Deep Neural Nets and Products of Random Matrices

Mihai Nica, University of Toronto

Based on joint work with Boris Hanin, Texas A&M

March 27, 2019



Part 1: Deep neural nets
o Mathematical definitions

e Limit theorem for a random neural net



Part 1: Deep neural nets

o Mathematical definitions

o Limit theorem for a random neural net
Part 2: Products of Random Matrices

o Connection to Neural Nets

o Limit theorem for products of random matrices



Part 1: Deep neural nets

o Mathematical definitions

o Limit theorem for a random neural net
Part 2: Products of Random Matrices

o Connection to Neural Nets

o Limit theorem for products of random matrices
Part 3: Proof Ideas

o Moments: Path counting

o Kolmogorov-Smirnov Distance: Martingales



Part 1: Neural Nets
o Mathematical Definitions

o Limit theorem for a random neural net



Definition - Fully Connected Neural Net




Definition - Fully Connected Neural Net

Fix a depth d € N, and layer widths ng,n; ... ny € N.




Definition - Fully Connected Neural Net

Fix a depth d € N, and layer widths ng, n; ... ny € N. A neural

net is a function:
fro=ns ; R™ — R




Definition - Fully Connected Neural Net

Fix a depth d € N, and layer widths ng, n; ... ny € N. A neural

net is a function:
fro=ns ; R™ — R

It depends d weight matrices and d bias vectors:

WY an n; x n;j_; matrix

b a vector in R"




Definition - Fully Connected Neural Net

Fix a depth d € N, and layer widths ng, n; ... ny € N. A neural
net is a function:

fro=na ; R _y R

It depends d weight matrices and d bias vectors:

WY an n; x n;j_; matrix

b a vector in R"

and a (non-linear) activation function ¢ : R — R.




Definition - Fully Connected Neural Net

Fix a depth d € N, and layer widths ng, n; ... ny € N. A neural
net is a function:

fro=na ; R _y R

It depends d weight matrices and d bias vectors:

WY an n; x n;j_; matrix

b a vector in R"

and a (non-linear) activation function ¢ : R — R. Each layer of
the network gives a function f"-17" : R"-1 — R":

fri17ni(x) = ¢ (ﬂ“%?—ir E(i)> (applied entry-wise)




Definition - Fully Connected Neural Net

Fix a depth d € N, and layer widths ng, n; ... ny € N. A neural

net is a function:
fro=ns ; R™ — R

It depends d weight matrices and d bias vectors:

WY an n; x n;j_; matrix

b a vector in R"

and a (non-linear) activation function ¢ : R — R. Each layer of
the network gives a function f"-17" : R"-1 — R":

fri17ni(x) = ¢ (ﬂ“%?—ir E(i)> (applied entry-wise)

Finally, f™7" is the composition of these:

f‘no—)nd e fnd,l—md o f'nd,Q—)nd,;l o...0 fno—)nl
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Supervised Learning: Solution Idea

0. Invent the architecture: depth d and layer widths ny, ..., ng_1.
Setng=n, ng=m

1. Initialization: Pick parameters W/, b at random.

2. Modify parameters to shrink Error(W, b) by gradient descent:

new WJ('k) = old V\/J('k) - 8Wj(,2Error( W, b)

3. Repeat step 2 many times. Hope that the error is now small.




Which architecture is best?

ImageNet Large Scale Visual
Recognition Challenge Results

0
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Definition

The aspect ratio of a network is defined by:

Our mathematical result:
If 3 is large, ng;k) Error(W, b) will be very large or very small with

high probability.
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Limit Theorem for Random Neural Nets - Hanin, N. 2018
If ¢(x) = max{x,0} and W b(are chosen randomly then for

almost every x € R"™ :

401"~ o0 (VBB A0.2) - 36)
1
where N(0,1) a Gaussian,I = \/1,?0(1 .., 1)eR™, g := Z -

Conditions on W, p() .
o All entries are independent
o All entries are symmetrically distributed (i.e. X g —X)

o All entries of W) are mean 0 and variance 2n: 1
o All entries have finite moments of all order and no atoms
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Question: Which architectures have the vanishing/exploding
gradient problem?

