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1 Summary of main results: spacing distribu-

tions in the bulk and edge of the spectrum for

the Gaussian ensembles

We recall that the N eigenvalues of the GOE/GUE/GSE are spread out on
an interval of width roughly equal to 4

√
N and hence the spacing between the

eigenvalues ought to be of order 1/
√
N

1.1 Limit result for the GUE

Using the determinental structure of the eigenvalues
{
λN1 , . . . , λ

N
N

}
of the GUE,

we will develope in sections 3.2-3.4 we will prove the following:

Theorem. (3.1.1.) (Gaudin-Mehta) For any compact set A ⊂ R:

lim
N→∞

P
(√

NλN1 ,
√
NλN2 , . . . ,

√
NλNN /∈ A

)
= 1+

∞∑
k=1

(−1)k

k!

ˆ

A

ˆ

A

. . .

ˆ

A

k

det
i,j=1

Ksine(xi, xj)dx1dx2 . . . dxk

where:

Ksine(x, y) =
1

π

sin(x− y)

x− y
and is understood to be 1/π if x = y (i.e. determined by continuity)

As a consequence of this theorem, we will show that the theory of integrable
systems applies and we will get the following result for eigenvalues in the bulk:

Theorem. (3.1.2) (Jimbo-Miwa-Mori-Sato) One has:

lim
N→∞

P

[√
NλN1 . . .

√
NλNN /∈

(
− t

2
,
t

2

)]
= 1− F (t)
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with:

1− F (t) = exp

 tˆ

0

σ(x)

x
dx


With σ the solution of a Painleve V formula and has asymptotics:

σ(t) = − t
π
− t2

π2
− t3

π3
+O(t4) as t ↓ 0

We will also develop results for eigenvalues at the edge of the spectrum (i.e.
the top eigenvalue) Before we can say what this is, we will make some notation.

De�nition. (3.1.3.) The Airy function is de�ned by the formula:

Ai(x) =
1

2πi

ˆ

C

exp

(
1

3
z3 − xz

)
dz

where C is the contour in the z−plane consititing of two rays, one from the
direction e−πi/3 coming from in�nity to the origin and one from the origin to
eπi/3 to ∞.

The Airy kernal is de�ned by:

KAiry(x, y) = A(x, y) :=
Ai(x)Ai′(y)−Ai′(x)Ai(y)

x− y

with the value of x = y determined by continuity.

Remark. By di�erentiating under the integral sign, we can check that the Airy
function Ai(x) satis�es the di�erential equation y = Ai(x):

d2y

dx2
− xy = 0

We will look at further properties of the airy function later in the chapter.

The fundemental result for the eigenvalues of the GUE at the edge of the
spectrum is:

Theorem. (3.1.4.) [The top eigevalue of the GUE] For all −∞ < t ≤ t′ ≤ ∞
we have:

lim
N→∞

P

[
N2/3

(
λNi√
N
− 2

)
/∈ [t, t′] , i = 1 . . . , N

]
= 1+

∞∑
k=1

(−1)k

k!

t′ˆ

t

t′ˆ

t

. . .

t′ˆ

t

k

det
i,j=1

A(xi, xj)dx1dx2 . . . dxk

With A the Airy kernal. In particular, the TOP eigevalue λNN has:

lim
N→∞

P

[
N2/3

(
λNN√
N
− 2

)
≤ t
]

= 1 +

∞∑
k=1

(−1)k

k!

ˆ ∞
t

ˆ ∞
t

. . .

ˆ ∞
t

k

det
i,j=1

A(xi, xj)dx1dx2 . . . dxn

=: F2(t)

F2(t) is the celebrated Tracy-Widom distribution.

2



Remark. The statement of theorem 3.1.4 does not ensure that F2 is a proper
distribution function (For example if you apply the Helly selection theorem to
a sequence of measures, you get convergence to something for a subsequence,
of the form P(Xnk

≤ t) → F (t) but you are not guarenteed that the limiting
object is a proper probability distribution unless you know Xn is tight, or have
some additional information that stops mass from leaking away. An example is
Xn ∼ N(0, t) will converge to F (t) = 1

2 ....or boxesXn = 1[n,n+1] will converge to
0. This type of convregence is called VAGUE convergence....this is convergence
under expectation for test functions with COMPACT support. Weak convergece
we need it to work for any continuous function. Since arbitary continus function
need not vanish at ∞, we need to be sure mass isn't leaking away)

The following theorem clari�es the situation! As it happens, F2 is indeed
a proper probability distribution and the convernce above is indeed weak con-
vergnece.

Theorem. (3.1.5.) (The Tracy Widom distribution) The function F2(·) is a
proper distribution function that admits the representation:

F2(t) = exp

− ∞̂

t

(x− t)q(x)2dx


Where q satis�es:

q′′ = tq + 2q3

and will have q(t) ∼ Ai(t) as t→ +∞.

Remark. The function F2(·) is called the Tracy-Widom distribution and the
di�erential equation its solves is the Painleve II equation.

1.2 Generalizations: Limit formulas for the GOE and GSE

I'm going to skip this for now and focus on the GUE. There is a nice analaogy
using a parameter β which is 1 for the GOE, 2 for the GUE, and 4 for the GSE.

2 Hermite Polynomials and the GUE

In this section we will show why orthongonal polynomials arise naturally in the
study of the law of the GUE. The relavent orthogonal polynomials in this study
are the Hermite polynomials and the associated oscillator wave-functions. We
introduce these here and use these tools to derive the Fredholm determinant
representation for some GUE things.

2.1 The GUE and determinantal laws

We will show that the joint distribution of the eigenvalues for the GUE has a
nice formula as a determinantal point process. (Its actually a determinental

3



projection process). This will lead us to the representation of the eigenvalues
in the bulk as a Fredhold determinant. (this will be done in Lemma 3.2.2. and
Lemma 3.2.4.)

Before we start, lets clarify some notation we will use in this section.

De�nition. We consider
the GUE matrix with complex Gaussian entries of unit variance. Spec�cally,

if ξi,jand ηi,j are sequences of iid N(0, 1) Gaussians, then our matrices look like: (ξ1,1) 1√
2

(ξ1,2 + iη1,2) 1√
2

(ξ1,3 + iη1,3)

∗ (ξ2,2) 1√
2

(ξ2,3 + iη2,3)

∗ ∗ (ξ3,3)


The terms below the diagonal are mirrored to make the matrix Hermitian

(Aij = Aji). We will brie�y recall that the GUE is special due to the fact that
it is invariant under conjugation with unitary matrices (i.e. if X is distributed
like a GUE and U is unitary, then UXU∗is distributed like a GUE too) and the
probability density of a matrix in the GUE depends only on the eigenvalues of
that matrix (speci�cally, ρ(X = H) = C exp

(
−Tr(H2)/2

)
(Recall that Tr(A2)

is the sum of the squares of the eigenvalues). Using these facts one can �nd an
explicit formula for the joint distribution of the eigenvalues of the GUE, namely,
:

ρ ((λ1, . . . , λN ) = (x1, . . . , xn)) = C1{x1≤x2≤...≤xN} |∆(x)|2
N∏
i=1

exp

(
−1

2
x2
i

)
Where ∆(x) =

∏
i<j (xj − xi) is the Vandermonde determinant. The con-

stant C can be calculated explicitly. [All of this stu� is done in detail in Chapter
2 of AGZ]

We will denote the law of the unordered eigenvalues by P
(2)
N (the 2

stands for β = 2 connecting to the case for the GOE and GSE) (i.e. P
(2)
N is the

measure on RN that has density C |∆(x)|2
∏N
i=1 exp

(
− 1

2x
2
i

)
...they can come in

any order).

For p ≤ N , we will denote the marginal of P
(2)
N onto p coordinates by Pp,N

the distribution of p unordred eigenvalues of the GUE. I.e this is the
measure on Rp that tells you the probability of �nding p of the N eigenvalues
somewhere. More expliecly, Pp,N (I'm going to drop the superscript (2)'s for
convencience) one has for any f ∈ Cb(Rp) that:ˆ

f(θ1, . . . , θp)dPp,N (θ1, . . . , θp) =

ˆ
f(θ1, . . . , θp)dPN (θ1, . . . , θN )

(Recall that PN is the law of the unordered eigenvalues). Clearly one also
has:ˆ
f(θ1, . . . , θp)dPp,N (θ1, . . . , θp) =

(N − p)!
N !

∑
σ∈Sp,N

ˆ
f
(
θσ(1), . . . θσ(p)

)
dPN (θ1, . . . , θN )
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=
p!(
N
p

) ∑
σ∈Sp,N

ˆ
f
(
θσ(1), . . . θσ(p)

)
dPN (θ1, . . . , θN ) (1)

Where Sp,N is the set of injective maps from {1, . . . , p} to {1, . . . N}. This
is just saying that to observe p eigenvalues in a particular con�guration, you
must observe a subset of the full N eigenvalues in that con�guration, and then
you have a p!/

(
N
p

)
chance of those being the p eigenvalues you are interested in.

(Everything is kind of hairy to write down here because of the whole unordered
bit....it is nicest to think of them perhaps as being in order and then being
randomly assigned a permutation π to mix up their labels in order to give us
the unordered P measure)

We now introduce Hermite polynomials and the associated normalized (har-
monic) oscillator wave-function. [You will recall these the most from your intro-
ductory quantum thoery class, they are the polynomials that give the eigenfunc-
tions for the quantum harmonic oscillator, and they obey the �ladder operators�
etc]

De�nition. (3.2.1.) a) The n-th orderHermite polynomial Hn(x) is de�ned
by:

Hn(x) := (−1)
n

exp

(
x2

2

)
dn

dxn
exp

(
−x

2

2

)
(This looks like it might not be a polynomial, but it is!)
b) The n-th normalized oscillator wave-function is the function:

ψn(x) =
exp

(
−x

2

4

)
√√

2πn!
Hn(x)

Remark. Some authors de�ne the Hermite polynomials di�erently, with a factor
of
√

2 di�erence in x.

