Deep Neural Nets and Products of Random Matrices

Mihai Nica, University of Toronto

Based on joint work with Boris Hanin, Texas A&M

March 27, 2019

Part 1: Deep neural nets
o Mathematical definitions

e Limit theorem for a random neural net

Part 1: Deep neural nets

o Mathematical definitions

o Limit theorem for a random neural net
Part 2: Products of Random Matrices

o Connection to Neural Nets

o Limit theorem for products of random matrices

Part 1: Deep neural nets

o Mathematical definitions

o Limit theorem for a random neural net
Part 2: Products of Random Matrices

o Connection to Neural Nets

o Limit theorem for products of random matrices
Part 3: Proof Ideas

o Moments: Path counting

o Kolmogorov-Smirnov Distance: Martingales

Part 1: Neural Nets
o Mathematical Definitions

o Limit theorem for a random neural net

Definition - Fully Connected Neural Net

Definition - Fully Connected Neural Net

Fix a depth d € N, and layer widths ng,n; ... ny € N.

Definition - Fully Connected Neural Net

Fix a depth d € N, and layer widths ng, n; ... ny € N. A neural

net is a function:
fro=ns ; R™ — R

Definition - Fully Connected Neural Net

Fix a depth d € N, and layer widths ng, n; ... ny € N. A neural

net is a function:
fro=ns ; R™ — R

It depends d weight matrices and d bias vectors:

WY an n; x n;j_; matrix

b a vector in R"

Definition - Fully Connected Neural Net

Fix a depth d € N, and layer widths ng, n; ... ny € N. A neural
net is a function:

fro=na ; R _y R

It depends d weight matrices and d bias vectors:

WY an n; x n;j_; matrix

b a vector in R"

and a (non-linear) activation function ¢ : R — R.

Definition - Fully Connected Neural Net

Fix a depth d € N, and layer widths ng, n; ... ny € N. A neural
net is a function:

fro=na ; R _y R

It depends d weight matrices and d bias vectors:

WY an n; x n;j_; matrix

b a vector in R"

and a (non-linear) activation function ¢ : R — R. Each layer of
the network gives a function f"-17" : R"-1 — R":

fri17ni(x) = ¢ (ﬂ“%?—ir E(i)> (applied entry-wise)

Definition - Fully Connected Neural Net

Fix a depth d € N, and layer widths ng, n; ... ny € N. A neural

net is a function:
fro=ns ; R™ — R

It depends d weight matrices and d bias vectors:

WY an n; x n;j_; matrix

b a vector in R"

and a (non-linear) activation function ¢ : R — R. Each layer of
the network gives a function f"-17" : R"-1 — R":

fri17ni(x) = ¢ (ﬂ“%?—ir E(i)> (applied entry-wise)

Finally, f™7" is the composition of these:

f‘no—)nd e fnd,l—md o f'nd,Q—)nd,;l o...0 fno—)nl

How to find the parameters

Supervised Learning: Problem

How to find the parameters

Supervised Learning: Problem

Given examples {X.} CR"

ecExamples

How to find the parameters

Supervised Learning: Problem

Given examples {X.} C R”, and labels {y.} C R™

ecExamples ec€Examples

How to find the parameters

Supervised Learning: Problem

Given examples {Xe} g amples C R”, and labels {ye}.cgramples C R™how

to find parameters W() and b)) so that £7™ minimizes the prediction
error:

How to find the parameters

Supervised Learning: Problem

Given examples {Xe} g amples C R”, and labels {ye}.cgramples C R™how

to find parameters W() and b)) so that £7™ minimizes the prediction
error:

Error(W, b) = Z 1F77™ (%) — Vo2

ecExamples

How to find the parameters

Supervised Learning: Problem

Given examples {Xe} g amples C R”, and labels {ye}.cgramples C R™how

to find parameters W) and b)) so that £7~™ minimizes the prediction
error:

Error(W, b) = Z 1F77™ (%) — Vo2

ecExamples

Supervised Learning: Solution Idea

& | &

How to find the parameters

Supervised Learning: Problem

Given examples {Xe} g amples C R”, and labels {ye}.cgramples C R™how

to find parameters W) and b)) so that £7~™ minimizes the prediction
error:

Error(W, b) = Z 1F77™ (%) — Vo2

ecExamples

Supervised Learning: Solution Idea

| A\

0. Invent the architecture: depth d and layer widths ny, ..., ng_1.
Setng=n, ng=m

How to find the parameters

Supervised Learning: Problem

Given examples {Xe} g amples C R”, and labels {ye}.cgramples C R™how

to find parameters W) and b)) so that £7~™ minimizes the prediction
error:

Error(W, b) = Z 1F77™ (%) — Vo2

ecExamples

Supervised Learning: Solution Idea

| A\

0. Invent the architecture: depth d and layer widths ny, ..., ng_1.
Setng=n, ng=m
1. Initialization: Pick parameters W, b at random.

How to find the parameters

Supervised Learning: Problem

Given examples {Xe} g amples C R”, and labels {ye}.cgramples C R™how
B

to find parameters W and b() so that £™™ minimizes the prediction
error:

Error(W, b) = Z 1F77™ (%) — Vo2

ecExamples

Supervised Learning: Solution Idea

0. Invent the architecture: depth d and layer widths ny, ..., ng_1.
Setng=n, ng=m
1. Initialization: Pick parameters W, b at random.
2. Modify parameters to shrink Error(W, b) by gradient descent:
new WJ('k) = old W — 5 »Error(W, b)

(i
bk Wik

How to find the parameters

Supervised Learning: Problem

ecExamples C R”, and labels {}/e} C R™how
(i

to find parameters W and b() so that £™™ minimizes the prediction
error:

Given examples {X.} ec€Examples

Error(W, b) = Z 1F77™ (%) — Vo2

ecExamples

Supervised Learning: Solution Idea

0. Invent the architecture: depth d and layer widths ny, ..., ng_1.
Setng=n, ng=m

1. Initialization: Pick parameters W/, b at random.

2. Modify parameters to shrink Error(W, b) by gradient descent:

new WJ('k) = old V\/J('k) - 8Wj(,2Error(W, b)

3. Repeat step 2 many times.

How to find the parameters

Supervised Learning: Problem

ecExamples C R”, and labels {}/e} C R™how
(i

to find parameters W and b() so that £™™ minimizes the prediction
error:

Given examples {X.} ec€Examples

Error(W, b) = Z 1F77™ (%) — Vo2

ecExamples

Supervised Learning: Solution Idea

0. Invent the architecture: depth d and layer widths ny, ..., ng_1.
Setng=n, ng=m

1. Initialization: Pick parameters W/, b at random.

2. Modify parameters to shrink Error(W, b) by gradient descent:

new WJ('k) = old V\/J('k) - 8Wj(,2Error(W, b)

3. Repeat step 2 many times. Hope that the error is now small.

Which architecture is best?

ImageNet Large Scale Visual
Recognition Challenge Results

0
28.2% 25.8%

16.4%

11.7%

6.7%
3.6%

2010 2011 2012 2013 2014 2015
d=2 d=2 d=8 d=8 d=22 d=152

Empirical Issue: d large has vanishing and exploding gradients:

Empirical Issue: d large has vanishing and exploding gradients:
On random initialization, 0, () Error(W, b) is very large or small.
i,k

Empirical Issue: d large has vanishing and exploding gradients:
On random initialization, 0, () Error(W, b) is very large or small.
J.k

Definition
The aspect ratio of a network is defined by:

Empirical Issue: d large has vanishing and exploding gradients:
On random initialization, 0, () Error(W, b) is very large or small.
J.k

Definition

The aspect ratio of a network is defined by:

Our mathematical result:
If 3 is large, ng;k) Error(W, b) will be very large or very small with

high probability.

