N∑
i1,...ik=1

E (XN (i1, i2) ·XN (i2, i3) · . . . ·XN (ik−1, ik) ·XN (ik, i1))

:=
1

N

N∑
i1,...ik=1

E
(
TN(i1,i2,...,ik)

)
:=

1

N

N∑
i1,...ik=1

T̄N(i1,i2,...,ik)

=
1

N

N∑
i1,...ik=1

E
(
TNi
)

=
1

N

N∑
i1,...ik=1

T̄Ni
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Where i = (i1, i2, . . . , ik) and TNi and T̄Ni are de�ned by the above. The proof of the lemma now comes from
combinatorial arguements over which i contribute to the above sum. Indeed since XN (ia, ib) = Za,b or Ya,b are
independent and mean zero, E(TNi ) = 0 for many choices of i, for example if there is a pair ia ib that only appears

once in i. With some work, we will see that there are order Nk/2+1 non-zero terms. We will also see that there are
order Nk/2 terms involving moments of Za.b or Ya,b higher than or equal to 4. Since all these moments are �nite,
and they represent a 1

N fraction of the sum, these will not contribute in the limit that N →∞. We will now create
some combinatorial objects to investigate this in detail.

De�nition 16. Given a set L, an L-letter is simply an element s ∈ L. An L-word w is a non-empty �nite sequence
of L-letter, s1s2 . . . sn. An L-word is called closed if its �rst and last letters are the same. Two L words are called
equivalent if there is a bijection on L that maps one into the other. We also let `(w) = n be the length of the word
and wt(w) the weight as the number of distinct letters of L, and supp(w), the support of the word, is the set of
distinct letters which appear. If L = {1, 2, . . . , N} we often use the terminology N -word, or if the set L is clear, we
just say �word�.

De�nition 17. Given any word w = s1s2 . . . sn, we de�ne the graph associated with the word w by Gw = (Vw, Ew)
be the graph with Vw = supp(w) the set of letters appearing in w and with edges Ew = {{si, si+1} : 1 ≤ i ≤ n− 1}.
The edge set can be divided into self-edges Esw = {{u, u} : u ∈ Vw} and connecting edges Ecw = Ew − Esw. Notice
that two word are equivalent if and only if the corresponding graphs are isomorphic.

De�nition 18. The graph Gw is connected because the word w, when read in order, gives a spanning path. For
e ∈ Ew we let Ne denote the number of time this path crosses the edge e (in any direction).

Remark 19. The tuple i = (i1, . . . , ik) that appears in the evaluation of T̄Ni de�nes wi = i1i2 . . . iki1 a closed word
of length k+ 1 on L = {1, 2, . . . , N} . If we let wti be the weight of this word, then the independence of the entries
of the matrix X and the fact they are all identically distributed lets us write (Recall that X is scaled by 1√

N
and

that it is symetric):

T̄Ni =
1

Nk/2

∏
e∈Ec

i

E
(
ZNe
1,2

) ∏
e∈Es

i

E
(
Y Ne
1

)
Since the Z's and Y 's are mean zero, this product is non-zero only if Ne ≥ 2 for all e ∈ Ei. This forces that

wti ≤ k
2 + 1. We also see from this that equivalent words (in the sense of isomorphisms on L = {1, 2, . . . , N}) have

the same value forT̄Ni .

De�nition 20. Let Sk,t denote the set of all closed words of length k + 1 on L = {1, 2, . . . , t} and weight equal to
t (i.e. every letter in {1, 2, . . . , t} is used at least once) and which have the property that Ne ≥ 2 for every edge
e ∈ Ew . Let Wk,t be the set of representatives of equivalence classes of Sk,t under the equivalence of words (which
we recall corresponds to isomorphisms of L)

Remark 21. For every every representative w ∈ Wk,t there are CN,t = N(N − 1)(N − 2) · · · (N − t + 1) words on
the set L = {1, 2, . . . , N} that are equivalent to w. All these words i will have the same value for T̄Ni .

Proposition 22. From these de�nitions we have that:〈
L̄N , x

k
〉

=

bk/2c+1∑
t=1

CN.t
Nk/2+1

∑
w∈Wk,t

∏
e∈Ec

w

E
(
ZNe
1,2

) ∏
e∈Ec

w

E
(
Y Ne
1

)
Remark 23. Notice that |Wk,t| ≤ tk is less than the number of closed words of length k + 1 from L = {1, 2, . . . , t}.
For �xed k, this means that in our sum |Wk,t| ≤ tk ≤ (bk/2c+ 1)k = C = cons′t . Since the moments of Z and Y
are �nite, this means that we have the bound:

T̄Ni ≤ C
bk/2c+1∑
t=1

CN.t
Nk/2+1

Since CN.t = N(N − 1)(N − 2) · · · (N − t+ 1) = O(N t) this logic us that for k odd, T̄Ni → 0 (since bk/2c < k/2,

so
CN,t

Nk/2+1 → 0 for every t in our sum) and that for k even, only the term where t = k/2 + 1 survives in the limit

N →∞, and the coe�cient in front has
CN.k/2+1

Nk/2+1 → 1 We have then the formulas:

lim
N→∞

〈
L̄N , x

k
〉

= 0 for k odd

lim
N→∞

〈
L̄N , x

k
〉

=
∑

w∈Wk,k/2+1

∏
e∈Ec

w

E
(
ZNe
1,2

) ∏
e∈Ec

w

E
(
Y Ne
1

)
for k even
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This is the motivation for the de�nition of a Wigner word:

De�nition 24. A closed word w of length k + 1 ≥ 1 is called a Wigner word if either k = 0 or k is even and w is
equivalent to an element of Wk,k/2+1. These are the only words that appear in the evaluation of the moments of

limN→∞
〈
L̄N , x

k
〉
.

Proposition 25. For a Wigner word w, the graph Gw is a tree with no loops. Moreover, every edge e ∈ Ew has
Ne = 2.

Proof. Gw is connected, and has |Vw| = k/2 + 1, so it su�ces to prove that |Ew| = k/2 to see that Gw is a tree.
Indeed, |Ew| ≥ |Vw| − 1 = k/2 or else Gw cannot be connected, and |Ew| ≤ k/2 by the condition that Ne ≥ 2 for
each e ∈ Ew (since

∑
eNe = k is the length of the path). Hence |Ew| = k/2 and it is a tree with no self loops.