Answer: Those for which aspect ratio (3 is large! (i.e. the
deep+skinny networks)

Other, fancier types neural net, (e.g. Convolutional Nets, ResNets)
are also log-normal with a different formula for .
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2
HJlH ~ exp (v/5BN(0,1) — 23), where “~" means:
Moments: For any k > 0, have:

[J] =e (s(2)o+0 (53

Kolmogorov-Smirnov distance: 3C s.t. the cumulative
distribution functions, ®, for the random variables are close in L>®
norm:

—

JI
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Recall fi-17m(x) .= ¢ ( WX + b(’)) and want to compute

J =Jac(fd-17M o frd-27Nd-1 o o fMTM0)

Since ¢(x) = max {x,0}, ¢/(x) = 1 {x > 0}, then the gradient of
each layer is:

Jac (f"-17"") = Diag (1 {ﬂ(i)>?+ NOES 0}) ﬂ(i)
Since all random variables are symmetric:
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where X() € R™ has iid entries )<j(i) ~ Bernoulli(}).
By chain rule, we should expect
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| A

Proof Idea

Can show M £ J up to conjugation by random +1 Bernoulli's.
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Fix p € (0,1]. Define the ny x ny product random matrix M:

M = Diag()?(d))W(d) e Diag()?(l))W(l)
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Part 3: Proof Ideas
o Where does the % comes from?!71
o Moments: Path counting

o Kolmogorov-Smirnov Distance: Martingales
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Remark: Proof goes by counting paths in the neural network: a kind
of “neural network” version of moments of Wigner's semi-circle law
proof.

Proposition
The result when kK =1 is:
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M, ,, is the sum over ALL paths starting at b € {1,2...,n} and ending at
ac{l,2...,nq}. The weight of each path is the product of weights along

path. l.e. Ma,b = Zﬂ. H:'j:l X7S':) W7$2177Fi'



-2
Proof Idea for E||M1]||

2. . .
[[M1]| is a sum over pairs of paths that end at the same point.



-2
Proof Idea for E||M1]||

-2
[[M1]| is a sum over pairs of paths that end at the same point.The
weight of pair of paths is the product over edge & vertex weights.
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Most pairs of paths have E [H X,(rf.') W,S,ql,,r,.] = 0, because the weights
Wa('g are independent and mean zero (E [Wa('g} =0)
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Non-zero contribution only if the pair of paths overlap!
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12
The second moment of HMIH is

J-o(G-)5ao(%3))
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Proof idea for E||M1][*

|[MT]||* is a sum over 4-tuples of paths that end in pairs at the right.
(Must have: Red with Blue, Green with Yellow at right endpoint.)
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Proof idea for E||M1][*

Non-zero contribution to E||MI||* when every edge is covered an even
number of times. Interaction between the pairs of paths will make

E||M1||* # <E|]Mf||2)2 Since E [HMTH? =1 can think of the pairs of

paths chosen “at random”.
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Proof idea for E||M1|[*

An edge covered more than twice is rare.
Contribution like Cn,-__llni_l =0 (n,.__21) + 0 (n,._2)_
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For each simple collision: There are 3 ways to group the 4 paths into
2 pairs. ... OR Yellow<«>Blue, Red<>Green.
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N Lo
A

Lo

For each simple collision: There are 3 ways to group the 4 paths into
2 pairs. ... OR Green<>Blue, Red<> Yellow.
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Proof idea for E||MT]|[%




Proposition

() -3 -) w1 (2)

in the sense that the Kolmogorov-Smirnov distance
d(X,Y)=sup,|P(X <t)—P(Y <t)|is small.
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(1) is a martingale difference sequence with increments of variance
~ (% — 1) nfl and fourth moments O (nfz) =— close to Gaussian.
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Define:
V) = pOwl) ... O ywM1

and let F; be the filtration for first j layers. Then:
o =< = 350 (1)
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(1) is a martingale difference sequence with increments of variance
~ (% — 1> nfl and fourth moments O (nfz) =— close to Gaussian.

(2) is approximately constant = % (% — 1) nfl +0 (nlfz).



(2) is approximately constant
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The end!




Limit Theorem for Product of Random Matrices - Arbitrary vectors

If X is an arbitrary vector, then:

M| ~ log —normal (E . 1> eI i
M p n mp ||X||;

i=1

N 4
where 4 = E w) is the fourth moment of the random
J,k

weights WJ(Q