Definition. The Input-Output Jacobian matrix J = Jac(f™ ")
is the ny X ny matrix

J(R) = Opf (%)

Definition. The Input-Output Jacobian matrix J = Jac(f™ ")
is the ny X ny matrix

J(R) = 74 (%)

Remark: O, Error(W, b) can be written in terms of J.
J.k

Definition. The Input-Output Jacobian matrix J = Jac(f™ ")
is the ny X ny matrix

Jy(R) = B707"(%)

Remark: O, Error(W, b) can be written in terms of J.
J.k

Limit Theorem for Random Neural Nets - Hanin, N. 2018
If ¢(x) = max{x,0}

Definition. The Input-Output Jacobian matrix J = Jac(f™ ")
is the ny X ny matrix

Jy(R) = B707"(%)

Remark: O, Error(W, b) can be written in terms of J.
J.k

Limit Theorem for Random Neural Nets - Hanin, N. 2018
If ¢(x) = max{x,0} and W) b(are chosen randomly

Definition. The Input-Output Jacobian matrix J = Jac(f™ ")
is the ny X ny matrix

() = D46 (3)

Remark: O, Error(W, b) can be written in terms of J.
J.k

Limit Theorem for Random Neural Nets - Hanin, N. 2018
If ¢(x) = max{x,0} and W) b(are chosen randomly then for

almost every X € R™_ the vector:
J(X)1

where T= —(1...,1) € R™, has norm whose distribution depends

dm
1.
on ﬁ = Zi:l ot

Definition. The Input-Output Jacobian matrix J = Jac(f™ ")
is the ny X ny matrix

() = D46 (3)

Remark: O, Error(W, b) can be written in terms of J.
J.k

Limit Theorem for Random Neural Nets - Hanin, N. 2018
If ¢(x) = max{x,0} and W) b(are chosen randomly then for

almost every X € R™_ the vector:
J(X)1

where T= —(1...,1) € R™, has norm whose distribution depends

d
on B=> ", nl,

5

(M9}

e (m N(0,1) gﬁ)

Limit Theorem for Random Neural Nets - Hanin, N. 2018

If ¢(x) = max{x,0} and W b(are chosen randomly then for

almost every x € R"™ :

(MIE9)

* man (@-N(o, 1) - §ﬁ>

d
-) 1
where N/(0,1) a Gaussian,1 = \/1,?0(1...,1) eR™, §:= E =
i=1

Conditions on W p()

Limit Theorem for Random Neural Nets - Hanin, N. 2018

If ¢(x) = max{x,0} and W b(are chosen randomly then for

almost every x € R"™ :

(MIE9)

* man (@-N(o, 1) - §ﬁ>

d
-) 1
where N/(0,1) a Gaussian,1 = \/1,?0(1...,1) eR™, §:= E =
i=1

Conditions on W, p() .
o All entries are independent

Limit Theorem for Random Neural Nets - Hanin, N. 2018

If ¢(x) = max{x,0} and W b(are chosen randomly then for

almost every x € R"™ :

(MIE9)

* man (@-N(o, 1) - §ﬁ>

d
-) 1
where N/(0,1) a Gaussian,1 = \/1,?0(1...,1) eR™, §:= E =
i=1

Conditions on W, p() .
o All entries are independent

o All entries are symmetrically distributed (i.e. X g —X)

Limit Theorem for Random Neural Nets - Hanin, N. 2018
If ¢(x) = max{x,0} and W b(are chosen randomly then for

almost every x € R"™ :

|2601]|" ~ exp (\/56 “N(0,1) — 5&)
1
where N(0,1) a Gaussian,I = \/1,?0(1 1) ER™, B i= Z =

Conditions on W, p() .
o All entries are independent
o All entries are symmetrically distributed (i.e. X g —X)

o All entries of W) are mean 0 and variance 2n: 1

Limit Theorem for Random Neural Nets - Hanin, N. 2018
If ¢(x) = max{x,0} and W b(are chosen randomly then for

almost every x € R"™ :

401"~ o0 (VBB A0.2) - 36)
1
where N(0,1) a Gaussian,I = \/1,?0(1 .., 1)eR™, g := Z -

Conditions on W, p() .
o All entries are independent
o All entries are symmetrically distributed (i.e. X g —X)

o All entries of W) are mean 0 and variance 2n: 1
o All entries have finite moments of all order and no atoms

Vanishing and Exploding Gradients

‘J 2zexp(\/%-/\/’(0,l)—gﬁ)

d
1 —
where (3 := E —,and 1= \/170(1...,1) € Rm
n;
i=1

1

Question: Which architectures have the vanishing/exploding
gradient problem?