Moreover, since 2 |Ew| =
∑
eNe = k, it must be the case that Ne = 2 for every edge e. �

Corollary 26. For k even:limN→∞
〈
L̄N , x

k
〉

=
∣∣Wk,k/2+1

∣∣
Proof. This follows from the above formula for limN→∞

〈
L̄N , x

k
〉
, the proposition, and since E

(
Z2
1,2

)
= 1. �

Finally to see the lemma, we establish a bijection between Wk,k/2+1 (Wigner words of length k + 1) and rooted
planar trees to establish the lemma.

Lemma 27. For every k ∈ N:
lim
n→∞

〈
L̄n, x

k
〉

=
〈
σ, xk

〉
Proof. From our above work, it su�ces to create a bijection between Wk,k/2+1 and rooted planar trees with k + 1
vertices. Indeed, for every w ∈ Wk,k/2+1 the graph Gw is a rooted planar tree where the ordering of the children
of every node is the order in which they are visited in the reading of w. This is a bijection because if Gw = Gw̃
then they must be equilvalent words, so they are the same element from Wk,k/2+1. The proof can also be seen by
bijection to Dyck paths by using an exploration process between Dyck paths and planar rooted trees. �

We now work on the next lemma.

De�nition 28. A pair partition of {1, . . . , k} is a partition of {1, . . . , k} where every partition is a pair (i.e. every
partition consists of exactly 2 elements) A non-crossing pair partition is a pair partition that is also a non-crossing
partition.

Fact 29. The number of pair partitions of {1, . . . , 2k} is Ck, the k−th Catalan number. (Compare this to the fact
that there are Ck non-crossing partitions of {1, . . . , k})

Proposition 30. Given a Wigner word w = i1i2 . . . ik+1of length k + 1, let Πw be the partition of {1, . . . , k}
generated by the function f : {1, . . . , k} → Ew by f(j) = {ij , ij+1}. (A partition of {1, . . . , k} means that the blocks
are de�ned by f−1({a}) as a ranges in the possible target space.) Then the following hold:

(1) Πw is a non-crossing pair partition.
(2) Every non-crossing pair partition of {1, . . . , k} is of the form Πw for some Wigner word w of length k + 1
(3) If two Wigner words w and w′of length k + 1 satisfy Πw = Πw′ , then w and w′ are equivalent.

Proof. �

(1) Because every Wigner word w can be viewed as a walk on the graph Gwand each edge is crossed exactly
twice in the graph, soΠwis a pair partition. Because the graph Gw is a tree, the partition Πw is non-crossing.
(Say {a, b}and {x, y} are partitions, so that f(a) = f(b) = e and f(x) = f(y) = d. WOLOG a < x. Suppose
by contradiction a < x < b < y. Then in the walk on Gw, we encontour e �rst, then d, and then e again.
But there is no way to get back to d again since we would have to cross e again. The argument is the same
as showing that the exploration process of a tree gives a dyck path.)

(2) Every non-crossing pair partition can be turned into a rooted planar tree by an exploration. Every pair in
the partition corresponds to crossing an edge on the tree twice. This rule can be used to recursivly build
the tree up. As we've seen before, these trees are in bijection with Wigner words.

(3) In this case the trees they de�ne would be the same, and so the words would be isomorphic.

Remark 31. To prove 14 on page 3, by Chebyshev's inequality it is enough to prove that the variance goes to zero:

lim
N→∞

∣∣∣E(〈LN , xk〉2)− 〈L̄N , xk〉2∣∣∣ = lim
N→∞

Var
(〈
LN , x

k
〉)

= 0



NOTES FROM �INTRODUCTION TO RANDOM MATRICES� BY ANDERSON, GUIONNET AND ZEITOUNI 7

Proceeding as in the above computation for the moments ofL̄N going through the trace of the N -th power of the
matrix, since

〈
L̄N , x

k
〉

= 1
N

∑
i T

N
i , we have that:∣∣∣E(〈LN , xk〉2)− 〈L̄N , xk〉2∣∣∣ = Var

(〈
LN , x

k
〉)

=
1

N2

N∑
i1,...ik=1

i′1...i
′
k=1

T̄Ni,i′

With:

T̄Ni,i′ = E
(
TNi T

N
i′
)
−E

(
TNi
)
E
(
TNi′
)

= Cov
(
TNi , T

N
i′
)

To study this we need to further our setup to account for pairs of words. We do this below.

De�nition 32. Given a set L, a L-sentence a is a �nite sequence of L-words w1w2 . . . wn at least one word long.
Two Lsentences are called equivalent if there is a bijection on L that maps one to another.

De�nition 33. The graph associated with an L-sentence is obtained by piecing together (taking the union) of the
graphs associated with the individual words. Notice that this may be disconnected!

Now to evaluate T̄Ni,i′ , we notice that the pair i, i
′de�nes a two word sentence a = wiwi′ , and we have:

T̄Ni,i′ =
1

Nk

 ∏
e∈Ec

a
i,i′

E
(
Z
Na

e
1,2

) ∏
e∈Es

a
i,i′

E
(
Y
Na

e
1

)

−
∏
e∈Ec

wi

E
(
ZN

wi
e

1,2

) ∏
e∈Es

wi

E
(
Y N

wi
e

1

) ∏
e∈Ec

w
i′

E
(
ZN

w
i′

e
1,2

) ∏
e∈Es

w
i′

E
(
Y N

w
i′

e
1

)
Since these random variables are mean zero, we notice that T̄Ni,i′ is zero unless Na

e ≥ 2 for all e ∈ Eai,i′ . (It helps
here to notice that Na

e ≥ Nw
e for w = wi or w = wi′). Also, if Ewi

∩Ewi′ = ∅, the graphs Gwi
and Gwi′ are disjoint

and so T̄Ni,i′ = Cov
(
TNi , T

N
i′

)
= 0. (This can also be seen directly from the formula above with a bit of care).

As before, to evaluate this we look only at representatives from an equivalence class of the relevant sentences.

De�ne W(2)
k,t to be the set of representatives for equivalence clases of sentences a of weight t (recall weight is the

number of distinct letters used) that consist of two closed t-words w1w2 each of length k + 1 and with Na
e ≥ 2 for

each e ∈ Ea and with Ew1
∩ Ew2

6= ∅. With this de�nition we have a formula for T̄Ni,i′ akin to the one for T̄Ni we
had earlier. Here CN,t is again the number of sentences in each equivalence class. Have:

Var
(〈
LN , x

k
〉)

=

2k∑
t=1

CN,t
Nk+2

∑
a=(w1,w2)∈W(2)

k,t

 ∏
e∈Ec

a

E
(
Z
Na

e
1,2

) ∏
e∈Es

a

E
(
Y
Na

e
1

)

−
∏

e∈Ec
w1

E
(
Z
Nw1

e
1,2

) ∏
e∈Es

w1

E
(
Y
Nw2

e
1

) ∏
e∈Ec

w2

E
(
Z
Nw2

e
1,2

) ∏
e∈Es

w2

E
(
Y
Nw2

e
1

)
To show that this goes to zero as N →∞, since the products in square brackets are bounded for �xed k, it su�ces

to show that W(2)
k,t is empty for t ≥ k + 2, because in this case the coe�cient

CN,t

Nk+2 → 0 for t < k + 2 will take the

whole sum to zero in the limit N →∞. We will actually prove a stronger claim, that W(2)
k,t is empty for t ≥ k + 1,

as this result will be useful later.

