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Part 1: Neural Nets

Mathematical De�nitions

Limit theorem for a random neural net



De�nition - Fully Connected Neural Net

Fix a depth d ∈ N, and layer widths n0, n1 . . . nd ∈ N. A neural
net is a function:

f n0→nd : Rn0 → Rnd

It depends d weight matrices and d bias vectors:

W (i) an ni × ni−1 matrix

~b(i) a vector in Rni

and a (non-linear) activation function φ : R→ R. Each layer of
the network gives a function f ni−1→ni : Rni−1 → Rni :

f ni−1→ni (~x) := φ
(
W (i)~x + ~b(i)

)
(applied entry-wise)

Finally, f n0→nd is the composition of these:

f n0→nd := f nd−1→nd ◦ f nd−2→nd−1 ◦ . . . ◦ f n0→n1
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How to �nd the parameters

Supervised Learning: Problem

Given examples {~xe}e∈Examples ⊂ Rn, and labels {ye}e∈Examples ⊂ Rmhow

to �nd parameters W (i) and ~b(i) so that f n→m minimizes the prediction

error:

Error(W , b) =
∑

e∈Examples

‖f n→m(~xe)− ~ye‖2

Supervised Learning: Solution Idea

0. Invent the architecture: depth d and layer widths n1, . . . , nd−1.
Set n0 = n, nd = m

1. Initialization: Pick parameters W , ~b at random.

2. Modify parameters to shrink Error(W , b) by gradient descent:

new W
(i)
j ,k := old W

(i)
j ,k − ∂W (i)

j,k

Error(W , b)

3. Repeat step 2 many times. Hope that the error is now small.
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Which architecture is best?



Empirical Issue: d large has vanishing and exploding gradients:

On random initialization, ∂
W

(i)
j,k
Error(W , b) is very large or small.

De�nition

The aspect ratio of a network is de�ned by:

β =
d∑

i=1

1

ni

Our mathematical result:
If β is large, ∂

W
(i)
j,k
Error(W , b) will be very large or very small with

high probability.
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De�nition. The Input-Output Jacobian matrix J = Jac(f n0→nd )
is the nd × n0 matrix

Jij(~x) := ∂j f
n0→nd
i (~x)

Remark: ∂
W

(i)
j,k
Error(W , b) can be written in terms of J .

Limit Theorem for Random Neural Nets - Hanin, N. 2018

If φ(x) = max{x , 0} and W (i),~b(i)are chosen randomly then for
almost every ~x ∈ Rn0 , the vector:

J(~x)~1

where ~1 = 1√
n0

(1 . . . , 1) ∈ Rn0 , has norm whose distribution depends

on β =
∑d

i=1
1
ni
:∥∥∥J(~x)~1

∥∥∥2 ≈ exp

(√
5β · N (0, 1)− 5

2
β

)
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1

ni
.

Conditions on W (i), ~b(i) :

All entries are independent

All entries are symmetrically distributed (i.e. X
d
= −X )

All entries of W (i) are mean 0 and variance 2n−1i

All entries have �nite moments of all order and no atoms
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Vanishing and Exploding Gradients

Theorem ∥∥∥J~1∥∥∥2 ≈ exp

(√
5β · N (0, 1)− 5

2
β

)

where β :=
d∑

i=1

1

ni
, and ~1 = 1√

n0
(1 . . . , 1) ∈ Rn0

Question: Which architectures have the vanishing/exploding
gradient problem?

Answer: Those for which aspect ratio β is large! (i.e. the
deep+skinny networks)

Conjecture

Other, fancier types neural net, (e.g. Convolutional Nets, ResNets)
are also log-normal with a di�erent formula for β.
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Theorem (Precise Version)∥∥∥J~1∥∥∥2 ≈ exp
(√

5βN (0, 1)− 5
2
β
)
, where �≈� means:

Moments: For any k ≥ 0, have:

E

[∥∥∥J~1∥∥∥2k] = exp

(
5

(
k

2

)
β + O

(
d∑

i=0

1

n2i

))
Kolmogorov-Smirnov distance: ∃C s.t. the cumulative
distribution functions, Φ, for the random variables are close in L∞

norm: ∥∥∥∥Φ
ln
(
‖J~1‖2

) − Φ√5β·N (0,1)− 5

2
β

∥∥∥∥
∞
≤ C

∑n−2i∑
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Part 2: Products of Random Matrices

Connection to Neural Nets

Limit theorem for products of random matrices



J when φ(x) = max {x , 0}
Recall f ni−1→ni (~x) := φ

(
W (i)~x + ~b(i)

)
and want to compute

J =Jac (f nd−1→nd ◦ f nd−2→nd−1 ◦ . . . ◦ f n1→n0)

Since φ(x) = max {x , 0}, φ′(x) = 1 {x > 0} , then the gradient of
each layer is:

Jac (f ni−1→ni ) = Diag
(
1

{
W (i)~x + ~b(i) > 0

})
W (i)

Since all random variables are symmetric:

Diag
(
1

{
W (i)~x + ~b(i) > 0

})
d
= Diag

(
~X (i)
)

where ~X (i) ∈ Rni has iid entries X
(i)
j ∼ Bernoulli(1

2
).