Vanishing and Exploding Gradients

‘J 2zexp(\/%-/\/’(0,l)—gﬁ)

d
1 —
where (3 := E —,and1=-L(1... 1) eR™
n;
i=1

1

Vo

Question: Which architectures have the vanishing/exploding
gradient problem?

Answer: Those for which aspect ratio (3 is large! (i.e. the
deep+skinny networks)

Vanishing and Exploding Gradients

‘J 2zexp(\/%-/\/’(0,l)—gﬁ)

d
1 —
where (3 := E —,and1=-L(1... 1) eR™
n;
i=1

1

Vo

Question: Which architectures have the vanishing/exploding
gradient problem?

Answer: Those for which aspect ratio (3 is large! (i.e. the
deep+skinny networks)

Other, fancier types neural net, (e.g. Convolutional Nets, ResNets)
are also log-normal with a different formula for .

Theorem (Precise Version)

HJTH2 ~ exp (v/5BN(0,1) — 23), where “~" means:

Theorem (Precise Version)

2
HJlH ~ exp (v/5BN(0,1) — 23), where “~" means:
Moments: For any k > 0, have:

[J] =e (s(2)o+0 (53

—

JI

Theorem (Precise Version)

2
HJlH ~ exp (v/5BN(0,1) — 23), where “~" means:
Moments: For any k > 0, have:

[J] =e (s(2)o+0 (53

Kolmogorov-Smirnov distance: 3C s.t. the cumulative
distribution functions, ®, for the random variables are close in L>®
norm:

—

JI

1/5

o) = e

‘oo E ni_l

Part 2: Products of Random Matrices
o Connection to Neural Nets

o Limit theorem for products of random matrices

J when ¢(x) = max{x, 0}
Recall fi-17m(x) .= ¢ (WX + b(i)> and want to compute

J =Jac(fMé-17M o fla-27Nd-1 o o fMm70)

J when ¢(x) = max{x, 0}
Recall fi-17m(x) .= ¢ (WX + b(’)) and want to compute

J =Jac(fra-17m o fra-2 M6t o o f11)

Since ¢(x) = max {x,0}, ¢/(x) = 1{x > 0}, then the gradient of
each layer is:

J when ¢(x) = max{x, 0}
Recall fi-17m(x) .= ¢ (WX + b(’)) and want to compute

J =Jac(fra-17m o fra-2 M6t o o f11)

Since ¢(x) = max {x,0}, ¢/(x) = 1{x > 0}, then the gradient of
each layer is:

Jac (7-+7) = Diag (1 { W5 + B > 0}) w®

J when ¢(x) = max{x, 0}
Recall fi-17m(x) .= ¢ (WX + 5(’)) and want to compute

J =Jac(fra-17m o fra-2 M6t o o f11)

Since ¢(x) = max {x,0}, ¢/(x) = 1{x > 0}, then the gradient of
each layer is:

Jac (7-+7) = Diag (1 { W5 + B > 0}) w®

Since all random variables are symmetric:

J when ¢(x) = max{x, 0}
Recall fi-17m(x) .= ¢ (WX + 5(’)> and want to compute

J =Jac(fra-17m o fra-2 M6t o o f11)

Since ¢(x) = max {x,0}, ¢/(x) = 1{x > 0}, then the gradient of
each layer is:

Jac (f"-17") = Diag (1 {ﬂ(i)i—i— NOES 0}) w)
Since all random variables are symmetric:
Diag (1 {Wx + 5 > 0}) £ Diag (X))

where X() € R™ has iid entries)(j(i) ~ Bernoul/i(%)-

J when ¢(x) = max{x, 0}
Recall fi-17m(x) .= ¢ (WX + b(’)> and want to compute

J =Jac(fra-17m o fra-2 M6t o o f11)