Proposition 34. W(2)
k,t is empty for t ≥ k + 1.

Proof. Let a = w1w2 ∈ W(2)
k,t . Then Ga is a connected graph (since Ew1 ∩ Ew2 6= ∅) with t vertices and at most k

edges (since Na
e ≥ 2 for e ∈ Ea), which is impossible for t ≥ k+ 2 (Since a tree has the minimal number of edges for

a �xed number of vertices, and a tree would have t = k + 1) When t = k + 1, it must be that Ga is a tree and that
Na
e = 2 for every edge e. But the path generated by w1 starts and ends at the same vertex, so it must visit each

edge on its route at least twice. The path generated by w2 also visits each edge on its route at least twice. Since
each edge is visited exactly twice by these two routes (Na

e = 2 for all edges e), it must be that the paths from w1
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and w2 are disjoint. But then a is disconnected! This contradicts the existence of such an element a ∈ W(2)
k,t when

t = k + 1. �

Lemma 35. For every k ∈ N and every ε > 0:

lim
n→∞

P
(∣∣〈Ln, xk〉− 〈L̄n, xk〉∣∣ > ε

)
= 0

Proof. By Chebyshev, P
(∣∣〈Ln, xk〉− 〈L̄n, xk〉∣∣ > ε

)
≤ 1

ε2E
(∣∣〈Ln, xk〉− 〈L̄n, xk〉∣∣2) = 1

ε2Var
(〈
Ln, x

k
〉)

so it suf-

�ces to show that this goes to zero as N →∞. We have that:

Var
(〈
LN , x

k
〉)

=

2k∑
t=1

CN,t
Nk+2

∑
a=(w1,w2)∈W(2)

k,t

 ∏
e∈Ec

a

E
(
Z
Na

e
1,2

) ∏
e∈Es

a

E
(
Y
Na

e
1

)

−
∏

e∈Ec
w1

E
(
Z
Nw1

e
1,2

) ∏
e∈Es

w1

E
(
Y
Nw2

e
1

) ∏
e∈Ec

w2

E
(
Z
Nw2

e
1,2

) ∏
e∈Es

w2

E
(
Y
Nw2

e
1

)
When t ≤ k in the sum, the coe�cient

CN,t

Nk+2 → 0 and the terms in square brackets are bounded (by something

like kk), so these terms vanish in the limit N → ∞. When t ≥ k + 1 , W(2)
k,t is empty, so these terms are always

zero. Hence the whole sum vanishes as N →∞. �

1.2. GOE and the GUE.

De�nitions of di�erent letters

(1) β = 1. We use the �eld F = R, H(1)
N ⊂ MatN (R) is the space of real symmetric N ×N matrices (Aᵀ = A).

U (1)
N is the set of N ×N orthogonal matrices (AᵀA = Id).

(2) β = 2. We use the �eld F = C, H(2)
N ⊂ MatN (C) is the space of complex Hermitian N × N matrices

(A∗ = A). U (2)
N is the set of N ×N unitary matrices (A∗A = Id).

DN is the set of N ×N diagonal matrices with real entries.

De�nition 36. (GOE) Let {ξi,j}∞i,j=1 be an i.i.d. family of N(0, 1) random variables. De�ne P
(1)
N to be the law

of the random N × N real symmetric matrix with Xii =
√

2ξii on the diagonal, and Xji = Xij = ξi,j above the

diagonal. This is a probability measure on H(1)
N For example:

P
(1)
3

D≡

 √2ξ11 ξ12 ξ13
ξ12

√
2ξ22 ξ23

ξ13 ξ23
√
2ξ33

 ∈ H(1)
3

A random matrix X ∈ H(1)
N with law P

(1)
N is said to belong to the Gaussian Orthogonal Ensemble (GOE)

De�nition 37. (GUE) Let {ξi,j , ηi,j}∞i,j=1 be an i.i.d. family of N(0, 1) random variables. De�ne P
(2)
N to be the law

of the random N ×N complex Hermitian matrix with Xii = ξii on the diagonal, and X̄ji = Xij = 1√
2

(ξi,j + ıηi,j)

above the diagonal (Here ı =
√
−1 is the imaginary unit). This is a probability measure on H(2)

N For example:

P
(2)
3

D≡

 ξ11
ξ12+ıη12√

2

ξ13+ıη13√
2

ξ12−ıη12√
2

ξ22
ξ23+ıη23√

2
ξ13−ıη13√

2

ξ23−ıη23√
2

ξ33

 ∈ H(2)
3

A random matrix X ∈ H(2)
N with law P

(2)
N is said to belong to the Gaussian Unitary Ensemble (GUE)

Remark 38. Both the GUE and GOE give examples of Wigner matrices. In particular Wigner's theorem applies and

lets us conclude that the empirical distribution of the eigenvalues for the random matrix 1√
N
XN ∈ H(β)

N converges

to the semicircle law we found earlier.

Remark 39. What makes the GOE and the GUE special? What do they have to do with orthongonal or unitary
matrices? (Recall orthogonal matrices have XᵀX = Id while unitary matrices have X∗X = Id). The answer is
that the built in symmetry of the de�nition makes it so that the GOE and GUE are invariant under orthogonal
matrices and unitary matrices respectively. One way you can see this is to calculate the probability density of the

measure P
(β)
N with respect to the Lebesgue measure. We do this below.
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De�nition 40. (`
(β)
N whenβ = 1) Let `

(1)
N be the Lebesgue measure on H(1)

N which is de�ned by the pullback of the

Lebesgue measure on RN(N+1)/2 through the the one-to-one and onto map H(1)
N → RN(N+1)/2 de�ned by taking

the on-or-above the diagonal entries of a matrix in H(1)
N as coordinates in RN(N+1)/2

De�nition 41. (`
(β)
N whenβ = 2) Let `

(2)
N be the Lebesgue measure on H(2)

N which is de�ned by the pullback of the

Lebesgue measure on RN2

through the the one-to-one and onto map H(2)
N → RN × CN(N−1)/2 u RN2

de�ned by

taking the on-or-above the diagonal entries of a matrix in H(2)
N as coordinates in RN × CN(N−1)/2

De�nition 42. The probability density (in the sense of Radon-Nikodym derivative) of P
(β)
N with respect to the

Lebesgue measure `
(β)
N is given by:

dP
(1)
N

d`
(1)
N

(H) = 2−N/2 (2π)
−N(N+1)/4

exp
(
−Tr

(
H2
)
/4
)

dP
(2)
N

d`
(2)
N

(H) = 2−N/2π−N
2/2 exp

(
−2Tr

(
H2
)
/4
)

In particular, we notice that the denisty depends only on the trace of the matrix squared.

