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Abstract
The intermediate disorder regime is a scaling limit for random polymers where the strength of the random
environment is scaled to zero as the system size grows to infinity. We prove intermediate disorder limits for
models with multiple non-intersecting polymer paths, both for purely discrete polymers [2] and semi-discrete
polymers [3]. In both cases, the limiting object is the continuum polymer related to the multi-layer extension of
the stochastic heat equation introduced by O’Connell and Warren in [4]. The semi-discrete convergence resolves
an outstanding conjecture by Corwin and Hammond [1] and gives a characterization of the KPZ line ensemble.
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Continuum Polymer: t ∈ (0,∞), z ∈ R
Let ~D(t,z)(·) denote d non-intersecting Brownian bridges with endpoints
~D(t,z)(0) = (0, 0, . . . , 0), ~D(t,z)(t) = (z, z, . . . , z). This is also known as
Brownian watermelon; a sample path is shown in Figure 1.
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Figure 1: Sample path for non-intersecting Brownian bridges ~D(t,z) when d = 6,
t = 1.0, z = 2.0.

Let ξ(t, z) denote a Gaussian white noise environment. The polymer parti-
tion function at inverse temperature β > 0, first defined in [4], is given by
a Wick exponential:

Zβd (t, z) = ρ(t, z)dE
[
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0

ξ
(
s,D
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,

where E is expectation over ~D(t,z) and ρ(t, z) := (2πt)−
1
2 exp

(
−z2/2t

)
.

Zβd is the limiting object in the convergence Theorems from [2] and [3].
Formally Zβd is a Wiener chaos series:

Zβd (t, z) := ρ(t, z)d
∞∑
k=0

βk
¨
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ψ
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(
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where ∆k(s, s′) =
{
~t : s < t1 < · · · < tk < s′

}
⊂ (0,∞)k, and the func-

tions ψ(t,z)
k are the k-point correlation functions for ~D(t,z).

Semi-discrete Polymer: τ ∈ (0,∞), x ∈ N
Let ~S(τ,x)(·) denote d non-intersecting semi-discrete paths with endpoints
~S(τ,x)(0) = (1, 2, . . . , d), ~S(τ,x)(τ) = (x+ 1, x+ 2, . . . , x+ d). A sam-
ple path is shown in Figure 3.
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Figure 3: (Left) A sample path of ~S(τ,x) when d = 6, τ = 10, x = 10.
(Right) Compensating these processes turns these into “sawtooth walks”

Let B = {Bx(τ)}τ∈(0,∞),x∈N be an environment of i.i.d. Brownian mo-
tions. The polymer partition function at inverse temperature β > 0 is:

Zβ,sd
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,

where E denotes expectation over ~S(τ,x).

Convergence of Semi-discrete Polymer
Theorem [3]. For any β > 0, set βN := N−

1
4 β. As N →∞, one has:
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Moreover, it is possible to couple the partition functions so that the conver-
gence is in Lp for any p ≥ 1.

Discrete Polymer: n ∈ N, x ∈ Z
Let ~X(n,x)(·) denote d non-intersecting random walks with endpoints
~X(n,x)(0) = (0, 2, . . . , 2d− 2) , ~X(n,x)(n) = (x, x+2, . . . , x+2d−2).
These are in bijection with non-intersecting up/right lattice paths.
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Figure 2: (Left) A sample path of ~X(n,x) when d = 6, n = 24, x = 0.
(Right) Rotation by 45◦ transforms these into up-right lattice paths.

Let ω = {ω(n, x)}n∈N,x∈Z be an environment of i.i.d. random variables.
The polymer partition function at inverse temperature β > 0 is:

Zβd (n, x) := E
[
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,

where E denotes expectation over ~X(n,x).

Convergence of Discrete Polymer
Theorem [2] (joint with Ivan Corwin). Suppose ω(0, 0) is any random
variable with mean zero, unit variance, and finite exponential moments
Λ(β) := log
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E
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. For any β > 0, set βN := N−
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