By chain rule, we should expect

J
?
= Diag(~X (d))W (d) · · · · · Diag(~X (1))W (1)
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De�ne the nd × n0 product random matrix M :

M := Diag(~X (d))W (d) · · · · · Diag(~X (1))W (1)

where ~X (i) ∈ Rni has iid entries X
(i)
j ∼ Bernoulli(1

2
).

Proposition ∥∥∥M~1∥∥∥2 d
=
∥∥∥J~1∥∥∥2

Conditions: W and ~b are chosen so that

All entries are independent

All entries are symmetrically distributed (i.e. X
d
= −X )

φ(x) = max {x , 0} is the ReLU function

Proof Idea

Can show M
d
= J up to conjugation by random ±1 Bernoulli's.
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Limit Theorem for Product of Random Matrices - Hanin, N.

Fix p ∈ (0, 1].

De�ne the nd × n0 product random matrix M :

M := Diag(~X (d))W (d) · · · · · Diag(~X (1))W (1)

where ~X (i) ∈ Rni has iid {0, 1}-valued entries: X
(i)
j ∼ Bernoulli(p). If

W (i) independent, mean 0, variance (nip)−1, �nite moments, then:

∥∥∥M~1∥∥∥2 ≈ exp

(√(
3

p
− 1

)
β · N (0, 1)− 1

2

(
3

p
− 1

)
β

)
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(
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)
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)
where �≈� means:

Moments: For any k ≥ 0, have:

E

[∥∥∥M~1∥∥∥2k] = exp

((
3

p
− 1

)(
k

2

)
β + O

(
d∑

i=0

1

n2i

))
Kolmogorov-Smirnov distance: ∃C s.t. the cumulative
distribution functions are close in L∞ norm:∥∥∥∥Φ

ln
(
‖M~1‖2

) − Φ√
( 3

p
−1)β·N (0,1)− 1

2
( 3

p
−1)β
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∞
≤ C

∑n−2i∑
n−1i

1/5
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Part 3: Proof Ideas

Where does the 3
p comes from?!?!

Moments: Path counting

Kolmogorov-Smirnov Distance: Martingales



Proposition

The k-th moment of
∥∥∥M~1∥∥∥2 is

E

[∥∥∥M~1∥∥∥2k] = exp

((
3

p
− 1

)(
k

2

) d∑
i=1

1

ni
+ O

(
d∑

i=0

1

n2i

))

≈ E

exp

(√(
3

p
− 1

)
β · N (0, 1)−

(
3

p
− 1

)
β

2

)k


Remark: Proof goes by counting paths in the neural network: a kind
of �neural network� version of moments of Wigner's semi-circle law
proof.

Proposition

The result when k = 1 is:

E

[∥∥∥M~1∥∥∥2] = 1
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Proof Idea for E[||M ~1||
2

]

Think of M :=
(
Diag(~X (d))W (d)

)
· · ·
(
Diag(~X (1))W (1)

)
as a graph.

Edges represent the weights W
(i)
a,b. Vertices represent the Bernoulli'sX

(i)
a .
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Proof Idea for E[||M ~1||
2

]

Ma,b is the sum over ALL paths starting at b ∈ {1, 2 . . . , n0} and ending at

a ∈ {1, 2 . . . , nd}.

The weight of each path is the product of weights along

path. I.e. Ma,b =
∑

π

∏d
i=1 X

(i)
πi W

(i)
πi−1,πi .
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2
is a sum over pairs of paths that end at the same point.

The

weight of pair of paths is the product over edge & vertex weights.
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Proof Idea for E||M ~1||
2

Most pairs of paths have E
[∏

X
(i)
πi W

(i)
πi−1,πi

]
= 0, because the weights

W
(i)
a,b are independent and mean zero (E

[
W

(i)
a,b

]
= 0)



Proof Idea for E||M ~1||
2

Non-zero contribution only if the pair of paths overlap!



Proof Idea for E||M ~1||
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E

[(
W

(i)
a

)2]
= 1

pni
,E

[(
X

(i)
b

)2]
= p, #{paths} =

∏d
i=1 ni

E
[
||M~1||2

]
= # {paths}

(∏d
i=1 E

[(
W

(i)
a

)2]
E

[(
X

(i)
b

)2])
= 1
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= p, #{paths} =

∏d
i=1 ni

E
[
||M~1||2
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= # {paths}

(∏d
i=1 E

[(
W

(i)
a

)2]
E

[(
X

(i)
b

)2])
= 1



Proposition

The second moment of
∥∥∥M~1∥∥∥2 is

E

[∥∥∥M~1∥∥∥4] = exp

((
3

p
− 1

) d∑
i=1

1

ni
+ O

(
d∑

i=0

1

n2i

))



Proof idea for E||M~1||4

||M~1||4 is a sum over 4-tuples of paths that end in pairs at the right.