Proof. This is a straightforward computation using the independence of the entries and the fact that they are
Gaussian.

(β = 1)Notice that Tr
(
H2
)

= Tr (HᵀH) =
∑N
i=1H

2
i,i + 2

∑
1≤i<j≤N H

2
i,j . Now, since each ξi,j is Gaussian and

independent, we have that:

dP
(1)
N

d`
(1)
N

(H) =

N∏
i=1

ρ
(√

2ξi,i = Hi,i

) N∏
1≤i<j≤N

ρ (ξi,j = Hi,j)

=

N∏
i=1

1√
2
ρ

(
ξi,i =

Hi,i√
2

) N∏
1≤i<j≤N

ρ (ξi,j = Hi,j)

=
1

√
2π

N(N+1)/2

1
√

2
N

exp−1

2

 N∑
i=1

H2
i,i

2
+

∑
1≤i<j≤N

H2
i,j


Which gives the desired result when we use the expression for trace.
(β = 2) Firsty, notice that

Tr
(
H2
)

= Tr (H∗H) =

N∑
i=1

H2
i,i + 2

∑
1≤i<j≤N

|Hi,j |2

=

N∑
i=1

H2
i,i + 2

∑
1≤i<j≤N

ReH2
i,j + 2

∑
1≤i<j≤N

ImH2
i,j

Now, since each ξi,j , ηi,j is Gaussian and independent, we have that:

dP
(2)
N

d`
(2)
N

(H) =

N∏
i=1

ρ (ξi,i = Hi,i)

N∏
1≤i<j≤N

ρ

(
ξi,j√

2
= ReHi,j

) N∏
1≤i<j≤N

ρ

(
ηi,j√

2
= ImHi,j

)

=

N∏
i=1

ρ (ξi,i = Hi,i)

N∏
1≤i<j≤N

√
2ρ
(
ξi,j =

√
2ReHi,j

) N∏
1≤i<j≤N

√
2ρ
(
ηi,j =

√
2ImHi,j

)

=

√
2
2N(N+1)/2

√
2π

N2 exp−1

2

 N∑
i=1

H2
i,i +

∑
1≤i<j≤N

2ReH2
i,j +

∑
1≤i<j≤N

2ImH2
i,j


Which gives the desired result when we use the identity for trace. �

De�nition 43. For x1, x2, . . . , xN ∈ CN we de�ne the Vandermonde determinant associated with x by:

∆(x) = det
(
{xj−1i }i,j

)
=
∏
i<j

(xj − xi)



NOTES FROM �INTRODUCTION TO RANDOM MATRICES� BY ANDERSON, GUIONNET AND ZEITOUNI 10

Theorem 44. [Joint Distribution of the Eigenvalues of the GOE/GUE] Let X ∈ H(β)
N be a random matrix with

law P
(β)
N , with β = 1, 2. The joint distribution of the egienvalues λ1(X) ≤ . . . ≤ λN (X) has density with respect to

the Lebesgue measure which equals:

N !C̄
(β)
N 1{x1≤...≤xn} |∆(x)|β

N∏
i=1

e−βx
2
i /4

Here C̄
(β)
N is a normalizing constant. This constant is:

N !C̄
(β)
N = N !

(ˆ ∞
−∞
· · ·
ˆ ∞
−∞
|∆(x)|β

N∏
i=1

e−βx
2
i /4dxi

)−1

= (2π)
−N/2

(
β

2

)βN(N−1)/4+N/2 N∏
j=1

Γ(β/2)

Γ(jβ/2)

HereΓ(s) =
´∞
0
xs−1e−xdx is Euler's Gamma function.

Remark 45. From this we can easily see the density for the unordered eigenvalues has density P(β)
N on RN with

density:

dP(β)
N

dLebN
= C̄

(β)
N |∆(x)|β

N∏
i=1

e−βx
2
i /4

Remark 46. A consequence of 44 is that the probability of a repeated eigenvalue is zero (since ∆ vanishes if xi = xj
for any i, j). This means that every eigenspace is one dimensional. Let v1, v2, . . . , vn be the basis of eigenvectors
for the matrix X that is normalized so that the �rst coordinate of vi is real and positive and so that |vi| = 1. The
invariance of X under arbitrary orthogonal (when β = 1) or unitary (when β = 2) transformations means that
matrix constructed from the eigenvectors [v1, . . . , vn] is distributed like the Haar measure on the set of orthogonal
(when β = 1) or unitary (when β = 2) matrices. (Recall the Haar measure is the unique measure that is invariant
under the action of the matrices, i.e. dµ (U0U) = dµ(U)). In particular, any single vector, say v1, is distributed
uniformly on the set of norm one vectors whose �rst coordinate is real and positive.

Corollary 47. Let SN−1+ = {x = (x1, . . . , xn) : xi ∈ R, ‖x‖2 = 1, x1 > 0}. Then v1 is uniformly distibuted in

SN−1+ for the GOE or in SN−1C,+ = {x = (x1, . . . , xn) : x1 ∈ R, xi ∈ C, i ≥ 2, ‖x‖2 = 1, x1 > 0}for the GUE. Further-
more, v1, . . . , vn is distributed like a sample of the Haar measure on orthogonal or unitary matrices, with each
column multiplied by a norm one scalar so each column belongs to SN−1+ (for the GOE) and SN−1C,+ (for the GUE).

Proof. Write X = UDU∗. Let T be an orthogonal (for GOE) or unitary (for GUE) matrix distributed like the
Haar measure. The consider TXT ∗. This has the same eigenvalues as X! Since the law of X depends only on the

eigenvalues of X, we know TXT ∗
D

≡ X. Moreover, since TU
D≡ T (by de�nition of the Harr measure), we have then

that X
D≡ TDT ∗, i.e. the orthogonal (for GOE) or unitary (for GUE) matrix that diagonalizes X is distributed like

the Haar measure. The columns of this matrix make a basis of eigenvectors, and multiplying each by a norm one
constant normalizes them the way we want. �

Remark 48. We will now write an outline of the proof for 44 of the distribution of the eigenvalues for the GOE/GUE.