Since ¢(x) = max {x,0}, ¢/(x) = 1{x > 0}, then the gradient of
each layer is:

Jac (f"-17") = Diag (1 {ﬂ(i)i—i— NOES 0}) w)
Since all random variables are symmetric:
Diag (1 {Wx + 5 > 0}) £ Diag (X))

where X() € R™ has iid entries)(j(i) ~ Bernoulli(}).
By chain rule, we should expect

J when ¢(x) = max{x, 0}
Recall fi-17m(x) .= ¢ (WX + b(’)) and want to compute

J =Jac(fd-17M o frd-27Nd-1 o o fMTM0)

Since ¢(x) = max {x,0}, ¢/(x) = 1 {x > 0}, then the gradient of
each layer is:

Jac (f"-17"") = Diag (1 {ﬂ(i)>?+ NOES 0}) ﬂ(i)
Since all random variables are symmetric:
Diag (1 {M"’>?+ b > o}) < Diag ()?(")>

where X() € R™ has iid entries)<j(i) ~ Bernoulli(}).
By chain rule, we should expect

Define the ny x ng product random matrix M:
M := Diag(X@)W@ Diag(X®)w

where X() € R" has iid entries Xj(i) ~ Bernoul/i(%).

Define the ny x ng product random matrix M:
M := Diag(X@)W@ Diag(X®)w

where X() € R" has iid entries)<j(i) ~ Bernoul/i(%).

2 2
|t]

Define the ny x ng product random matrix M:
M := Diag(X@)W@ Diag(X®)w

where X() € R" has iid entries)<j(i) ~ Bernoul/i(%).

Proposition
2 g Il =2
Jaat]]” = 1]

Conditions: W and b are chosen so that

Define the ny x ng product random matrix M:
M := Diag(X@)W@ Diag(X®)w

where X() € R" has iid entries)<j(i) ~ Bernoul/i(%).

Conditions: W and b are chosen so that
o All entries are independent

Define the ny x ng product random matrix M:
M := Diag(X@)W@ Diag(X®)w

where X() € R" has iid entries)<j(i) ~ Bernoulli(}).

Conditions: W and b are chosen so that
o All entries are independent

o All entries are symmetrically distributed (i.e. X g —X)

Define the ny x ng product random matrix M:
M := Diag(X@)W@ Diag(X®)w

where X() € R" has iid entries)<j(i) ~ Bernoulli(}).

Proposition
L2 112
| = 1]
Conditions: W and b are chosen so that

o All entries are independent

o All entries are symmetrically distributed (i.e. X g —X)
o ¢(x) = max{x,0} is the ReLU function

Define the ny x ng product random matrix M:
M := Diag(X@)W@ Diag(X®)w

where X() € R" has iid entries)<j(i) ~ Bernoulli(}).

Proposition
L2 112
| = 1]
Conditions: W and b are chosen so that

o All entries are independent

o All entries are symmetrically distributed (i.e. X g —X)
o ¢(x) = max{x,0} is the ReLU function

| A

Proof Idea

Can show M £ J up to conjugation by random +1 Bernoulli's.

Limit Theorem for Product of Random Matrices - Hanin, N.

Fix p € (0,1].

Limit Theorem for Product of Random Matrices - Hanin, N.

Fix p € (0,1]. Define the ny x ny product random matrix M:
M = Diag()?(d))W(d) e Diag()?(l))W(l)

where X() € R" has iid {0, 1}-valued entries: Xj(i) ~ Bernoulli(p).

Limit Theorem for Product of Random Matrices - Hanin, N.

Fix p € (0,1]. Define the ny x ny product random matrix M:
M = Diag()?(d))W(d) e Diag()?(l))W(l)

where X() € R" has iid {0, 1}-valued entries: Xj(i) ~ Bernoulli(p). If
W independent, mean 0, variance (n;p)~", finite moments, then:

Limit Theorem for Product of Random Matrices - Hanin, N.
Fix p € (0,1]. Define the ny x ny product random matrix M:

M = Diag()?(d))W(d) e Diag()?(l))W(l)

where X() € R" has iid {0, 1}-valued entries: Xj(i) ~ Bernoulli(p). If
W independent, mean 0, variance (n;p)~", finite moments, then:

o0 (}/(2-1)8-M00 -3 (2-1)s)

|1

Theorem (Precise Version)

"=on (}/(2-1) -3 (2-1))

where “~" means:

|t

Theorem (Precise Version)

"=on (}/(2-1) -3 (2-1))

where “~"” means:
Moments: For any k > 0, have:

e[= ((2-1) ()50 (S55))

|t

Theorem (Precise Version)

"=on (}/(2-1) -3 (2-1))

where “~"” means:
Moments: For any k > 0, have:

e[= ((2-1) ()50 (S55))

Kolmogorov-Smirnov distance: 3C s.t. the cumulative
distribution functions are close in L* norm:

|t

1/5

H¢'"<||Mf||2) - q)mwm)—;(z—l)ﬁum =¢ > ot

Part 3: Proof Ideas
o Where does the % comes from?!71
o Moments: Path counting

o Kolmogorov-Smirnov Distance: Martingales

Proposition

L2
The k-th moment of HMlH is

e (G0 ()50 (51))

Proposition

The k-th moment of HMTH2 is
2k 3 K\ <~ 1 1
R (GOIHERIE)
i=1 ! i=0
K
~ E exp(<%—1>ﬁ-/\/(0,1)—<%—1)§)

Remark: Proof goes by counting paths in the neural network: a kind
of “neural network” version of moments of Wigner's semi-circle law
proof.

e[

Proposition

L2
The k-th moment of HMlH is

e (G0 ()50 (51))

e[

Remark: Proof goes by counting paths in the neural network: a kind
of “neural network” version of moments of Wigner's semi-circle law
proof.

Proposition
The result when kK =1 is:

Proof Idea for E[HMl_\f]

Proof Idea for E[HMl_\f]

Think of M := (Diag()_((d))ﬂ(d)) <Diag(x(1))ﬂ(l)) as a graph.

Edges represent the weights W;'g.

Proof Idea for E[HMl_\f]

Think of M := (Diag()_((d))ﬂ(d)) <Diag(x(1))ﬂ(l)) as a graph.

Edges represent the weights W(ig. Vertices represent the BernouIIi'ngi).

a,

Proof Idea for E[HMl_\f]

M, ,, is the sum over ALL paths starting at b € {1,2...,n} and ending at
36{1,2...,nd}.

Proof Idea for E[HMl_\f]

M, ,, is the sum over ALL paths starting at b € {1,2...,n} and ending at
ac{l,2...,nq}. The weight of each path is the product of weights along

path. l.e. Ma,b = Zﬂ. H:'j:l X7S':) W7$2177Fi'

-2
Proof Idea for E||M1]||

2. . .
[[M1]| is a sum over pairs of paths that end at the same point.

-2
Proof Idea for E||M1]||

-2
[[M1]| is a sum over pairs of paths that end at the same point.The
weight of pair of paths is the product over edge & vertex weights.

-2
Proof Idea for E||M1]||

Most pairs of paths have E [H X,(rf.') W,S,ql,,r,.] = 0, because the weights
Wa('g are independent and mean zero (E [Wa('g} =0)

-2
Proof Idea for E||M1]||

Non-zero contribution only if the pair of paths overlap!

-2
Proof Idea for E||M1]||

E {(Wa("))z] =1 [(Xé”ﬂ = p, #{paths} = [T, n;

-2
Proof Idea for E||M1]||

E {(Wa("))z] =1 [(Xé”ﬂ = p, #{paths} = [, n;

12
The second moment of HMIH is

J-o(G-)5ao(%3))

e[

Proof idea for E||M1][*

|[MT]||* is a sum over 4-tuples of paths that end in pairs at the right.
(Must have: Red with Blue, Green with Yellow at right endpoint.)

Proof idea for E||M1][*

Non-zero contribution to E||MI||* when every edge is covered an even
number of times.

Proof idea for E||M1][*

Non-zero contribution to E||MI||* when every edge is covered an even
number of times. Interaction between the pairs of paths will make

. N 2
E||M]|* # (EIIM1]?)

Proof idea for E||M1][*

Non-zero contribution to E||MI||* when every edge is covered an even
number of times. Interaction between the pairs of paths will make

E||M1||* # <E|]Mf||2)2 Since E [HMTH? =1 can think of the pairs of

paths chosen “at random”.

Proof idea for E||M1][*

An edge covered more than twice is rare.

Proof idea for E||M1|[*

An edge covered more than twice is rare.
Contribution like Cn,-__llni_l =0 (n,.__21) + 0 (n,._2)_

Proof idea for E||M1][*

A simple collision gives an extra factor of %.

Proof idea for E||M1][*

A simple collision gives an extra factor of %.

(Since E [(X‘-S")ﬂ =phbutE [(X‘Si))z] g {(Xéi)ﬂ

Proof idea for E||M1][*

For each simple collision: There are 3 ways to group the 4 paths into
2 pairs.

Proof idea for E||M1][*

For each simple collision: There are 3 ways to group the 4 paths into
2 pairs. You can pair Red«»Blue, Yellow<>Green. (The “boring” pairing)

Proof idea for E||M1][*

For each simple collision: There are 3 ways to group the 4 paths into
2 pairs. ... OR Yellow<«>Blue, Red<>Green.

Proof idea for E||M1][*

N Lo
A

Lo

For each simple collision: There are 3 ways to group the 4 paths into
2 pairs. ... OR Green<>Blue, Red<> Yellow.

Proof idea for E||M1][*

Proof idea for E||M1][*

2
The k-th moment of H/\/Il” is

Toen(G0) ()52 +0(52))

[

Proof idea for E||MT]|[%

Proposition

() -3 -) w1 (2)

in the sense that the Kolmogorov-Smirnov distance
d(X,Y)=sup,|P(X <t)—P(Y <t)|is small.

Proof Idea for In [|M1][?

Define:
V) = pOwl) ... O ywM1

and let F; be the filtration for first j layers.

Proof Idea for In [|M1][?

Define:
V) = pOwl) ... O ywM1

and let F; be the filtration for first j layers. Then:
2
o s - 33012
N i Hz@ b
d ' Ol
() ()]
= U\l (el
i)
+ZE [In < ¥ ‘)‘H) |.7-",_1] (2)

Proof Idea for In [|M1][?

Define:
V) = pOwl) ... O ywM1

and let F; be the filtration for first j layers. Then:
o =< = 350 (1)
=N G
d 2 i) 2
:Z{ < ‘L 1”)—E [In(qu 1” 2) .7:,'—1]} (1)
i—1 |-)H [
d 0)
Sl () | ?
i=1

(1) is a martingale difference sequence with increments of variance
~ (% — 1) nfl and fourth moments O (nfz) =— close to Gaussian.

Proof Idea for In [|M1][?

Define:
V) = pOwl) ... O ywM1

and let F; be the filtration for first j layers. Then:
o =< = 350 (1)
=N G
d 2 i) 2
= Z{ < ‘L 1”) —E [In (qu 1” 2) .7:,'—1]} (1)
i—1 |-)H [

*gE [' <HW HH)])

(1) is a martingale difference sequence with increments of variance
~ (% — 1> nfl and fourth moments O (nfz) =— close to Gaussian.

(2) is approximately constant = % (% — 1) nfl +0 (nlfz).

(2) is approximately constant

=01 |Fi-1
}If' ”H
i—1)112

I P o

26D -

2 N2 12\ 2
Hx*(’)H L glls TS il e il AP
: B

I
, 4
o L3\ L, a3 lIKT,
~0+ 2 < 1> n; + 2n;p H;ifl)H;‘

+

| Fi-

The end!

Limit Theorem for Product of Random Matrices - Arbitrary vectors

If X is an arbitrary vector, then:

M| ~ log —normal (E . 1> eI i
M p n mp ||X||;

i=1

N 4
where 4 = E w) is the fourth moment of the random
J,k

weights WJ(Q