Remark. The Hermite polynomials and wave functions have lots of nice prop-
erties. The two that we will use for the moment are:

1) The wave functions are orthogonal and orthonormal:

〈ψk.ψl〉 =

ˆ
ψk(x)ψl(x)dx = δk,l

2) Hn(x) is a polynomials of degree n with leading term xn.

There is a whole subsection later on devoted to these properties and more
for the Hermite polynomials. We now have all the background we need to state
the determinantal structure for Pp,N that we are strivng towards:

Lemma. (3.2.2.) For any p ≤ N , the law Pp,N is absolutly continuous with
respect to the Lebesgue measure with density:

ρp,N (θ1, . . . , θp) =
(N − p)!
N !

p

det
k,l=1

K(N) (θk, θl)
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where:

K(N)(x, y) =

N−1∑
k=0

ψk(x)ψk(y)

Remark. This is saying that PN is a determinantal projection process onto the
space spanned by {ψ1, ψ2, . . . , ψN}in L2(R).

Proof. By the explicit calculation of the density for PN , and our discussion
about how to take the marginal, we have already an explicity formula for the
density namely:

ρp,N (θ1, . . . , θp) = Cp,N

ˆ
|∆(x)|2

p∏
i=1

exp

(
−θ

2
i

2

) N∏
i=p+1

exp

(
−ζ

2
i

2

) N∏
i=p+1

dζi

(Here the vector x that appears in the Vandermonde determinant has its
�rst p components equal to θi and its last components equal to ζi, the variables
being integrated out) We now have to manipulate this formula to make it look
like a determinant.

Fortunatly a Vandermonde determinant is already a determinant, so we have:

∆(x) =
∏

1≤i<j≤N

(xj − xi) =
N

det
i,j=1

xj−1
i

Since the Hermite polynomials,Hk, are all monic with leading term xk, we
claim that detNi,j=1 x

j−1
i = detNi,j=1Hj−1(xi). Indeed, the contribution from the

non-monic terms can be shown to be zero, since there are many dependent
rows/columns in the matrix. [Remark: you might ask yourself why we are
using the Hermite polynomials and not any other polynomials here. Any monic
polynomials will do at this stage, but the Hermite polynomials play nice with

the kernal exp
(
−x

2

2

)
which appears here and that is still to come]

Let's now consider the case p = N �rst. We will write ρN,N as ρN for
shorthand. We have:

ρN (θ1, . . . , θN ) = CN,N |∆(θ)|2
N∏
i=1

exp

(
−θ

2
i

2

)

= CN,N

(
N

det
i,j=1

Hj−1(θi)

)2 N∏
i=1

exp

(
−θ

2
i

2

)

= C̃N,N

(
N

det
i,j=1

ψj−1(θi)

)2

Here we have just used the de�nition ofψk in terms of Hk, and absorbed the
constant prefactors into the factor C̃N,N out front. Now we use the fact that

det(AB) = det(A) det(B) and det(B∗) = det(B). If we put A = [ψj−1(θi)]
N
i,j=1

and B =
[
ψi−1(θj)

]N
i,j=1

so that A = B∗, then the matrix AB is exactly the
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matrix AB = [K(θi, θj)]
N
i,j=1, so we can replace the determinant squared that

appears above by:

ρN (θ1, . . . , θN ) = C̃N,N

(
N

det
i,j=1

K(N)(θi, θj)

)
We now introduce a lemma that is handy for this kind of calculation and

will be used later on [The proof's not over yet.....I know there is a square on the
right of the page over there....just ignore that!)

Lemma. (3.2.3.) For any square-integrable f1, . . . , fn and g1, . . . , gn on the
real line we have:

1

n!

ˆ ˆ
. . .

ˆ
n

det
i,j=1

(
n∑
k=1

fk(xi)gk(xj)

)
n∏
i=1

dxi =
1

n!

ˆ ˆ
. . .

ˆ
n

det
i,j=1

fi(xj)
n

det
i,.j=1

gi(xj)

n∏
i=1

dxi

=
n

det
i,j=1

ˆ
fi(x)gj(x)dx

Proof. The �rst equality is the trick with det(AB) = det(A) det(B) and det(B∗) =
det(B) and de�ning A,B with B∗ = A that we just did. To get the next in-
equality, do a permutation expansion for both determinants:

ˆ ˆ
. . .

ˆ
n

det
i,j=1

fi(xj)
n

det
i,.j=1

gi(xj)

n∏
i=1

dxi =
∑

σ,τ∈Sn

sgn(σ)sgn(τ)

ˆ
. . .

ˆ n∏
i=1

fσ(i)(xi)gτ(i)(xi)

n∏
i=1

dxi

=
∑

σ,τ∈Sn

sgn(σ)sgn(τ)

n∏
i=1

ˆ
fσ(i)(x)gτ(i)(x)dx

= n!
∑
σ∈Sn

sgn(σ)

n∏
i=1

ˆ
fi(x)gσ(i)(x)dx

= n!
n

det
i,j=1

ˆ
fi(x)gj(x)dx

The only tricky step is to regroup the permutations; if you wanted to do this
with more steps you could sum over σ �rst then over τ and then notice that
summing over τ ∈ Sn is the same as summing over τσ−1 ∈ Sn or something,
and then you coudl �factor out� the σ so that each summand is identical. Ok,
anyways, then you do permutation expansion the oppositie direction to get the
inequality and thats the lemma.

Proof. [Contining the proof of Lemma 3.2.2.] Put fi = gi = ψi−1 and n = N in
Lemma 3.2.3 that we just proved, and we get that:

ˆ
N

det
i,j=1

K(N)(θi, θj) dθ =

ˆ
N

det
i.j=1

∑
ψk(θi)ψk(θj)dθ

= N !
n

det
i,j=1

ˆ
ψi(x)ψj(x)dx
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= N ! det(Id)

= N !

Since the ψ's are orthonormal. This shows that C̃N,N , the normalizing con-

stant in ρN (θ1, . . . , θN ) = C̃N,N

(
detNi,j=1K

(N)(θi, θj)
)
is C̃N,N = 1

N ! . Undoing

the constants (they just came from normalizing the ψk's) we have C−1
N,N =

N !
∏N−1
k=0

(√
2πk!

)
. This completes the proof in the case that p = N .

To get the result in the case p ≤ N you can go the route I suggested in the
remark before the lemma (which I think is correct, but am not 100% sure) or
you can procede as we did at �rst in the case p = N to get to:

ρp,N (θ1, . . . , θp) = C̃p,N

ˆ (
N

det
i,j=1

ψj−1(xi)

)2 N∏
i=p+1

dζi

From here you can do a permutation expansion, and many of the terms
will die by the orthogonality of the ψj 's . You then get to a sum for which
you can apply the Cauchy-Binet formula and get the result, and then you have
to integrate out (and then using the Lemma 3.2.3 as we did above) to get to

C̃p,N = (N−p)!
N ! . Its important that the polynomials are orthogonal with resepct

to the exp
(
−x

2

2

)
weight here for this to simplify down nicely. This kind of

result going from the DPP to the marginal of the DPP is true in general for
projection processes like this one.

Remark. So we needed the polynomials to be monic with leading term xn so
we could put them in as the Vandermonde determinant, and we needed them
to be orhtogonal with respect to the weight exp

(
−x2/2

)
so that the resulting

Kernal would be that of a projection determinantal point process and everything
simpli�es nicely.

Lemma. (3.2.4.) For any measurable subset Aof R:

PN

(
N⋂
i=1

{λi ∈ A}

)
= 1 +

∞∑
k=1

(−1)k

k!

ˆ

Ac

, . . . ,

ˆ

Ac

k

det
i,j=1

K(N)(xi, xj)
k∏
i=1

dxi

Proof. By our determinatnal formula for the density (Lemma 3.2.3) and our´
det to det

´
lemma (Lemma 3.2.3) and orthogonality we have that:

PN

(
N⋂
i=1

{λi ∈ A}

)
=

ˆ

A

. . .

ˆ

A

1

N !

(
N

det
i,j=1

K(N)(θi, θj)

)
dx1 . . . dxn

=
N

det
i,j=1

ˆ

A

ψi(x)ψj(x)dx

=
N

det
i,j=1

δij − ˆ
Ac

ψi(x)ψj(x)dx


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From here, we invoke the expansion for determinants of the form = det [I + hAij ] =

1 +
∑N
k=1 h

k
∑

0≤v1<...<vk≤N−1 detki,j=1

(
Avivj

)
when h = −1. (See the propo-

sition after the lemma). So we get too:

PN

(
N⋂
i=1

{λi ∈ A}

)
= 1+

N∑
k=1

(−1)k
∑

0≤v1<...<vk≤N−1

k

det
i,j=1

ˆ
Ac

ψvi(x)ψvj (x)

 k∏
i=1

dxi

Using the det
´

to
´

det lemma the other way now, and the standard
det(AB) = det(A) det(B) trick we get:

PN

(
N⋂
i=1

{λi ∈ A}

)
= 1 +

N∑
k=1

(−1)k

k!

ˆ
Ac

ˆ
Ac

. . .

ˆ
Ac

∑
0≤v1<...<vk≤N−1

(
k

det
i,j=1

ψvi(xj)

)2 k∏
i=1

dxi

By the Cauchy Binet theorem now, [In our case we use the following �version�
of the theorem: Let A be a p × N matrix and let C = AA?(this is a p × p
matrix), then detC =

∑
K∈Kp,N

detAK detA?Kwhere Kp,N is the set of all p

element subsets of {1, . . . , N} and AK is the p × p matrix which is obtained
from A by keeping only the columns in K. This is exactly the set up we have
here with Ai,j = ψj−1(θi). ] Have:

PN

(
N⋂
i=1

{λi ∈ A}

)
= 1 +

N∑
k=1

(−1)k

k!

ˆ
Ac

ˆ
Ac

. . .

ˆ
Ac

k

det
i,j=1

K(N) (xi, xj)

k∏
i=1

dxi

Since the summand is 0 for k ≥ N (since the matrix
[
K(N)(xixj)

]k
i,j=1

is a

k × k matrix here and it arises as the product of a k ×N matrix with a N × k
matrix (namely [ψi(xj)]i=1..N,j=1,,k we see that the matrix cannot have rank
more than N , so we might as well write it as an in�nite sum:

PN

(
N⋂
i=1

{λi ∈ A}

)
= 1 +

∞∑
k=1

(−1)k

k!

ˆ
Ac

ˆ
Ac

. . .

ˆ
Ac

k

det
i,j=1

K(N) (xi, xj)

k∏
i=1

dxi

Remark. See also the notes from Johannson on �Determinantal Point Processes
and Random Matrices� for a slightly more general look at this.

Proposition. Let Aij be an N ×N matrix. Have:

det [I + hAij ] = 1 + h
∑
i

Aii +
h2

2

∑
i,j

det

[
Aii Aij
Aji Ajj

]
+ . . .

= 1 +

N∑
k=1

hk
∑

0≤v1<...<vk≤N−1

k

det
i,j=1

(
Avivj

)
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Proof. Let us callD(h) := det [I + hAij ]. D(h) is a polynomial of degree at most

N in the variable h, D(h) =
∑N

0 amh
m, so it su�ces to �nd the coe�cients am.

Using derivatives, we have that:

am =
1

m!

(
d

dh

)m
D(h)

∣∣∣∣
h=0

Label the columns of I+hAij as Cj(h) . Notice that each column Cj(h) has
components which are linear in h and also that Cj(0) = ej . Now, think of the
determinant as being a linear function of all the columns. Since the derivative is
multilinear as a function of the columns Cj , we have the following di�erentiation
rule:

d

dh
det [C1(h), C2(h), . . . , CN (h)] =

N∑
k=1

det

[
C1(h), . . . ,

d

dh
Ck(h), . . . , CN (h)

]

(Here a derivative d

dhCi is the vector that we get by taking component-wise
derivatives. A skeptical reader could prove this result from the de�nition of the
derivative and using induction, along with the usual �add and subtract� trick
that comes up in this type of derivative argument. Hint: Induction hypothesis
for l ≤ N is that: lim∆→0

1
∆ (det [C1(h+ ∆), , . . . , Cl(h+ ∆), Cl+1(h), . . . , CN (h)]− det [C1(h), . . . , CN (h)]) =∑l

k=1 det
[
C1(h), . . . , d

dhCk(h), . . . , CN (h)
]
)

Using this rule repeatedly, gives that:(
d

dh

)m
det [C1(h), C2(h), . . . , CN (h)] =

N∑
k1,...,km=1

det

[
C1(h), . . . ,

d

dh
Ck1(h), . . .

d

dh
Ckm , . . . CN (h)

]

In our case, since every component Ci(h) is a linear function of h, taking
two derivatives of any column Ck would give a zero-column, and then the deter-
minant from that term would vanish leaving no contribution. For this reason,
we only need to consider ki all distinct. In our e�ort to evaluate am now, we
evalute the above at h = 0. For columns with no derivative we have Ck(0) = ek,
and for columns with a derivative we have that d

dhCk(0) = A·k is the column
from A. Hence we have:

m!am =
∑

k1...km

det [e1, . . . , A·k1 , . . . A·km , . . . , eN ]

=
∑

k1...km

det
[
Akikj

]m
i,j=1

If we sort the indeces ki so that k1 < . . . < km then we pick up a factor of m!
which exactly cancels out them! on the LHS. Plugging back intoD(h) =

∑
hkak

completes the result.
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2.2 Properties of the Hermite Polynomials and Oscillator
Wave-Functions

De�nition. We de�ne the inner produc 〈f, g〉G =
´
R f(x)g(x) exp

(
−x2/2

)
dx

Lemma. (3.2.5.) Properties of the Hermite polynomials

1. H0(x) = 1,H1(x) = x and Hn+1(x) = xHn(x)−H′n(x)

2. Hn(x) is a monic polynomial of degree n

3. Hn(x) is even when n is even and odd when n is odd.

4.
〈
x,H2

n

〉
G

= 0

5. 〈Hk,Hl〉G =
√

2πk!δkl

6. 〈f,Hn〉G = 0 for all polynomials f(x) of degree < n

7. xHn(x) = Hn+1(x) + nHn−1(x) for n ≥ 1

8. H′n(x) = nHn−1(x) [Corr: H(k)
n = n(n− 1) . . . (n− k + 1)Hn−k(x)]

9. H′′n(x)− xH′n(x) + nHn(x) = 0

10. For x 6= y:
∑n−1
k=0

Hk(x)Hk(y)
k! = (Hn(x)Hn−1(y)−Hn−1(x)Hn(y))

(n−1)!(x−y)

Proposition. Hn(x + t) can be written in terms of {Hk(x)} by the following
combinatorial formula:

Hn(x+ t) =

n∑
k=0

(
n

k

)
Hk(x)tn−k

Proof. These are polynomials, so they are anayltic. We use H(k)
n = n(n −

1) . . . (n − k + 1)Hn−k(x) to explictly compute the derivatives. By Taylor's
theorem:

Hn(x+ t) =

N∑
k=0

tk

k!
H(k)
n (x)

=

N∑
k=0

tk

k!
n(n− 1) . . . (n− k + 1)Hn−k(x)

=

N∑
k=0

tk
(
n

k

)
Hn−k(x)

=

N∑
k=0

tn−k
(

n

n− k

)
Hk(x)

=

N∑
k=0

tn−k
(
n

k

)
Hk(x)

11



As desired.

De�nition. Lets have the de�nition of the oscillator wave functions here again:

ψn(x) =
exp

(
−x

2

4

)
√√

2πn!
Hn(x)

Notice that since the Hn's are polynomials, the osciallator wave functions

go to 0 as x→ ±∞ like a polynomial times exp
(
−x

2

2

)
. The same will hold for

any of its derivatives too (it will turn out that we can write ψ′n in terms of ψn
andψn−1)

Lemma. (3.2.7.) Properties of the Oscillator wave function (these just fol-
low from the properties of the Hermite polynomials and the de�nition of the
oscillator wave function in terms of those)

1.
´
ψkψl = δkl

2. xψn =
√
n+ 1ψn+1 +

√
nψn−1

3. K(n)(x, y) =
∑n−1
k=0 ψk(x)ψk(y) =

√
n (ψn(x)ψn−1(y)− ψn−1(x)ψn(y)) /(x−

y)

4. ψ′n(x) = −x2ψn(x) +
√
nψn−1(x)

5. ψ′′n +
(
n+ 1

2 −
x2

2

)
ψn(x) = 0

3 The semicircle law revisited

Recall that we proved the semicircle law for Wigner matrices by using combi-
natorial methods to compute the limits as N → ∞ of the moments. In this
section we will compute explicitly as a function of N the moments for the GUE
(which is a special type of Wigner matrix....it is a Gaussian Wigner matrix)

Let X ∈ HN be a random Hermitian GUE matrix with eigenvalues λN1 ≤
. . . ≤ λNN and let:

LN =
(
δλN

1 /
√
N + . . .+ δλN

N/
√
N

)
/N

Be the scaled empirical distribution functions for the matrix XN/
√
N . Let

L̄N be the average empirical spectral distribution, that is
〈
L̄N , f

〉
= E 〈LN , f〉.

We will derive a recursion for the moments of L̄N and estimate the order of �uc-
tuation of the renormalized maximum eigenvalue λNN/

√
N above the spectrum

edge.
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3.1 Calculation of moments of L̄N

Lemma. (3.3.1) For any s ∈ R and any N ∈ N:

〈
L̄N , e

s·〉 = es
2/2N

N−1∑
k=0

1

k + 1

(
2k

k

)
(N − 1) . . . (N − k)

Nk

s2k

(2k)!

= es
2/2N

N−1∑
k=0

Ck
(N − 1) . . . (N − k)

Nk

s2k

(2k)!

(I.e. we have an explicit formula for the moment generating function of LN
involving Catalan numbers)

Proof. By the determinantal formula for the spectrum of the GUE, we have the
one -point correlation formula that ρ1,N (x) = 1

NK
(N)(x, x), so then we have

that for any φ:〈
L̄N , φ

〉
= E (〈LN , φ〉)

= E

(
1

N
φ
(
λN1 /
√
N
)

+ . . .+
1

N
φ
(
λNN/
√
N
))

= NE

(
1

N
φ
(
λN/
√
N
))

(take them unoredered)

= N
1

N

∞̂

−∞

φ

(
x√
N

)
1

N
K(N)(x, x)dx

=

∞̂

−∞

φ(x)
K(N)

(√
Nx,
√
Nx
)

√
N

dx (change of variable)

This shows that L̄N is absolutely continuous with respect to the Lebesgue

measure with density
K(N)(

√
Nx,
√
Nx)√

N
. For this reason we are interested in

K(x, x). Fortunatly, this has a simple for in terms of the oscillator wave
functions. We will compute d

dxK(x, x) and then integrate by parts to the
formula for the moment generatring function we want. Now, by the identity∑n−1
k=0 ψk(x)ψk(y) =

√
n (ψn(x)ψn−1(y)− ψn−1(x)ψn(y)) /(x−y) we have that:

K(n)(x, y)√
n

=
ψn(x)ψn−1(y)− ψn−1(x)ψn(y)

x− y

and hence by L'Hopital have:

K(n)(x, x)√
n

= ψ′n(x)ψn−1(x)− ψ′n−1(x)ψn(x)

(One observation y ou can make at this point is that K(n)(x, x) → 0 like
exp

(
−x2/2

)
as x → ±∞, just as the oscillator functions do) Therefore, using
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ψ′′n +
(
n+ 1

2 −
x2

2

)
ψn(x) = 0, we get to:

d

dxK
(n)(x, x)
√
n

= ψ′′n(x)ψn−1(x)− ψ′′n−1(x)ψn(x)

= . . .

= −ψn(x)ψn−1(x)

We can use this, and the fact that
K(N)(

√
Nx,
√
Nx)√

N
is our density function to

calculate the moment generating function by integration by parts:

〈
L̄N , exp (s·)

〉
=

∞̂

−∞

exp (sx)
K(N)

(√
Nx,
√
Nx
)

√
N

dx

=
1

N

∞̂

−∞

exp

(
sx√
N

)
K(N)(x, x)dx

=
1

N

[√
N

s
exp

(
sx√
N

)
K(N)(x, x)

]∞
−∞

+
1

N

∞̂

−∞

√
N

s
exp

(
sx√
N

)
d

dx
K(N)(x, x)dx

The �rst term vanishes because we know that K(N)(x, x) → 0 like a poly-

nomial timesexp
(
−x2

2

)
. The second term we know since we just calculated

d

dxK
(n)(x, x):

〈
L̄N , exp (s·)

〉
=

1

s

∞̂

−∞

exp

(
sx√
N

)
ψN (x)ψN−1(x)dx

=
1

s
√

2πn!

∞̂

−∞

exp

(
sx√
N

)
HN (x)HN−1(x) exp

(
−x

2

2

)
dx

This is a nice formula! We will now work a bit to get it more explitcitly.

If it wasn't for the exp
(
sx√
N

)
we would be in buisness here since the Hermite

polynomials are orthogonal w.r.t. the weight exp
(
−x

2

2

)
. To deal with that

term, we can do a change of variable and complete the square (this reminds me
of caluclating the moment generating function for a Gaussian). The cost of this
is that we end up with terms like Hn(x+ t). Fortunatly we can handle this by

the identity Hn(x + t) =
∑N
k=0 t

n−k(n
k

)
Hk(x) which we got by doing a Taylor

expansion and using the fact that derivatives of Hn are other hermite poly's.
(AGZ do this identitiy here, but I bundled it up in t �properties of Hermite
polynomials� section). For convenience, let

Snt : =

∞̂

−∞

exp (tx)ψn(x)ψn−1(x) exp

(
−x

2

2

)
dx
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=
1√

2πn!

∞̂

−∞

exp (tx)Hn(x)Hn−1(x) exp

(
−x

2

2

)
dx

(So that
〈
L̄N , exp (s·)

〉
= 1

sS
N
s/
√
N
is what we are actually interested in). We

compute now:

Snt =
1√

2πn!

∞̂

−∞

Hn−1(x)Hn−1(x) exp

(
−x

2

2
+ tx

)
dx

=
1√

2πn!
exp

(
t2

2

) ∞̂

−∞

Hn−1(x)Hn−1(x) exp

(
− (x− t)2

2

)
dx

=
1√

2πn!
exp

(
t2

2

) ∞̂

−∞

Hn−1(y + t)Hn−1(y + t) exp

(
−y

2

2

)
dy

=
1√

2πn!
exp

(
t2

2

) ∞̂

−∞

n∑
i=1

n−1∑
j=1

(
n

i

)(
n− 1

j

)
Hi(x)Hj(x)tn−itn−1−j exp

(
−y

2

2

)
dy

Now by the orthogonality relation 〈Hk,Hl〉G =
√

2πk!δkl the terms where
i 6= j vanish and we remain with:

Snt = exp

(
t2

2

) n−1∑
k=0

k!

n!

(
n

k

)(
n− 1

k

)
t2n−1−2k

From here, some manipulation with binomial coe�cients in needed to get to
the form we had originally.

Lemma. (2.1.6. For Gaussian Wigner Matrices) For every k, the k-th moment
of the mean empirical distribution function converges to the k-th moment of the
semicircle law, namely m2k = Ck and m2k+1 = 0. I.e:〈

L̄N , x
2k
〉
→ Ck as N →∞〈

L̄N , x
2k+1

〉
→ 0 as N →∞

Proof. We have the explicit formula for the generating function:

〈
L̄N , e

s·〉 = es
2/2N

N−1∑
k=0

Ck
(N − 1) . . . (N − k)

Nk

s2k

(2k)!

From the RHS we see that the moment generating function is in�netly dif-
ferentiable, so we have moments of all orders. Since everything is nice here,
we can Taylor expand both sides in s, and we extract the 2k−th coe�cient, we
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have:〈
LN , x

2k
〉 1

(2k)!
= Ck

(N − 1) . . . (N − k)

Nk

1

(2k)!
+ �nitely many terms coming from the expansion of es

2/2N

→ Ck
1

(2k!)
+ 0 as N →∞

The same kind of dealio works for k odd.

3.2 The Harer-Zagier recursion and Ledoux's Argument

In this section λNN denotes the maximal eigenvalue of the GUE. Our goal in this
section is to prove that:

Lemma. (3.3.2) (Ledoux's Bound) There exist positive constants c′and C ′ such
that:

P

(
λNN

2
√
N
≥ exp

(
εN−2/3

))
≤ C ′ exp (−c′ε)

Remark. Rouglhy speaking this says that the �uctuations of the top rescaled
top eignevalue λ̃NN = λNN/2

√
N − 1 above 0 are of order of magnitude N−2/3.

This is an a-priori indication that we might have convergence in distribution as
in the Tracy Widom law. In fact, this lemma is part of what makes the theory
work.

By using the method of moments, you can prove this kind of thing for a
general Wigner matrix. In this section we re only looking at the GUE though.

De�nition. Let b
(N)
k be such that:

〈
L̄N , e

s·〉 =

∞∑
k=0

b
(N)
k Ck

s2k

(2k)!

i.e.
〈
L̄N , x

2k
〉

=
b
(N)
k

k+1

(
2k
k

)
= b

(N)
k Ck. Compare this to the formula es

2/2N
∑N−1
k=0 Ck

(N−1)...(N−k)
Nk

s2k

(2k)!

we proved in the last section. We know for example that b
(N)
k → 1 for all k as

N →∞.

Lemma. (3.3.3.) (Harer-Zagier Recursions) For any integer numbers k and N
we have:

b
(N)
k+1 = b

(N)
k +

k(k + 1)

4N2
b
(N)
k−1

Proof. This proof basically comes from reconcling the two formulas, es
2/2N

∑N−1
k=0 Ck

(N−1)...(N−k)
Nk

s2k

(2k)!

and
∑∞
k=0 b

(N)
k Ck

s2k

(2k)! . You can see the recurrsion in question by seeing what

di�erential equation the generating function of the coe�cienst satisfy.

Lemma. (3.3.2) (Ledoux's Bound) There exist positive constants c′and C ′ such
that:

P

(
λNN

2
√
N
≥ exp

(
εN−2/3

))
≤ C ′ exp (−c′ε)
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Proof. [Idea: The Harer-Zagier recursion gives us a recursion for the moments
of L̄n which controls very tightly how they can grow. This upper bounds the
moments of the eigenvalues of course because for any positive function φ:

〈
L̄n, φ

〉
=

1

N

N∑
j=1

E

[
φ

(
λNj√
N

)]

≥ 1

N
E

[
φ

(
λNN√
N

)]
With φ(x) = x2k, this is:

b
(N)
k Ck =

〈
L̄n, x

2k
〉
≥ 1

Nk+1
E
[(
λNN
)2k]

we get Cheb type moment bound to control the probability.]
The H-Z recursion gives us immediatly the inequalites that:

0 ≤ b(N)
k ≤ b(N)

k+1 = b
(N)
k +

k(k + 1)

4N2
b
(N)
k−1 ≤

(
1 +

k(k + 1)

4N2

)
b
(N)
k

Hence:

b
(N)
k ≤

k∏
i=1

(
1 +

i(i+ 1)

4N2

)
b
(N)
1

= exp

(
k∑
i=1

log

(
1 +

i(i+ 1)

4N2

)
+ log

(
b
(N)
1

))

≤ exp

(
k∑
i=1

(
i(i+ 1)

4N2

)
+ log

(
b
(N)
1

))

≤ exp

(
c
k3

N2

)
For some constant c > 0. We now just estimate P

(
λN
N

2
√
N
≥ exp

(
εN−2/3

))
with a Cheb moment bound:

P

(
λNN

2
√
N
≥ exp

(
εN−2/3

))
≤

(
1

2
√
N exp

(
εN−2/3

))2k

E
[(
λNN
)2k]

=

(
1

2
√
N exp

(
εN−2/3

))2k

b
(N)
k CkN

k+1

= exp
(
−2εkN−2/3

) N
4k
Ckb

(N)
k

By stirling's approximation, we know that the Catalan numbers grow like

Ck ∼ 4k

k3/2
√
π
. So then we have some constant C for which Ck ≤ C 4k

k3/2
√
π
for all
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k, and putting this in as well as b
(N)
k ≤ exp

(
c k

3

N2

)
we get:

P

(
λNN

2
√
N
≥ exp

(
εN−2/3

))
≤ exp

(
−2εkN−2/3

) CN
k3/2

exp

(
c
k3

N2

)
= CNk−3/2 exp

(
−2εN−2/3k + ck3/N2

)
This bound holds for any k. Taking k ' N2/3 both terms in the exponential

are like N−2/3k ' ck3/N2 ' O(1) the coe�ent out front is also Nk−3/2 ' O(1),
so this gives us exactly the estimate we want.

3.3 Working with the n-point correlation function (Exer-
cise 3.3.4.)

So far, we have calculated the determinantal form for mean empircal spectral
distribution and then used that to get the formula for the moments then the
HZ bound and then Ledoux's argument. These all actually came from the one
point correlation function, namley ρ1,N (x) = 1

NK(x, x). In this section we will
use the full N -point correlation function to show that:〈

LN , x
k
〉
−
〈
L̄N , x

k
〉
→ 0 in probability

(Recall:
〈
LN , x

k
〉
is a random variable,

〈
L̄N , x

k
〉
is a number).

〈
LN , x

k
〉
is

given by some crazy integral over the full n point correlation function.)

We will actually �rst show that limN→∞

(
E
〈
Ln, x

k
〉2 − 〈L̄N , xk〉2) = 0,

and then use this to deduce the result. The fact that
〈
LN , x

k
〉
−
〈
L̄N , x

k
〉
→

0 in probability and the fact that
〈
L̄N , x

2k
〉
→ Ck where the two facts we

used in chapter 2, along with a �moment method� argument to prove Wigner's
theorem, so if you like we have proven Wigner's theorem for the GUE using the
determinantal form.

Lemma.
´
K(n)(x, t)K(n)(t, y)dt = K(n)(x, y)

Proof. This just comes from the de�nition K(n)(x, y) =
∑n
i=1 ψi(x)ψi(y) and

the fact the ψ′s are orthonormal. If you expand out:

K(n)(x, t)K(n)(t, y) =

(
n∑
i=1

ψi(x)ψi(t)

) n∑
j=1

ψj(t)ψj(y)


Any terms where i 6= j will die when integrated out, and any terms i = j

reduce to ψi(x)ψi(y).

Lemma. limN→∞

(
E
〈
Ln, x

k
〉2 − 〈L̄N , xk〉2) = 0
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Proof. From the 1-point correlation formula, we have
〈
L̄N , x

k
〉

= 1
N

´ (
x√
N

)k
K(N)(x, x)dx =

1
Nk/2+1

´
xkK(N)(x, x)dx. Hence:

〈
L̄N , x

k
〉2

=
1

Nk+2

(ˆ
xkK(N)(x, x)dx

)2

=
1

Nk+2

ˆ ˆ
xkykK(N)(x, x)K(N)(y, y)dxdy

On the other hand, consider that:

〈LN , xk〉2 =

(
1

N

(
λN1√
N

)k
+ . . .+

1

N

(
λNN√
N

)k)2

=
1

Nk+2

(
N∑
i=1

(
λNi
)k)2

=
1

Nk+2

 N∑
i=1

(
λNi
)2k

+ 2
∑

1≤i<j≤N

(
λNi
)k (

λNj
)k

So we can evaluate the E of this using the one and two point correlation
functions:

E
[〈
LN , x

k
〉2]

=
1

Nk+2

1

N

ˆ
x2kK(N)(x, x)dx+

1

Nk+2

2

N(N − 1)

∑
1≤i≤j≤N

ˆ ˆ
xkyk det

[
K(N)(x, x) K(N)(x, y)
K(N)(x, y) K(N)(y, y)

]
dxdy

Since all the terms in the last sum are the same, we can simply multiply
by the number of terms. As fortune has it, this cancels out the coe�cient of

2
N(N−1) in the front! Remain with:

E
[〈
LN , x

k
〉2]

=
1

Nk+2

1

N

ˆ
x2kK(N)(x, x)dx+

1

Nk+2

ˆ ˆ
xkyk det

[
K(N)(x, x) K(N)(x, y)
K(N)(x, y) K(N)(y, y)

]
dxdy

=
1

Nk+2

1

N

ˆ
x2kK(N)(x, x)dx

+
1

Nk+2

1

N(N − 1)

ˆ ˆ
xkykK(N)(x, x)K(N)(y, y)dxdy

− 1

Nk+2

1

N(N − 1)

ˆ ˆ
xkykK(N)(x, y)K(N)(y, x)dxdy

The middle term is precisly the expression we had for
〈
L̄N , x

k
〉2
! We can

make the �rst term look a bit more like the last term by writing K(N)(x, x) =´
K(N)(x, y)K(N)(y, x)dx. We remain with:

E
[〈
LN , x

k
〉2]−〈L̄N , xk〉2 =

1

Nk+2

ˆ ˆ (
x2k − xkyk

)
K(N)(x, y)K(N)(y, x)dxdy
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So it su�ces to check that this thing on the RHS goes to zero. Lets give a

name, I
(N)
k := RHS of the above. Here's the strategy to deal with this guy. We

need some identies, �rstly:

K(n)(x, y) =

n−1∑
k=0

ψk(x)ψk(y) =
√
n (ψn(x)ψn−1(y)− ψn−1(x)ψn(y)) /(x− y)

Reduces us to looking at the integral:

1

Nk+3/2

ˆ ˆ
x2k − xkyk

x− y
(ψn(x)ψn−1(y)− ψn−1(x)ψn(y))K(N)(y, x)dxdy

(The lower case n's should be upper case from here on in..ooops!) Now we
will use the three series recursion xψn =

√
n+ 1ψn+1 +

√
nψn−1 to try and

simplify the integrand:

x2k − xkyk

x− y
(ψn(x)ψn−1(y)− ψn−1(x)ψn(y))

If we can reduce this down to somethign like
∑
ckfk(x)gk(y), where f,and g

are Hermite polynomials, then the whole double integral appearing above will be
split up into a big sum of products of integrals

∑∑
ck
(´
f(x)ψk(x)dx

) (´
g(y)ψk(y)dy

)
which we'll be able to deal with by orthogonality. Since K(N)(x, y) only has
terms up to ψN−1(x)ψN−1(y) we dont have to keep track of anything ψl for
l ≥ n. We will write �0� for these ommited terms

Let's do it! Start by expanding:

x2k − xkyk

x− y
(ψn(x)ψn−1(y)− ψn−1(x)ψn(y)) = xk(

k∑
i=1

yk−ixi−1) (ψn(x)ψn−1(y)− ψn−1(x)ψn(y))

=

k∑
i=1

xk+i−1yk−iψn(x)ψn−1(y)

−
k∑
i=1

xk+i−1yk−iψn−1(x)ψn(y)

So then putting this into I
(N)
k and using K(N)(x, y) =

∑N−1
j=0 ψj(x)ψj(y)we

get to:

I
(N)
k =

1

Nk+3/2

ˆ ˆ
x2k − xkyk

x− y
(ψn(x)ψn−1(y)− ψn−1(x)ψn(y))K(N)(y, x)dxdy

=
1

Nk+3/2

N−1∑
j=0

k∑
i=1

(ˆ
xk+i−1ψn(x)ψj(x)dx

)(ˆ
yk−iψn−1(y)ψj(y)dx

)

− 1

Nk+3/2

N−1∑
j=0

k∑
i=1

(ˆ
xk+i−1ψn−1(x)ψj(x)dx

)(ˆ
yk−iψn(y)ψj(y)dx

)
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From here I think you can calculate
´
xkψnψmdx using the 3 term recurrance

xψn =
√
n+ 1ψn+1+

√
nψn−1 to reduce the power k down to 0. Instead of doing

this exactly, I'll just do an estimate. At each step you double the number of
terms, and you get a factor of at most

√
n+ 1 in front, and the resulting integral

at the last step is either 0 or 1. So doing this k times gives us the upper bound´
xkψnψmdx ≤ (2

√
n+ 1)k · 1 ' nk/22k Putting this estimate in, I have (I'll do

it up to constants and put t):

I
(N)
k ≤ 1

Nk+3/2

N−1∑
j=0

k∑
i=1

√
n
k+i−1√

n
k−i

≤ 1

Nk+3/2
N ·Nk−1/2

= 1
N → 0

4 Quick Introduction to Fredholm Determinants

4.1 The setting, fundemental estimates and de�ntion of
the Fredholm determinant

Let X be a locally compact Polish space (a complete seperable metric space)
with BX its Borel sigma algebra. Let ν be a complex-valued measure on (X,BX)
such that:

‖ν‖1 =

ˆ
X

|ν(dx)| <∞

(In many applications X = R and ν is a scalar multiple of the Lebesgue
measure on a bounded interval)

De�nition. (3.4.1.) A kernal is a Borel measurable, complex-valued function
K(x, y) de�ned on X × Y such that:

‖K‖ := sup
x,y∈X×X

|K(x, y)| <∞

The trace is:

Tr(K) =

ˆ
K(x, x)dν(x)

Given two kernals, we de�ne their composition by:

(K ? L) (x, y) =

ˆ
K(x, z)L(z, y)dν(z)

These are well de�ned for ‖ν‖1 <∞ and ‖K‖ <∞. By Fubini (its ok since
the things are bounded), we have that Tr(K?L) = Tr(L?K) and (K?L)?M =
K ? (L ?M)
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Remark. Watch out becasue the trace looks on the diagonal which is a null set,
so for instance we could have K = K ′a.e. and yet Tr(K) 6= Tr(K ′).

Lemma. (3.4.2.) Fix n > 0 for any kernal F we have:∣∣∣∣ n

det
i,j=1

F (xi, yj)

∣∣∣∣ ≤ nn/2 ‖F‖n
two kernals F (x, y) and G(x, y) we have:∣∣∣∣ n

det
i,j=1

F (xi, xj)−
n

det
i,j=1

G(xi, yj)

∣∣∣∣ ≤ n1+n/2 ‖F −G‖max (‖F‖ , ‖G‖)n−1

Proof. I'm going to skip the details of the proof. The big �nish is to use
Hadamard's iinequality that for a matrix A whose columns are vi we have
|det(A)| ≤

∏
‖vi‖L2 (this makes sense if you think about the determinant as

the �volume� of a box). Our matrices have entries no larger than ‖F‖, so

each column has ‖vi‖L2 ≤
√
n ‖F‖2 = n1/2 ‖F‖ and so

∣∣detni,j=1 F (xi, yj)
∣∣ ≤

nn/2 ‖F‖n follows. The other inequality is a bit harder, but the idea is to

make an auxilliary kernals H
(k)
i so that detni,j=1 F (xi, xj)− detni,j=1G(xi, yj) =∑n

k=1 detni,j=1H
(k)
i (xi, xj) becomes a telescoping sum and applying the Had-

marad inequality to these guys gives the inequality.

De�nition. For a kernal K put:

∆n = ∆n (K, ν) =

ˆ
. . .

ˆ
n

det
i,j=1

K (ξi, ξj) dν(ξ1) . . . dν(ξn)

and de�ne ∆0 = 1. The above estimate on detni,j=1K (ξi, ξj) shows that
the integral is well de�ned and moreover we have the estimae that |∆n| ≤
‖ν‖n1 ‖K‖

n
nn/2

De�nition. (3.4.3.) The Fredholm determinant associated with the kernal
K is de�ned as:

∆(K) = ∆(K, ν) =

∞∑
n=0

(−1)n

n!
∆n (K, ν)

Remark. (3.4.4.) Here is some motivation for calling ∆(K) a determinant. Let
f1(x), . . . , fN (x),g1(x), . . . , gN (x) be given. Put:

K(x, y) =

N∑
i=1

fi(x)gi(y)

Assume that K(x, y) is a kernal (it su�ces that the f ′sand g′s are all

bounded. By using the expansion we saw earleir, det [I + hAij ] = 1+
∑N
k=1 h

k
∑

0≤v1<...<vk≤N−1 detki,j=1

(
Avivj

)
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with h = −1, and using the
´

det to det
´
lemma, 1

n!

´ ´
. . .
´

detni,j=1 (
∑n
k=1 fk(xi)gk(xj))

∏n
i=1 dxi =

detni,j=1

´
fi(x)gj(x)dx we have that:

N

det
i,.j=1

(
δij −

ˆ
fi(x)gj(x)dν(x)

)
= 1 +

N∑
k=1

(−1)k
∑

0≤v1<...<vk≤N−1

k

det
i,j=1

(ˆ
fvi(x)gvj (x)dν(x)

)

= 1 +

N∑
k=1

(−1)k

k!

∑
0≤v1<...<vk≤N−1

ˆ ˆ
. . .

ˆ
k

det
i,j=1

(
k∑
i=1

fvi(xi)gvj (xj)

)
n∏
i=1

dxi

= 1 +

N∑
k=1

(−1)k

k!

ˆ ˆ
. . .

ˆ ∑
0≤v1<...<vk≤N−1

k

det
i,j=1

(
k∑
i=1

fvi(xi)gvj (xj)

)
n∏
i=1

dxi

Focus attention on the k-th term of the sum now. We know use the fol-
lowing version of the Cauchy Binet formula: Let A be a k ×N matrix and let
C = AA?(this is a k × k matrix), then detC =

∑
K∈Kp,N

detAK detA?Kwhere

Kk,N is the set of all k element subsets of {1, . . . , N} and AK is the k×k matrix
which is obtained from A by keeping only the columns in K. If we take A to be

the k×N matrix A = [fi(xj)] i=1..N,j=1..k then C =
[∑N

l=1 fl
(xi)gl(xj)

]k
i,j=1

=

[K(xi, xj)]
k
i,j=1 is exaclth C = AA∗. The matrixAKA

∗
K is exactly

[∑k
i=1 fvi(xi)gvj (xj)

]k
i,j=1

so the Cauchy Binet theorem exactly applies and we have:

N

det
i,.j=1

(
δij −

ˆ
fi(x)gj(x)dν(x)

)
= 1 +

N∑
k=1

(−1)k

k!

ˆ ˆ
. . .

ˆ
k

det
i,j=1

(
N∑
l=1

f
l
(xi)gl(xj)

)
n∏
i=1

dxi

= 1 +

N∑
k=1

(−1)k

k!
∆k

= ∆

It is ok that we only sum to N in this case, since ∆k = 0 for k ≥ N as the
matrix C = AA∗ cannot be of full rank.

Example. (Determinantal Projection Process)
Let's see what this means for a DPP. A determinental point process is a

point process whose k point correlation function is given by:

ρk(x1, . . . , xk) = det (K(xi, xj))1≤i,j≤k

Where the k point correlation function is de�ned so that for disjoiint sets
D1, D2, . . . , Dn we have:

E

[
k∏
i=1

χ(Di)

]
=

ˆ
D1

. . .

ˆ
Dk

ρk (x1, . . . , xk) dµ(x1) . . . dµ(xk)

i.e. ρk(x1, . . . , xk) is the density of �nding particles at the points x1, . . . , xk.

To handle overlapping sets, B =

k1︷ ︸︸ ︷
D1 × . . .×D1 × . . .×

kr︷ ︸︸ ︷
Dr × . . .×Dr where
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D1, . . . Dr are disjoint sets, and
∑r
i=1 ki = k then this becomes:

E

[
r∏
i=1

(
χ(Di)

ki

)
ki!

]
=

ˆ
B

ρk (x1, . . . , xk) dµ(x1) . . . dµ(xk)

(
(
x
k

)
k! is the falling factoiral (x)k = x(x − 1) . . . (x − k + 1) )If we choose

B =

k︷ ︸︸ ︷
Λ× Λ× . . .× Λ then χ(Λ) is simply the total number of points (which is

a random variable), so this says that:

E

[(
χ(Λ)

k

)
k!

]
= E [(χ(Λ))k] ==

ˆ
Λ×Λ×...×Λ

ρk (x1, . . . , xk) dµ(x1) . . . dµ(xk)

= ∆k

So ∆k has a very concrete interpratation for DPP's.
For example, a poisson process, (which is a DPP with a trivial kernal

K(x, x) = δx,x) is characterized by E [(χ(Λ))k] = ∆k = λk. Hence ∆ =

1 +
∑N
k=1

(−1)k

k! ∆k = exp (−λ). As it happens, exp(−λ) = P of zero points,
I'm not sure if this is related.

Another example: Suppose that χ(Λ) = N almost surely. Then this is saying
that there are exactly N points. In this case then ∆k = 0 for k > N . So we
have a �nte sum for ∆, namely:

∆ = 1 +

N∑
k=1

(−1)k

k!
∆k

= 1 +

N∑
k=1

(−1)k

k!

(
N

k

)
k!

= 1 +

N∑
k=1

(−1)k
(
N

k

)
= 0

This is 0 for example by the binomial expansion for (1 − 1)N . I think this
proof actually shows that if the number of points is BOUNDED then ∆ = 0
too, for we can right ∆ = E(· · ·) =

∑
k E (· · · |χ(Λ) = k )P (χ(Λ) = k) and it

is zero on each piece. (It doesn't work for an in�nite sum though because ∆k

could be very large on the set where
An example of a DPP with exactly N points is a projection process. For a

projection process, where the kernal is made of some orthogonal set of L2(Λ)
functions, say ψ1,. . . , ψn and the kernal is given by

∑n
i=1 ψi(x)ψi(y), the other

formula for ∆ in this case is: ∆ = detNi,j=1

(
δij −

´
ψiψjdx

)
= detni.j=1 [δij − δij ] =

0, so it lines up!
This gives me the feeling that ∆ is measuring something about how much

randomness there is in the number of points....ok back to AGZ now.
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From looking at the paper on DPP's and Random Matrices by Johansson,
I see that ∆ is like a GAP probability. What I've been calculating above is the
probability that there are no particles anywhere. For a projection process or a
Poisson process, its not surprising that this is 0.

Lemma. (3.4.5.) For any two kernals K(x, y) and L(x, y) we have:

|∆(K)−∆(L)| ≤

( ∞∑
n=1

n1+n/2 ‖ν‖n1 max (‖K‖ , ‖L‖)n−1

n!

)
‖K − L‖

Proof. Sum the estimate we had from Lemma 3.4.2.

Corollary. If K is �xed and we have L varying in such a way that ‖K − L‖ → 0
then it follows that ∆(L)→ ∆(K).

Remark. In practice, we make it so that ∆(L) is some sort of relavent probability
thing we care about, we show that L → K and thus we know that ∆(L) →
∆(K).

4.2 De�nition of the Fredhold Adjugant, Fredholm resol-
vent and a fundemental identity.

De�ne a shorthand:

K

(
x1 . . . xn
y1 . . . yn

)
:=

n

det
i,j=1

K (xi, yj)

Set:

Hn(x, y) =

ˆ
. . .

ˆ
K

(
x ξ1 . . . ξn
y ξ1 . . . ξn

)
dν(ξ1) . . . dν(ξn)

and:
H0(x, y) = K(x, y)

We have from Lemma 3.4.2. that:

|Hn(x, y)| ≤ ‖K‖n+1 ‖ν‖n1 (n+ 1)
(n+1)/2

De�nition. (3.4.6.) The Fredholm adjugant of the Kernal K(x, y) is the
function:

H(x, y) =

∞∑
n=0

(−1)n

n!
Hn(x, y)

If ∆(K) 6= 0 we de�ne the resolvent of the Kernal K(x, y) as the function:

R(x, y) =
H(x, y)

∆(K)

By the estimate on |Hn(x, y)|, the series that de�nes H(x, y) above con-
verges absolutly and uniofrmly on X ×X. Therefore H is well de�ned and it is
continuous on X.
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Lemma. (3.4.7.) (The fundemental identity) Let H(x, y) be the Fredholm ad-
jugant of the kernal K(x, y) then:

ˆ
K(x, z)H(z, y)dν(z) = H(x, y)−∆(K) ·K(x, y)

=

ˆ
H(x, z)Z(z, y)dν(z)

i.e.:
K ?H = H −∆(K) ·K = H ?K

Remark. If ∆(K) 6= 0 so that R makes sense, then this says that:

K ? R = R−K = R ? K

Which one could write as the operator identity:

1 +R = (1−K)−1

Proof. I'm going to skip this for now.

Corollary. (3.4.9.) (i) For all n ≥ 0:

(−1)n

n!
Hn(x, y) =

n∑
k=0

(−1)k

k!
∆k ·

K ? . . . ? K︸ ︷︷ ︸
n+1−k

 (x, y)

ii) Furthermore:

(−1)n

n!
∆n+1 =

n∑
k=0

(−1)k

k!
∆k · Tr

K ? . . . ? K︸ ︷︷ ︸
n+1−k


In partiuclar the sequence of numbers Tr(K), Tr(K ? K), Tr(K ? K ? K)

uniquely determines the Fredholm determinant ∆(K)

I'm going to skip a section now thats useful for the GOE and GSE.

5 Gap Probabilites at 0 and the Proof of Theo-

rem 3.1.1.

Let Xn ∈H
(2)
N be a random Hermitian matrix from the GUE with eigenvalues

λN1 ≤ . . . ≤ λNN . We initate in this section the study of the spacings between
the eigenvaleues of XN . We focus on those eigencalues that lie near 0. i.e. we
wish to calculate something like:

lim
N→∞

P
[√

NλN1 , . . . ,
√
NλNN /∈ (−t/2, t/2)

]
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This has a chance of being some non-degenerate probability because the N
random varaibles

√
NλN1 , . . .

√
NλNN are spread out over an interval of length

rouhgly 4N .
As in (3.2.4.) set:

K(n)(x, y) =

n−1∑
k=0

ψk(x)ψk(y) =
√
n
ψn(x)ψn−1(y)− ψn−1(x)ψn(y)

x− y

and set:

S(n)(x, y) =
1√
n
K(n)

(
x√
n
,
y√
n

)
A crucial step in the proof is the following convergence lemma:

Lemma. (3.5.1.) :

lim
n→∞

S(n)(x, y) =
1

π

sin(x− y)

x− y
and the convergence is uniform on each bounded subset of the x, y plane.

Proof. We will de�er the proof for now and prove it a bit later.

Theorem. (3.1.1.) (Gaudin-Mehta) For any compact set A ⊂ R:

lim
N→∞

P
(√

NλN1 ,
√
NλN2 , . . . ,

√
NλNN /∈ A

)
= 1+

∞∑
k=1

(−1)k

k!

ˆ

A

ˆ

A

. . .

ˆ

A

k

det
i,j=1

Ksine(xi, xj)dx1dx2 . . . dxk

where:

Ksine(x, y) =
1

π

sin(x− y)

x− y
and is understood to be 1/π if x = y (i.e. determined by continuity)

Proof. By lemma 3.2.4, we have thatPN

(⋂N
i=1 {λi ∈ A}

)
= 1+

∑∞
k=1

(−1)k

k!

´
Ac , . . . ,

´
Ac detki,j=1K

(N)(xi, xj)
∏k
i=1 dxi.

Hence:

PN

(√
NλN1 ,

√
NλN2 , . . . ,

√
NλNN /∈ A

)
= 1 +

∞∑
k=1

(−1)k

k!

ˆ
√
n−1A

, . . . ,

ˆ
√
n−1A

k

det
i,j=1

K(N)(xi, xj)

k∏
i=1

dxi

= 1 +

∞∑
k=1

(−1)k

k!

ˆ

A

, . . . ,

ˆ

A

k

det
i,j=1

S(N)(xi, xj)

k∏
i=1

dxi

= ∆n(SN , ν1A)

→ ∆n (Ksine, ν1A)

→ 1 +

∞∑
k=1

(−1)k

k!

ˆ

A

ˆ

A

. . .

ˆ

A

k

det
i,j=1

Ksine(xi, xj)dx1dx2 . . . dxk

The last convergence follows since S(N) → Ksine uniformly on compact sets
(this is the lemma 3.5.1. we have de�ered for now) and since Fredholm determi-
nants respect convergence like this (because of the estimate |∆(K)−∆(L)| ≤
(
∑∞
n=1 ∗stuff∗) ‖K − L‖, this is lemma 3.4.5.)
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5.1 The Method of Laplace

Laplace's method deals with asymptoics as s→∞ of integrals of the form:

ˆ
f(x)sg(x)dx

We will be concerend with the situation in which the function f posses a
global maximum at some point a. You can see that f(a) will then dominate the
integral as s→∞, so only the value g(a) should count asymptotically.

De�nition. To make this rigourous we need some extra conditions. Let f : R→
R+ be given and for some constant a and some positive constants s0,K, L,M let
G = G (a, ε0, s0, f(·),K, L,M) be the class of measurable functions g : R → R
satsifying:

i) |g(a)| ≤ K
(i.e. g(a) is bounded)

ii) sup0<|x−a|≤ε0

∣∣∣ g(x)−g(a)
x−a

∣∣∣ ≤ L
(i.e. g is Lipshitz with constant L in a n'h'd of a)
iii)
´
f(x)s0 |g(x)| dx ≤M

The theorem is that:

Theorem. (3.5.3.) (Laplace) Let f : R→ R+ be a function such that for some
a ∈ R and some positive constants ε0, c the following hold:

a) f(x) ≤ f(x′) if a− ε0 ≤ x ≤ x′ ≤ a or a ≤ x′ ≤ x ≤ a+ ε0
(i.e. f is increasing in [a− ε0, a] and is decreasing in [a, a+ ε0]. This means

that f must have a maximum at x = a)
b) For all ε < ε0 sup|x−a|>ε f(x) ≤ f(a)− cε2
(i.e. the maximum at x = a is like a �quadratic maximum�)
c) f(x) has two continuous derivatives in the interval (a− 2ε0, a+ 2ε0)
d) f ′′(a) < 0
Then for any function g ∈ G (a, ε0, s0, f(·),K, L,M) we have:

lim
s→∞

√
sf(a)−s

ˆ
f(x)sg(x)dx =

√
2πf(a)

|f ′′(a)|
g(a)

Remark. The intuition of the proof is as follows. We have that (f(x)/f(a))s

becomes negligible everywhere except near x = a and here we know that it
peaks like a bell curve.

Remark. Here is a heuristic proof of a related formula:

exp (−n`(a))
√
n

ˆ
φ(x) exp (n · `(x)) dx ∼ φ(a)

[
2π

|`′′(a)|

]1/2
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The proof goes by Taylor expanding around a:ˆ
φ(x) exp (n · `(x)) dx ≈

ˆ
φ(a) exp

(
n

(
`(a) + (x− a)2 `

′′(a)

2

))
dx

≈ φ(a) exp (n · `(a))

∞̂

−∞

exp

(
n · u2 `

′′(a)

2

)
du√
n

= φ(a) exp (n · `(a))

[
2π

n |`′′(a)|

]1/2

To translate to the AGZ version of the proof, put `(x) = log(f(x)) and
φ(x) = g(x). Notice also that `′(x) = f ′(x)/f(x) (so `′(a) = 0) and `′′(x) =(
f ′′(x)f(x)− f ′(x)2

)
/f(x)2 at x = a, since f ′(a) = 0 this gives `′′(a) =

f ′′(a)/f(a) to �nish the translation between the two.

Proof. We will split the integral up into the contribution from near x = a and far
away from x = a, where near/far means either |x− a| < ε(s) or |x− a| > ε(s)
where ε(s) is a parameter depending on s which we will �x precisely later. We
will then show that the contribution from far away terms → 0 as s→∞ while
the contribution from terms near a will tend to the RHS of the claimed equality.
(It will turn out that any ε(s) satisfying ε(s) < ε0 and ε(s)→ 0 as s→∞ and√
sε(s)→∞ as s→∞ will do)
Write: ˆ

f(x)sg(x)dx = g(a)I1 + I2 + I3

Where I1, I2, I3 are integrals that depend on s:

I1 =

ˆ

|x−a|≤ε(s)

f(x)sdx

I2 =

ˆ

|x−a|≤ε(s)

f(x)s (g(x)− g(a)) dx

I3 =

ˆ

|x−a|>ε(s)

f(x)sg(x)dx

[Demand #1 on ε(s) : need ε(s) < ε0 for every value of s so that we can
use the Lipshitz property for g in this nhd and the fact that f is increas-
ing/decreasing in this n'h'd of a.]

Claim 1:
√
sf(a)−sI1 →

√
2πf(a)
|f ′′(a)|

As in the heuristic, it is more convenient to work with ` = log(f) rather than
f itself. (` stands for the �l� in �log�) We start by doing the integral version of
the Taylor expansion for `:

`(a+ x) = `(a) + `′(a)x+

xˆ

0

u · `′′(x+ a− u) · du
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= `(a) + `′(a)x+

xˆ

0

(x− t) · `′′(a+ t) · dt

= `(a) + `′(a)x+ x2

1ˆ

0

(1− r) · `′′(a+ rx) · dr

Notice `′(a) = 0 since f ′(a) = 0, so this term drops. Exponentiation both
sides give

f(a+ x) = f(a) exp

x2

1ˆ

0

(1− r) · `′′(a+ rx) · dr


We can then do a change of variables on I1 to get the result we want (this

is a written exams type question!). It is convenient to denote h(x) =
´ 1

0
(1− r) ·

`′′(a+ rx) · dr here.

I1 =

ˆ

|x−a|≤ε(s)

f(x)sdx

=

ε(s)ˆ

−ε(s)

f(a+ x)sdx

=

ε(s)ˆ

−ε(s)

f(a)s exp
(
sx2h(x)

)
dx

=
f(a)s√

s
·
ε(s)
√
sˆ

−ε(s)
√
s

exp

(
t2h

(
t√
s

))
dt put t =

√
sx

[Demand #2 on εs, need
√
sε(s) → ∞ as s → ∞ so that this integrand

becomes an integral on the whole real line.] The integrand converges pointwise
as s → ∞ to exp

(
t2h(0)

)
and the domain of integration converges to all of

(−∞,∞). By the dominated convergence theorem, we know that this integral
is converging to the integral of exp

(
t2h(0)

)
on the whole real line then. Finally

then:

lim
s→∞

√
sf(a)−sI1 =

∞̂

−∞

exp
(
t2h (0)

)
dt =

√
π√
|h(0)|

=

√
2πf(a)

|f ′′(a)|

Where we have used the computation h(0) = h(x) =
´ 1

0
(1− r) · `′′(a) · dr =´ 1

0
(1− r) f

′′(a)
f(a) dr = 1

2
f ′′(a)
f(a) and that this is < 0.

Claim 2:
√
sf(a)−sI2 → 0 as s→∞.
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Pf: This follows by the use of the Lipshitz constant L for g and the fact that
the length of the interval is small. Have:∣∣∣∣∣∣∣

ˆ

|x−a|≤ε(s)

f(x)s (g(x)− g(a)) dx

∣∣∣∣∣∣∣ ≤
ˆ

|x−a|≤ε(s)

f(x)s |x− a|Ldx

≤ ε(s)L

ˆ

|x−a|≤ε(s)

f(x)sdx

= ε(s)L · I1
Hence

√
sf(a)−sI2 = (

√
sf(a)−sI1)Lε(s)→ 0 as long as we demand ε(s)→

0.
Claim 3:

√
sf(a)−sI3 → 0 as s→∞

Pf: This is due to the fact that f drops o� quadratically away from a. Have:

|I3| =

∣∣∣∣∣∣∣
ˆ

|x−a|>ε(s)

f(x)sg(x)dx

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
ˆ

|x−a|>ε(s)

f(x)s−s0f(x)s0g(x)dx

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
ˆ

|x−a|>ε(s)

f(x)s0g(x)dx

∣∣∣∣∣∣∣ sup
|x−a|>ε(s)

|f(x)|s−s0

≤ M
(
f(a)− cε(s)2

)s−s0
Hence:

√
sf(a)−sI3 ≤ M

√
sf(a)−s

(
f(a)− cε(s)2

)s−s0
= M

√
sf(a)−s0

(
1− cε(s)2

f(a)

)s−s0
And since ε(s)2s → ∞ this goes to ”e−∞” = 0 as s → ∞. (In general

(1− α(x))β(s) → e−α(x)β(x) as x→∞.)

Exercise. Use Laplace's method with a = 1 to prove Stirling's approximation:

Γ(s) =

∞̂

0

xse−x
dx

x
= ss

∞̂

0

(
xe−x

)s dx
x
∼
√

2πss−1/2e−s

Proof. Put g(x) = 1
x and f(x) = xe−x so that f(1) = e−1, f ′(x) = −xe−x +

e−x,f ′′(x) = xe−x − e−x − ex,f ′′(1) = −1 then Laplace's method tells us that:

lim
s→∞

s1/2 · (e−1)−s ·
ˆ (

xe−x
)s( 1

x

)
dx =

√
2π · 1

1
· 1
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Or in other words:

ss
∞̂

0

(
xe−x

)s dx
x
∼
√

2πss−1/2e−s

5.2 Evaluation of the scaling limit: Proof of Lemma 3.5.1.

Let:

Ψv(t) = n1/4ψv

(
t√
n

)
Where v is a quantity whose di�erence from n is �xed (e.g. v = n,n − 1 or

n− 2) The main asymptotic result we need is that:

Lemma. (3.5.4.) Uniformly of for t in a �xed bounded interval:

lim
n→∞

∣∣∣∣Ψv(t)−
1√
π

cos
(
t− πv

2

)∣∣∣∣ = 0

Proof. Recall the Fourier transform identity:

e−x
2/2 =

1√
2π

ˆ
e−ξ

2/2e−iξxdξ

Hence the n-th Hermite polynomial is:

Hn(x)e−x
2/2 = (−1)n

dn

dxn

(
e−x

2/2
)

=
1√
2π

ˆ
(iξ)ne−ξ

2/2−iξxdξ

So we get:

Ψv(t) =
ivet

2/4nn1/4

(2π)3/4
√
v!

ˆ
ξve−ξ

2/2−iξt/
√
ndξ

= . . .

= Cv,ne
n/2

∞̂

−∞

f(ξ)ngt(ξ)dξ

Where f(x) = xe−x
2/21x≥0 and g(x) = gt(x) = cos(xt − πv

2 )xv−n. So from
here we can apply Lapalce's method to get the result.

With this method in hand:

Lemma. (3.5.1.):

lim
n→∞

S(n)(x, y) =
1

π

sin(x− y)

x− y
and the convergence is uniform on each bounded subset of the x, y plane.
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Proof. Recall that:

S(n)(x, y) =
√
n
ψn

(
x√
n

)
ψn−1

(
y√
n

)
− ψn−1

(
x√
n

)
ψn

(
y√
n

)
x− y

We now rewrite this in such a way as to make the x− y under the rug. The
trick is:

f(x)g(y)− f(y)g(x)

x− y
=

(
f(x)− f(y)

x− y

)
g(y) + f(y)

(
g(y)− g(x)

x− y

)

= g(y)

1ˆ

0

f ′(tx+ (1− t)y)dt− f(y)

1ˆ

0

g′(tx+ (1− t)y)dt

So we get:

S(n)(x, y) = ψn−1

(
y√
n

) 1ˆ

0

ψ′n

(
t
x√
n

+ (1− t) y√
n

)
dt

−ψn
(

y√
n

) 1ˆ

0

ψ′n−1

(
t
x√
n

+ (1− t) y√
n

)
dt

= ψn−1

(
y√
n

) 1ˆ

0

√
nψn−1(z)− z

2
ψn(z)

∣∣∣∣z=(
t x√

n
+(1−t) y√

n

) dt

−ψn
(

y√
n

) 1ˆ

0

√
n− 1ψn−2(z)− z

2
ψn−1(z)

∣∣∣∣z=(
t x√

n
+(1−t) y√

n

) dt

By the convergence of ψn we proved in Lemma 3.5.4. this converges to: (The
terms with zψk die since z = O( 1√

n
) is very small. The other terms are exactly

the right scaling for Lemma 3.5.4. by splitting up
√
n = n1/4n1/4. So we get:

S(n)(x, y) ∼ 1

π

(
cos

(
y − π(n− 1)

2

)) 1ˆ

0

cos

(
tx+ (1− t)y − π(n− 1)

2

)
dt

− 1

π

(
cos
(
y − πn

2

)) 1ˆ

0

cos

(
tx+ (1− t)y − π(n− 2)

2

)
dt

=
1

π

(
sin
(
y − πn

2

)) 1ˆ

0

sin
(
tx+ (1− t)y − πn

2

)
dt

− 1

π

(
cos
(
y − πn

2

)) 1ˆ

0

− cos
(
tx+ (1− t)y − πn

2

)
dt
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= − 1

π

cos(x− πn
2 ) sin

(
y − πn

2

)
− cos(y − πn

2 ) sin
(
x− πn

2

)
x− y

=
1

π

sin
((
x− πn

2

)
−
(
y − πn

2

))
x− y

=
1

π

sin(x− y)

x− y

(The last line follows by our identity for f(x)g(y)−f(y)g(x)
x−y we had before)

5.3 A complement: determinatal relations

Remark. This kind of thing is done in a bit more generality by Johansson in his
survey �DPP and random matrices�. I think I'm actually going to skip this for
now.

6 Analysis of the sine-kernal

In this section the since kernal is analyzed and it is shown that it satis�es the
Painleve di�erential equation and so on, I'm going to skip this for now.

7 Edge-Scaling: Proof of Theorem 3.1.4

Remark. (3.1.3.) Recall the Airy function is de�ned by the formula:

Ai(x) =
1

2πi

ˆ

C

exp

(
1

3
z3 − xz

)
dz

where C is the contour in the z−plane consititing of two rays, one from the
direction e−πi/3 coming from in�nity to the origin and one from the origin to
eπi/3 to ∞.

The Airy kernal is de�ned by:

KAiry(x, y) = A(x, y) :=
Ai(x)Ai′(y)−Ai′(x)Ai(y)

x− y

with the value of x = y determined by continuity.

Here is a preliminary estimate we need. The proof is de�ered till later:

Lemma. (3.7.1.) For any x0 ∈ R

sup
x,y≥x0

ex+y |A(x, y)| <∞
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7.1 Vague convergence of the largest eigenvalye: proof of
Theorem 3.1.4.

Again, let XN ∈ H
(2)
N be a random Hermitian matrix from the GUE with

eigenvalues λN1 ≤ . . . ≤ λNN .

Theorem. (3.1.4.) [The top eigevalue of the GUE] For all −∞ < t ≤ t′ ≤ ∞
we have:

lim
N→∞

P

[
N2/3

(
λNi√
N
− 2

)
/∈ [t, t′] , i = 1 . . . , N

]
= 1+

∞∑
k=1

(−1)k

k!

t′ˆ

t

t′ˆ

t

. . .

t′ˆ

t

k

det
i,j=1

A(xi, xj)dx1dx2 . . . dxk

With A the Airy kernal. In particular, the TOP eigevalue λNN has:

lim
N→∞

P

[
N2/3

(
λNN√
N
− 2

)
≤ t
]

= 1 +

∞∑
k=1

(−1)k

k!

ˆ ∞
t

ˆ ∞
t

. . .

ˆ ∞
t

k

det
i,j=1

A(xi, xj)dx1dx2 . . . dxn

=: F2(t)

F2(t) is the celebrated Tracy-Widom distribution.

Proof. As before, put:

K(n)(x, y) =
√
n
ψn(x)ψn−1(y)− ψn−1(x)ψn(y)

x− y

De�ne:

A(n)(x, y) =
1

n1/6
K(n)

(
2
√
n+

x

n1/6
, 2
√
n+

y

n1/6

)
We will begin by extending K(n) and A(n) to the entire complex plane C by

analyticity. Our goal will be to prove the convergence of A(n) to A on compacts
sets of C, which will also imply convergence of the derivatives. Recall that by
part 4 of Lemma 3.2.7.:

K(n)(x, y) =
ψn(x)ψ′n(y)− ψn(x)ψ′n(x)

x− y
− 1

2
ψn(x)ψn(y)

so that if we set:

Ψn(x) := n1/12ψn(2
√
n+

x

n1/6
)

then:

A(n)(x, y) =
Ψn(x)Ψ′n(y)−Ψn(y)Ψ′n(x)

x− y
− 1

2n1/3
Ψn(x)Ψn(y)

The following lemma plays the role of Lemma 3.5.1 in the study of spacings
in the bulk: (Rmk proof not over yet...ignore the square)
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Lemma. (3.7.2.) Fix a number C > 1. Then:

lim
n→∞

sup
|u|<C

|Ψn(u)−Ai(u)| = 0

Proof. We defer the rather long and technical proof to subsection 3.7.2.

With this lemma in hand, we �rst notice that since Ψn and Ai are entire, this
uniform convergence on compact subsets measnt atha Ψ′n → Ai′ also uniformly
on comapct subsets (e.g. by Cauchy integral fromulat). Hence

A(n)(x, y) =
Ψn(x)Ψ′n(y)−Ψn(y)Ψ′n(x)

x− y
− 1

2n1/3
Ψn(x)Ψn(y)

→ Ai(x)Ai′(y)−Ai(y)Ai′(x)

x− y
− 0

= A(x, y)

Now by the estimate in lemma 3.4.5 we know that convergence of kernals
implies convergence of the gap probabilites and we get the result.

7.2 Steepest descent: proof of Lemma 3.7.2.
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