For any X ∈ H(β)
N (i.e. X is symmetric/Hermitian), write X = UDU∗ with U ∈ U (β)

N (i.e. U is orthogonal/unitary)

and D ∈ D(β)
N (i.e. D diagonal with real entries). Suppose the map H(β)

N → U (β)
N ×DN was a bijection. (It turns out

it is not a bijection because of the possibility of repeated eigenvalues; we will make an argument to get around this

later). Then one could paramaterize U (β)
N using βN(N − 1)/2 parameters in a smooth way (N + βN(N − 1)/2 real

parameters to parametrize H(β)
N and subtract the N degrees of freedom coming from DN ) . An easy computation

shows that the Jacobian of the transformation would then be a polynomial of degree βN(N−1)/2 in the eigenvalues

of X with coe�cients that are functions of the parametrization for U (β)
N . Since the Jacobian must vanish on the set

where there are repeated eigenvalues, we know the roots of this polynomial! Symmetry and degree considerations
then show that the Jacobian must be proportional to the factor ∆(x)β . Integrating out the parametrization for

U (β)
N then gives 44.

To get around the fact that the map H(β)
N → U (β)

N × DN is not actually a bijection, we have to ignore some
measure zero sets. We do this below.
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De�nition 49. Let U (β),g
N =

{
U ∈ U (β)

N : every diagonal entry of U is a strictly positive real and every entry of U is non-zero
}

We call these �good unitary matrices� or just �good�
Let DdN = {D ∈ DN : every entry of D is distinct} We call these �distinct diagonal matrices� or just �distinct�.
Let DdoN = {D ∈ DN : every entry of D is distinct and they are decreasing as we go down the diagonal} We call

these �distinct ordered diagonal matrices� or just �distinct ordered�.

Let H(β),dg
N =

{
H ∈ H(β)

N : H = UDU∗where D ∈ DdN and U ∈ U (β),g
N

}
.

Lemma 50. The set H(β)
N \H

(β),dg
N can be thought of as a subset of RN(N+1)/2 or RN2

as described before. This is

a null set with repsect to the Lebesgue measure. Furthermore, the map DdoN × U
(β),g
N → H(β),dg

N given by (D,U) →
UDU∗ is one-to-one and onto, and the map DdoN × U

(β),g
N → H(β),dg

N given by the same map N !-to-one.

Proof. Firstly, notice that for a non-trivial polynomial p : Rk → R, the set {X : p(X) = 0} = p−1({0}) is a closed
set and is measure 0 with respect to Lebesgue measure on Rk (since it has at most k roots). Hence to prove the

claim, it is enough to �nd a p : H(β)
N → R which is a polynomial in the entries and so that p(H) = 0 for every

H ∈ H(β)
N \H

(β),dg
N . Let us use the notation that H(i,j)is the N − 1×N − 1 submatrix obtained from H by deleting

the ith column and jthe row of H .
Claim: Say X = UDU∗ for D ∈ DdN (so that X has distinct eigenvalues) and suppose that X and X(k,k) do

not have any eigenvalues in common for k = 1, 2, . . . , N . Then all the entries of U are nonzero.

Corollary: For every H ∈ H(β)
N \H

(β),dg
N , either has some repeated eigenvalues OR there is some k so that the

N − 1×N − 1 submatrix H(k,k) shares an eigenvalue with the matrix H.
Pf of Corr: If H has repeated eigenvalues we are done. Otherwise, H has no repeated eigenvalues. Suppose

by contradiction that X and X(k,k) do not have any eigenvalues in common for k = 1, 2, . . . , N . Then by the claim
H = UXU? will have U with all nonzero entries. But then H has distince eigenvalues, and a good unitary matrix,

so H ∈ H(β),dg
N which is a contradiction.

Pf of Claim: Let λ be an eigenvalue of X , and let A = X − λI. De�ne Aadjas the N × N matrix with

Aadji,j = (−1)i+j det
(
A(i,j

)
.This is the adjunct matrix from linear algebra, which can be easily veri�ed to have

the property that AAadj = det(A)I. Since λ is an eigenvalue of X, detA = 0 so we have AAadj = 0. Now, the
dimension of the nullspace of A is the dimension of the λ−eigenspace for X which is one (since the eigenvalues
for X are distinct). Now, since AAadj = 0, we know that each column of the adjugate is perpendicular to the
row-space of A. Since the row-space of A is N − 1dimensional, (by rank-nulltiy theorem), every column of Aadj

is in the 1-dimensional space orthogonal to the row-space of A. Have then that every column of Aadj is a scalar
multiple of some vector vλ. Since Avλ = 0, we know that vλ is an eigenvector of X of eigenvalue λ. Since X and
X(k,k) have no eigenvalues in common, we know that det

(
X(k,k) − λI

)
6= 0. Notice that by de�nition of A, we

have Aadji,i = det
(
X(k,k) − λI

)
6= 0, so the diagonal entries of Aadj are all non-zero. Since the columns of Aadj are

scalar multiples of vλ it must be that vλ has all non-zero components! (Or else if vλ(i) = 0, the entire i-th row of
Aadj would be zero, contradiction the above.) Finally, since each column of the diagonalizing matrix U is a scalar
mulitple of some vλ, we know every entry of U is non-zero.
Fact: For any polynomials p, q : Rn → R, there is a function f (p, q) which is polynomial in the coe�cients of

p, q so that f(p, q) = 0 if and only if p and q share a root. f is called the resultant of p, q. A corollary is that f(p, p′)
is a polynomial in the coe�cients of p which is zero if and only if p has a repeated root. f is called the discriminant
of p, q

We are now ready to prove the lemma. Let p be the characteristic polynomial of H and let pk be the characteristic
polynomial of H(k,k). Let Pk be the resultant of p and pk (This is a polynomial in the coe�cients of p, pk). Since
roots of p, pk correspond to eigenvalues of H,H(k,k), Pkis 0 if and only if H and H(k,k) share an eigenvalue. Let
P0 be the discriminant of p (again a polynomial in the coe�cients of p) which is 0 if and only if H has a repeated
root. Since the coe�cients of p, pkare polynomial in the entries of the matrix H, Pk and P0 are also polynomial in
the entries of H. Let Q = P1 · . . . · Pk · P0. This is a polynomial in the entries of H. Moreover by the corollary to

the claim, for H ∈ H(β)
N \H

(β),dg
N , H either has a repeated root (in which case P0 = 0) or there is some k so that

H(k,k)shares an eigenvalue with H (in which case Pk = 0) . In either case Q = 0. So Q works as the polynomial we
are looking for!