(Must have: Red with Blue, Green with Yellow at right endpoint.)



Proof idea for E||M~1||4

Non-zero contribution to E||M~1||4 when every edge is covered an even

number of times.

Interaction between the pairs of paths will make

E||M~1||4 6=
(
E||M~1||2

)2
Since E

[∥∥∥M~1∥∥∥2] = 1 can think of the pairs of

paths chosen �at random�.
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Proof idea for E||M~1||4

An edge covered more than twice is rare.

Contribution like Cn−1i−1n
−1
i = O

(
n−2i−1

)
+ O

(
n−2i

)
.
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A simple collision gives an extra factor of 1
p .

(Since E

[(
X

(i)
a

)4]
= p but E
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Proof idea for E||M~1||4

For each simple collision: There are 3 ways to group the 4 paths into

2 pairs.

You can pair Red↔Blue, Yellow↔Green. (The �boring� pairing)
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Proof idea for E||M~1||4

For each simple collision: There are 3 ways to group the 4 paths into

2 pairs. ... OR Yellow↔Blue, Red↔Green.
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For each simple collision: There are 3 ways to group the 4 paths into

2 pairs. ... OR Green↔Blue, Red↔Yellow.



Proof idea for E||M~1||4

E
[
||M~1||4

]
≈ Epaths

[(
3

p

)# of collisions
]
≈

d∏
i=1

(
1

(
1− 1

ni

)
+

3

p

1

ni

)



Proof idea for E||M~1||4

E
[
||M~1||4

]
≈ Epaths

[(
3

p

)# of collisions
]
≈ exp

((
3

p
− 1

) d∑
i=1

1

ni

)



Proposition

The k-th moment of
∥∥∥M~1∥∥∥2 is

E

[∥∥∥M~1∥∥∥2k] = exp

((
3

p
− 1

)(
k

2

) d∑
i=1

1

ni
+ O

(
d∑

i=0

1

n2i

))



Proof idea for E||M~1||2k

E
[
||M~1||2k

]
≈ Epaths

[(
3

p

)#collisions
]
≈

d∏
i=1

(
1

(
1−

(
k

2

)
1

ni

)
+

3

p

(
k

2

)
1

ni

)

≈ exp

((
3

p
− 1

)(
k

2

) d∑
i=1

1

ni

)



Proposition

ln

(∥∥∥M~1∥∥∥2) ≈ (3

p
− 1

)
βN (0, 1)− 1

2

(
3

p
− 1

)
β

in the sense that the Kolmogorov-Smirnov distance
d(X ,Y ) = supt |P(X ≤ t)− P (Y ≤ t)| is small.



Proof Idea for ln ||M~1||2
De�ne:

~x (j) = B(j)W (j) · · ·B(1)W (1)~1

and let Fj be the �ltration for �rst j layers.

Then:

ln
∥∥∥M~1∥∥∥2 = ln

∥∥∥~x (d)∥∥∥2 = d∑
i=1

ln

( ∥∥~x (i)∥∥2∥∥~x (i−1)∥∥2
)

=
d∑

i=1

{
ln

( ∥∥~x (i)∥∥2∥∥~x (i−1)∥∥2
)
− E

[
ln

( ∥∥~x (i)∥∥2∥∥~x (i−1)∥∥2
)
|Fi−1

]}
(1)

+
d∑

i=1

E

[
ln

( ∥∥~x (i)∥∥2∥∥~x (i−1)∥∥2
)
|Fi−1

]
(2)

(1) is a martingale di�erence sequence with increments of variance

≈
(
3
p − 1

)
n−1i and fourth moments O

(
n−2i

)
=⇒ close to Gaussian.

(2) is approximately constant ≈ 1
2

(
3
p − 1

)
n−1i + O

(
n−2i

)
.
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(2) is approximately constant

E

[
ln

( ∥∥~x (i)∥∥2∥∥~x (i−1)∥∥2
)
|Fi−1

]

=E

[
ln

(
1+

∥∥~x (i)∥∥2 − ∥∥~x (i−1)∥∥2∥∥~x (i−1)∥∥2
)
|Fi−1

]

≈E

[∥∥~x (i)∥∥2 − ∥∥~x (i−1)∥∥2∥∥~x (i−1)∥∥2 |Fi−1

]
+

1

2
E

(∥∥~x (i)∥∥2 − ∥∥~x (i−1)∥∥2∥∥~x (i−1)∥∥2
)2

|Fi−1


≈0+ 1

2

(
3

p
− 1

)
1

ni
+
µ4 − 3

2nip

∥∥~x (i−1)∥∥4
4∥∥~x (i−1)∥∥4
2



The end!



Limit Theorem for Product of Random Matrices - Arbitrary vectors

If ~x is an arbitrary vector, then:

‖M~x‖2 ≈ log−normal

((
3

p
− 1

) d∑
i=1

1

ni
+
µ4 − 3

n1p

‖~x‖44
‖~x‖42

)

where µ4 = E

[(
W

(i)
j ,k

)4]
is the fourth moment of the random

weights W
(i)
j ,k