The one-to-one or N !-to-one nature of the map is clear because each eigenspace is of dimension 1 , and the choice
of normalization in the de�nition of a �good� unitary matrix forces it. �

De�nition 51. let U (β),vg
N =

{
U ∈ U (β),g

N : all minors of U have nonvanishing determinant
}

be a subset of the

good matrices. We call these very good unitary matrices. These matrices have a nice parametrization.



NOTES FROM �INTRODUCTION TO RANDOM MATRICES� BY ANDERSON, GUIONNET AND ZEITOUNI 12

Lemma 52. The map T : U (β),vg
N → RβN(N−1)/2 (where we identify C ≡ R2 for β = 2) de�ned by:

T (U) =

(
U1,2

U1,1
, . . . ,

U1,N

U1,1
,
U2,3

U2,2
, . . . ,

U2,N

U2,2
, . . . , . . . ,

UN−1,N
UN−1,N−1

)
is one-to-one with a smooth inverse. Furthermore, the set

(
T (U (β),vg

N )
){

is closed and has zero Lebesgue measure.

.... I scouted the rest of the proof but didnt write it up.

2. Intro To Fredholm Determinants

De�nition 53. A Polish space is a complete metric space which is separable.

De�nition 54. Let X be a Polish space and let BX be its Borel sigma algebra. For a complex valued measure ν
on (X,BX) de�ne:

‖ν‖1 =

ˆ
X

|x| dν(x)

We will consider only measures ν with ‖ν‖ <∞.

De�nition 55. A kernal is a Borel measurable, complex-values function K(x, y) de�ned on X × X with norm
de�ned by:

‖K‖ = sup
(x,y)∈X×X

|K(x, y)|

The trace of a kernal K(x, y) with respect to some measure ν is:

Tr(K) =

ˆ
K(x, x)dν(x)

Given two kernals K(x, y) and L(x, y) their composition (K ? L)(x, y) is another kernal which is de�ned (with
repect some measure ν) as:

(K ? L) (x, y) =

ˆ
K(x, z)L(z, y)dν(z)

(These will be well de�ned (i.e. the integrals will be �nite) as long as ‖K‖ and ‖ν‖1 are �nite)

Proposition 56. By Fubini Tr (K ? L) = Tr (L ? K) and (K ? L) ? M = K ? (L ?M)

Note 57. WARNING since K is not continuous it might be that K = K ′almost everywhere but Tr (K) = Tr (K ′)
(they could di�er on the �diagonal� which is a measure zero set)

Remark 58. If X is the space {1, 2, . . . , n} and ν is the counting measure, this feels a lot like a matrix, with Tr
being the trace and ? being matrix multiplication. In fact, if we choose n points x1, . . . , xn and y1, . . . yn then
[K(xi, yj)]i,j is a matrix. It might be interesting to take the determinant of the matrix.

Lemma 59. Fix n > 0 for any two kernals F (x, y) and G(x, y) we have:∣∣∣∣ n

det
i,j=1

F (xi, yj)−
n

det
i,j=1

G(xi, xj)

∣∣∣∣ ≤ n1+n/2 ‖F −G‖max (‖F‖ , ‖G‖)n−1

And: ∣∣∣∣ n

det
i,j=1

F (xi, yj)

∣∣∣∣ ≤ nn/2 ‖F‖n
Proof. De�ne:

H
(k)
i (x, y) =


G(x, y) if i < k

F (x, y)−G(x, y) if i = k

F (x, y) if i > k

Since determinenats are linear in the rows, we can do some manipulation:

n

det
i,j=1

F (xi, yj)−
n

det
i,j=1

G(xi, xj) =

n∑
k=1

n

det
i,j=1

H
(k)
i (xi, yj)

(This works by rewtriting the vector that appears in the top row of F (xi, yj) as ~F =
(
~F − ~G

)
+ ~G recursivly doing

this with the top ~F that appears on the left hand side gives us exactly the restult above.) Applying Hadamards



NOTES FROM �INTRODUCTION TO RANDOM MATRICES� BY ANDERSON, GUIONNET AND ZEITOUNI 13

Theorem now (Hadamard: v1, . . . , vn are column vectors of length n with complex entries, then det [v1, . . . , vn] ≤∏n
i=1

√
v̄Ti vi ≤ nn/2

∏
|vi|∞.) We get:∣∣∣∣ n

det
i,j=1

H
(k)
i (xi, yj)

∣∣∣∣ ≤ nn/2 ‖F −G‖max (‖F‖ , ‖G‖)n−1

Which gives the desired inequality. In the case G = 0 the above determinant is 0 and we get the desired inequality
on ‖F‖alone. �

De�nition 60. For a given kernal K and a measure ν de�ne ∆0 = 1 as a convention and for n > 0:

∆n = ∆n (K, ν) =

ˆ
. . .

ˆ
n

det
i,j=1

K (ξi, ξj) dν (ξ1) . . . dν (ξn)

By the inequality we just proved, |∆n| ≤ (‖ν‖1)
n ‖K‖n nn/2 so the integral is well de�ned.\

De�nition 61. The Fredholm determinant associated with the Kernal K is de�ned as:

∆(K) = ∆(K, ν) =

∞∑
n=0

(−1)n

n!
∆n(K, ν)

Remark 62. Here is some motivation for this being called a determinant. Let f1(x), . . . , fN (x), g1(x), . . . , gN (x) be
given. Put:

K(x, y) =

n∑
i=1

fi(x)gi(y)

This is a Kernal, and it will turn out that:

∆(K) =
N

det
i,j=1

(
δij −

ˆ
fi(x)gj(x)dν(x)

)
For this reason sometimes people use the notation that ∆(K) = det(I −K).
I will now skip to Lemma 3.2.4 from the book where this expression appears.

3. Hermite Polynomials and the GUE

We are going to prove the following theorem, which tells us that the eigenvalues of the GUE have a probability
density given by a Fredholm determinant. Precisely, we are working towards:

Theorem 63. (Gaudin-Mehta) For any compact set A ⊂ R:

lim
N→∞

P
(√

NλN1 , . . .
√
NλN2 /∈ A

)
= 1 + ∆(Ksine)

= 1 +

∞∑
k=1

(−1)k

k

ˆ
A

. . .

ˆ
A

k

det
i,j=1

Ksine(xi, xj)

k∏
j=1

dxj

where:

Ksine(x, y) =

{
1
π

sin(x−y)
x−y x 6= y

1
π x = y

To begin recall that we calculated the joint distribution of the eigenvalues for the GUE to be (this measure is

denoted by P(2)
N ):

C̄
(2)
N |∆(x)|2

N∏
i=1

e−x
2
i /2

Where C̄
(2)
N is a normalizing constant and ∆(x) is the Vandermonde determinant. For p ≤ N let us denote

by Pp,N the distribution of p unorderd eigenvalues of the GUE; that is to say the law so that for functions f

EPp,N
(f(λ1, . . . , λp)) = EP(2)

N

(f(λ1, . . . , λp)). Because the law P(2)
N is symetric we have that:

EPp,N
(f(λ1, . . . , λp)) =

(N − p)!
N !

∑
σ∈Sp,N

EP(2)
N

(
f
(
λσ(1), . . . , λσ(p)

))
Where Sp,N is the set of injective maps from {1, . . . , p} to {1, . . . , N}. We now de�ne the Hermite polynomials

Hn(x). These come up in quantum mechanics as the eigen-solutions to the quantum harmonic oscilllator, so they
might be somewhat familiar.
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De�nition 64. The n-th Hermite polynmial Hn(x) is de�ned by:

Hn(x) := (−1)nex
2/2 dn

dxn
e−x

2/2

One can verify the following properties of the polynomials Hn(x), you might rememeber doing this in your

quantum mechanics class. In this section G = e−x
2/2dx is the Gaussian meausure and 〈·, ·〉G is the L2 inner

product with respect to this measure, that is: 〈f, g〉G =
´
f(x)g(x)e−x

2/2dx =
√
2πE (f(Z)g(Z))

(1) H0(x) = 1,H1(x) = x and Hn+1(x) = xHn(x)− H′n(x)
(2) Hn(x) is a monic polynomial of degree n
(3) Hn(x) is even when n is even and odd when n is odd.
(4)

〈
x,H2

n

〉
G

= 0

(5) 〈Hk,Hl〉G =
√
2πk!δkl

(6) 〈f,Hn〉G = 0 for all polynomials f(x) of degree < n
(7) xHn(x) = Hn+1(x) + nHn−1(x) for n ≥ 1
(8) H′(x) = nHn−1(x)
(9) H′′n(x)− xH′n(x) + nHn(x) = 0

(10) For x 6= y:
∑n−1
k=0

Hk(x)Hk(y)
k! = (Hn(x)Hn−1(y)−Hn−1(x)Hn(y))

(n−1)!(x−y)

De�nition 65. The n-th normalized osciallator wave function is the function:

ψn(x) =
e−x

2/4Hn(x)√√
2πn!

This is normalized so that
´
ψk(x)ψl(x)dx = δkl.

Lemma 66. For any p ≤ N , the law P(2)
p,N is absolutely continuous with respect to the Lebesgue measure and it has

density:

ρ
(2)
p,N (θ1, . . . , θp) =

(N − p)!
N !

p

det
k,l=1

K(N) (θk, θl)

Where:

K(N)(x, y) =

N−1∑
k=0

ψk(x)ψk(y)

Proof. By the explicit density calculated for the GUE, :

ρ
(2)
p,N (θ1, . . . , θp) = Cp,N

ˆ
|∆(θ1, . . . , θp, ζp+1, . . . , ζN )|2

N∏
i=1

e−x
2
i /2

N∏
i=p+1

dζi

Now, the fundemental remark of this section is the observation that the Vandermonde determinant can be written
in terms of the Hermite polynomials:

∆(x) =
∏

1≤i<j≤N

(xj − xi) =
N

det
i,j=1

xj−1i =
n

det
i,j=1

Hj−1(xi)

This works because every Hj−1(xi) is a monic polynomial with leading term xj−1i . The rest of the polynomial
does not contribute to the determinant (can be proven by induction) because of 6. 〈f,Hn〉G = 0 for all polynomials
f(x) of degree < n (property 6 above). Using this we have then:

ρ
(2)
N = ρ

(2)
N,N (θ1, . . . , θp) = CN,N

∣∣∣∣ n

det
i,j=1

Hj−1(θi)

∣∣∣∣ N∏
i=1

e−x
2
i /2

= C̃N,N

∣∣∣∣ n

det
i,j=1

ψj−1(θi)

∣∣∣∣2
= C̃N,N

n

det
i,j=1

(
N−1∑
k=0

ψk(θi)ψk(θj)

)

= C̃N,N
n

det
i,j=1

(
K(N)(θi, θj)

)
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In the last line we used the fact that det(AB) = det(A) det(B) with A = B? = (ψj−1(θi))
N
i,j=1 so AB? gives

the term where K(N) appears. Here C̃N,N =
∏N−1
k=0 (

√
2πk!)CN,N comes from the normalization constants in the

de�nition of ψi . �

Lemma 67. For any square-integrable functions f1, . . . , fn and g1, . . . , gn on the real line, we have:

1

n!

ˆ
. . .

ˆ
n

det
i,j=1

(
n∑
k=1

fk(xi)gk(xj)

)∏
dxi =

1

n!

ˆ
. . .

ˆ
n

det
i,j=1

fi(xj) ·
n

det
i,j=1

gi(xj)

n∏
i=1

dxi

=
n

det
i,j=1

ˆ
fi(x)gj(x)dx

Proof. Use the identity det(AB) = det(A) det(B) applied to the matrix A = [fk(xi)]ik and B = [gk(xj)]kj so that

AB = [
∑
k fk(xi)gk(xj)]ij . This identity gives:

ˆ
. . .

ˆ
n

det
i,j=1

(
n∑
k=1

fk(xi)gk(xj)

)
n∏
i=1

dxi =

ˆ
. . .

ˆ
n

det
i,j=1

fi(xj) ·
n

det
i,j=1

gi(xj)

n∏
i=1

dxi

Now using the permutation expansion for the determinant, we have:

ˆ
. . .

ˆ
n

det
i,j=1

fi(xj) ·
n

det
i,j=1

gi(xj)

n∏
i=1

dxi =
∑

σ,τ∈Sn

sgn(σ)sgn(τ)

ˆ
. . .

ˆ n∏
i=1

fσ(i)(xi)gτ(i)(xi)

n∏
i=1

dxi

=
∑

σ,τ∈Sn

sgn(σ)sgn(τ)

n∏
i=1

ˆ
fσ(i)(x)gτ(i)(x)dx

= n!
∑
σ∈Sn

sgn(σ)

n∏
i=1

ˆ
fσ(i)(x)gi(x)dx

= n!
n

det
i,j=1

ˆ
fi(x)gj(x)dx

Which is the desired result. �

Remark 68. If we plug in fi = gi = ψi−1 and n = N into the above Lemma, we get that (from the orthogonality
of the ψ′is that:

ˆ
N

det
i,j=1

K(N) (θi, θj)

N∏
i=1

dθi =

ˆ
N

det
i,j=1

N−1∑
k=0

ψk(θi)ψk(θj)
∏

dθi

= N !
N

det
i,j=1

ˆ
ψi(θ)ψj(θ)dθ

= N ! det (IN ) = N !

Corollary 69. The normalizing constant CN,N which appears in the joint distribution for the eigenvalues is:

CN,N =
1

N !
∏N−1
k=0 (

√
2πk!)

=
1

N ! (2π)
N/2∏N

1 k!

Proof. Integrate the density ρN,N to see that 1 = C̃N,N
´

detNi,j=1K
(N) (θi, θj)

∏N
i=1 dθi = C̃N,N · N !. The result

follows from the relationship C̃N,N =
∏N−1
k=0 (

√
2πk!)CN,N . �

Corollary 70. The normalizing constant C̃p,N = (N−p)!
N !
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Proof. Following the above strategy, we will have (For convenience, let xi = θi if i ≤ p and xi = ζi for i > p.)

ρ
(2)
p,N (θ1, . . . , θp) = C̃p,N

ˆ (
N

det
i,j=1

ψj−1(xi)

)2 N∏
i=p+1

dζi

= C̃p,N
∑

σ,τ∈Sn

sgn(σ)sgn(τ)

ˆ N∏
j=1

ψσ(j)−1(xj)ψτ(j)−1(xj)

N∏
i=p+1

dζi

= C̃p,N
∑

σ,τ∈Sn

sgn(σ)sgn(τ)

p∏
j=1

ψσ(j)−1(θj)ψτ(j)−1(θj)

ˆ N∏
j=p+1

ψσ(j)−1(ζj)ψτ(j)−1(ζj)

N∏
i=p+1

dζi

= C̃p,N
∑

σ,τ∈Sn

sgn(σ)sgn(τ)

p∏
j=1

ψσ(j)−1(θj)ψτ(j)−1(θj)

N∏
j=p+1

δσ(j)τ(j)

This is nonzero only when σ and τ di�er only on {1, 2 . . . , p} and in this case the factor at the end is 1. We
now divide the sum up based on which elements {1, . . . , p} map to. For 1 ≤ v1 < . . . < vp ≤ N let L(p, v) be the
bijections from {1, . . . , p} to {v1, . . . , vp}. We have:

ρ
(2)
p,N (θ1, . . . , θp) = C̃p,N

∑
v1<...<vn

∑
σ,τ∈L(p,v)

sgn(σ)sgn(τ)

p∏
j=1

ψσ(j)−1(θj)ψτ(j)−1(θj)

= C̃p,N
∑

v1<...<vn

(
p

det
i,j=1

ψvj−1(θj)

)2

From here we can integrate both sides and use the lemma to see that C̃p,N = (N−p)!
N ! . �

This is now ripe for us to apply the Cauchy-Binet theorem. In our case we use the following �version� of the theo-
rem: Let A be a p×N matrix and let C = AA?(this is a p×p matrix), then detC =

∑
K∈Kp,N

detAK detA?Kwhere

Kp,N is the set of all p element subsets of {1, . . . , N} and AK is the p × p matrix which is obtained from A by
keeping only the columns in K. This is exactly the set up we have here with Ai,j = ψj−1(θi). Applying this and
noticing that [K(θi, θj)]i,j = [ψi(θj)]i,j [ψi(θj)]

?
i,j from its de�nition �nally gives:

ρ
(2)
p,N (θ1, . . . , θp) = C̃p,N

p

det
i,j=1

(
K(N)(θi, θj)

)
Finally, we get to the main result about the GUE as a Fredholm determinant.

Theorem 71. For any measurable subset A of R:

P
(2)
N

(
N⋂
i=1

{λi ∈ A}

)
= 1 +

∞∑
k=1

(−1)k

k!

ˆ
Ac

. . .

ˆ
Ac

k

det
i,j=1

K(N)(xi, xj)

k∏
i=1

dxi

Proof. From our previous lemmas:

P
(2)
N

(
N⋂
i=1

{λi ∈ A}

)
=

ˆ
A

. . .

ˆ
A

ρ2N (θ1, . . . , θp)

N∏
k=1

dθk

= C̃N,N

ˆ
A

. . .

ˆ
A

N

det
i,j=1

K(N) (θi, θj)

N∏
k=1

dθk

C̃N,N

ˆ
A

. . .

ˆ
A

N

det
i,j=1

[
N−1∑
k=0

ψk(θi)ψk(θj)

]
N∏
k=1

dθk

=
N

det
i,j=1

[ˆ
A

ψi(x)ψj(y)dx

]
=

N

det
i,j=1

[
δij −

ˆ
Ac

ψi(x)ψj(y)dx

]
The last line follows by the orthogonality of the ψ's. Now doingsome kind of determinent identity manipulation

which I dont quiet see, you get (EDIT: I �gured it out! Replace the−1 that appears with an x. Then the determinant
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is a polynomial in x. By taking derivatives w.r.t to x you get the formula ala Taylor expansion. Finally, put −1
back in for x. See the notes from Lax's functional analysis for this in detail!) :

P
(2)
N

(
N⋂
i=1

{λi ∈ A}

)
= 1 +

N∑
k=1

(−1)
k

∑
0≤v1<...<vk≤N−1

k

det
i,j=1

(ˆ
Ac

ψi(x)ψj(y)dx

)
Now we just use our lemmas in reverse to rewrite this in terms of K(N)(·, ·). Have:

P
(2)
N

(
N⋂
i=1

{λi ∈ A}

)
= 1 +

N∑
k=1

(−1)
k

k!

ˆ
Ac

. . .

ˆ
Ac

∑
0≤v1<...<vk≤N−1

(
k

det
i,j=1

ψvi(x)

)2∏
dxi

= 1 +

N∑
k=1

(−1)
k

k!

ˆ
Ac

. . .

ˆ
Ac

∑
0≤v1<...<vk≤N−1

(
k

det
i,j=1

K(N)(xi, xj)

)∏
dxi

Lastly, we can sum to∞ instead of N without changing the result, as the rank of the matrix
[
K(N)(xi, xj)

]
k
i,j=1

is at most N because it arises as a product AA?where A is a k ×N matrix of ψ's. �




