
RANDOM GRAPHS BY JOEL SPENCER

Notation 1. We say �f(n)� g(n) as n→∞� if f(x)
g(x) →∞ as n→∞.

Notation 2. We say �f(n) ∼ g(n) as n→∞� if f(n)
g(n) → 1 as n→∞

Notation 3. We say �f(n) = o(g(n)) as n→∞� if f(n)
g(n) → 0 as n→∞

Notation 4. (n)k := n(n− 1)(n− 2) . . . (n− (k − 1)) notice there are k terms in the product.

De�nition 5. The Erdos Renyi random graph G(n, p) is a graph on the vertex set V = [n] = {1, . . . n} where each of the
(
n
2

)
possible connections between vertices is chosen independently with probability p, i.e. P ({i, j} ∈ G) = p.

Remark 6. A nice way to couple G(n, p) to G(n, q) is to choose a uniform random variable at each possible edge and include it
if U < p in G(n, p) and if U < q in G(n, q). This idea gives a graph process G(n, t) for t ∈ [0, 1] which ranges from the empty
graph at t = 0 to the complete graph at t = 1.

Remark 7. We will very often let p = p(n) depend on n, and be looking at problems that happen in the limit n→∞.

0.1. Threshold Functions. We will see that for many properties of graphs A, there is a vary narrow window for values of p
where P(G(n, p) ∈ A) ranges from 0 to 1. We make this more precise in this section. We start with an example to illustrate the
idea.

Example 8. Let X be the number of triangles in G(n, p). Each triangle of Kn has a probablity of p3of being in G(n, p). Since
there are

(
n
3

)
such triangles, we have by the linearity of the expectation that:

E (X) =

(
n

3

)
p3

This suggests a parametrization p = p(n) = c
n , so that limn→∞E(X) = c3

6 . We will see later that the distribution of X is a
Poisson distribution. The above calculation identi�es the rate for us! Look at the event {X = 0} now. Have:

lim
n→∞

P{X = 0} = e−c
3/6

Notice that this probability ranges from 0 to 1 as c ranges from ∞ to 0. For example, if c = 106, G(n, p) is very likely to have
triangles for large n, while for c = 10−6 G(n, p) is very unlikely to have triangles. In the dynamic view (our graph process) this
is saying that there is a sharp window around p ∼ 1

n where P {X = 0} goes from 0 to 1.

Notice that if we take for example p(n) = n−0.9 = n0.1

n (notice p(n) � n−1 as n → ∞), then limn→∞P{X = 0} = 0 by a

similar analysis! On the other hand if we take for example p(n) = 1
n logn (so p(n)� n−1 as n→∞), then limn→∞P{X = 0} = 1.

This is the idea of a threshold function which we formally de�ne below.\

De�nition 9. r(n) is called a threshold function for a graph property A if the following two conditions are met:

p(n)� r(n) as n→∞ ⇒ lim
n→∞

P {G(n, p) ∈ A} = 0

p(n)� r(n) as n→∞ ⇒ lim
n→∞

P {G(n, p) ∈ A} = 1

Remark 10. In our above example about the number of triangles, r(n) = 1
n was a threshold function. Notice that threshold

functions are not unique. For example multiplying by a constant is ok.
In the above example of triangles, we could not actually compute P{X = 0} because triangles in the graph are not independent

(We instead stated a result we will prove later). In the next section we will develop some techniques to get around this kind of
�non-independence�

0.2. Variance. Here we will develop some lemmas for non-negative integer valued random variables X that will be useful to us.
The notation devolved here will be used throughout.

Lemma 11. Let X be a non-negative integer valued random variable. Then:

P(X = 0) ≤ Var(X)

E(X)2

Proof. Let µ = E(X), σ =
√
Var(X). Apply Chebyshev's Inequality with λ = µ

σ . Have:

P(X = 0) ≤ P (|X − µ| ≥ λσ) ≤ 1

λ2
=
σ2

µ2

�
1
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We will usually apply this result when X = Xn is a really a sequence of random variables. For example, here are some useful
corallaries:

Corollary 12. If Var(X) = o
(
E(X)2

)
as n→∞ then P (X > 0)→ 1 as n→∞.

Proof. Have:

P(X > 0) = 1−P (X = 0) ≥ 1− Var(X)

E(X)2
→ 1− 0 = 1

�

Corollary 13. If Var(X) = o
(
E(X)2

)
as n → ∞ then for all ε > 0, P

(∣∣∣ X
E(X) − 1

∣∣∣ < ε
)
→ 1 as n → ∞ i.e. X

E(X)

P→ 1. (We

abbreviate this as �X ∼ E(X) a.s.�)

Proof. Following the idea of the original result:

P

(∣∣∣∣ X

E(X)
− 1

∣∣∣∣ ≥ ε) = P (|X −E(X)| ≥ εE(X))

≤ Var(X)

ε2E(X)2
→ 0

�

De�nition 14. Take a sequence of events A1, A2, . . . , Am and let their indicator functions be labeled Xi = 1Ai . Let X =
X1 +X2 + . . .+Xm. For indices i, j write i ∼ j if i 6= j and the events Ai and Ajare not independent. In this setup we de�ne:

∆ =
∑
i∼j

P(Ai ∩Aj)

Proposition 15. In the set up for ∆ above, we haveVar(X) ≤ E(X) + ∆

Proof. Notice that when i ∼ j we have the inequality:

Cov (Xi, Xj) = E (XiXj)−E (Xi)E (Xj) ≤ E (XiXj) = P (Ai ∩Aj)
When i 6= jand not i ∼ j then Ai, Aj are independent so we have Cov(Xi, Xj) = 0. When i = j Cov(Xi, Xj) = E

(
X2
i

)
−

E (Xi)
2 ≤ E(Xi) since Xi is an indicator random variable. Combining these we have:

Var(X) = Cov(X,X)

=
∑
i,j

Cov(Xi, Xj)

=
∑
i∼j

Cov(Xi, Xj) +
∑

i 6=j,i�j
Cov(Xi, Xj) +

∑
i=j

Cov(Xi, Xj)

≤ ∆ + 0 + E(X)

�

Corollary 16. If E(X)→∞ and ∆ = o(E(X)2),then limn→∞P(X > 0) = 1 and X
E(X)

P→ 1 as n→∞.

Proof. By the hypothesis and the last inequality, have Var(X) ≤ E(X) + ∆ = o(E(X)2) since E(X) → ∞ means that

E(X) = o(E(X)2). By the previous corollaries then, we have X
E(X)

P→ 1 and limn→∞P(X > 0) = 1 �

This shows why the de�nition of ∆ is useful. In cases where there is more symmetry, it sometimes makes even more sense to
think about the following related quantity:

∆? =
∑
j∼i

P (Aj |Ai)

In general this depends on i, but if there is an automorphism of the probablity space that interchanges Ai with Aj for i 6= j,
then this will not depend on i. (The natural way this happens for random graph models is through a relabeling of the vertices)
Notice that if this is indeed the case, and the Ai's are �interchangeable� in this sense, then:

∆ =
∑
i∼j

P(Ai ∩Aj)

=
∑
i

P(Ai)
∑
j∼i

P(Aj |Ai)

=
∑
i

P(Ai)∆
∗

= E(X)∆?

Corollary 17. In this symmetric set up, if E(X)→∞ and ∆? = o(E(X)) then limn→∞P(X > 0) and X
E(X)

P→ 1.
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Proof. By the above computatation, ∆? = o(E(X)) gives ∆ = o
(
E(X)2

)
and we are reduced to the previous corollary. �

0.3. Appearance of Small Subgraphs. In this section we will use the tools developed above to �nd the threshold function
for the appearance of a given graph H to be a subgraph of G(n, p). We start with an instructive example, and then we will
generalize it.

De�nition 18. A set S ⊂ G is called a clique if every pair of vertices, x, y ∈ S in adjacent in G. Let ω(G) be the size of the
largest clique in G. Notice that ω(G) is the size of the largest complete graph we can �nd as a subgraph G.

Theorem 19. Let A be the event A = {ω(G) ≥ 4} = {G contains a copy of K4}. Then A has a threshold function of n−2/3.

Proof. For every set of 4 vertices in G(n, p), let ASbe the event �S is a clique� and XS its indicator random variable. Then:

E(XS) = P(AS) = p6

as there are six di�erent possible edges between the vertices of S. De�ne:

X =
∑
|S|=4

XS

so that X is the number of 4-cliques in G and ω(G) ≥ 4 if and only if X > 0. (This is exactly the set up we had in our
discussion above for X.) By linearity of the expectation, we know that:

E(X) =
∑
|S|=4

E(XS) =

(
n

4

)
p6 ∼ n4p6

24

This simple calculation already proves half of the theorem. Namely if p(n) � n−2/3, then limn→∞E(X) = 0 and so
limn→∞P(X > 0)→ 0 too.

To see the other half (namely when p(n)� n−2/3 the probability approaches 1), we use the techniques we worked on above,
in particular the last result about ∆?. (We are in the set up of ∆?here as all the 4-sets S are the same up to relabeling the
vertices). Suppose p(n) � n−2/3. For two four sets S, T we know that S ∼ T if and only if S 6= T and S and T share at least
one possible edge. This only happens if they share at least two vertices. Fix S. There are

(
n−4

2

)
= O(n2) with |S ∩ T | = 2 (two

vertices in common, one edge in common) and for each of these P(AT |AS) = p5 (the edge in common comes for free, 5 edges
remain). There are

(
n−4

1

)
= O(n) sets T with |S ∩ T | = 3 (three vertices in common, three edges n common) and for each of

these P(AT |AS) = p3 (three of the edges come for free). Have then that:

∆? =
∑
S∼T

P (AY |AS) = O(n2p5) +O(np3) = o(n4p6) = o (E(X))

The last line works since p(n)� n−2/3. Notice also that E(X)→∞ because of p� n−2/3. By the corollary above, we know
that limn→∞P(X > 0) = 1 which proves the other half of the threshold function property.

We can generalize this a little bit to other subgraphs H where the same type of calculation works out. �

De�nition 20. Let H be a graph with v vertices and e edges. We call ρ(H) = e/v the density of H. We call H balanced if
every subgraph H ′of H has ρ(H ′) ≤ ρ(H). We call H strictly balanced if every proper subgraph H ′has ρ(H) < ρ(H).

Example 21. K4 the complete graph on 4 vertices is strictly balanced. This is part of why the above calculation works. In
general Kn is completly balanced.

Theorem 22. Let H be a balanced graph with v vertcies and e edges. Let A(G) be the even that H is a subgraph of G.Then
p(n) = n−v/eis the threshold function for A.

Proof. We follow the argument we made above that was for the case H = K4. For each v−set S let ASbe the even that GS
contains H as a subgraph. Since H is somewhere between the complete graph on v edges we have that:

pe ≤ P(AS) ≤ v!pe

Any particular placement of H has probability peof occuring and there are at most v! possible placements. The precise
calcultion of P(AS) is in general complicated due to the overlapping of potential copies of H, but the above naive inequality will
be enough for our purposes. Let XS be the indicator random variable for AS and de�ne X =

∑
|S|=vXS so that A holds if and

only if X > 0. By linearity of the expectation we have:

E(X) =
∑
|S|=v

E(XS) =

(
n

v

)
P(AS) = Θ(nvpe)

As before, this gives quicky calculation gives one side of the threshold function result: if p(n)� n−v/e then we see from the
above that limn→∞E(X) = 0 and so limn→∞P(X > 0) = 0 too.
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Now assume p(n) � n−v/e so that E(X) → ∞ from the above calculation. Let us estimate ∆?as we did before. For a �xed
v−set S, we have that S ∼ T if and only if S 6= T and S, T have some edge sin common. We divide up the sum for ∆? by the
number of vertices S and T have in common:

∆? =
∑
T∼S

P(AT |AS) =

v−1∑
i=2

∑
|T∩S|=i

P(AT |AS)

For each value of i, there are
(
n−v
v−i
)

= O(nv−i) sets T with |T ∩ S| = i. For �xed T , consider P(AT |AS). There are O(1)

possible copies of H on T (some number between 1 and v! as mentioned before). Each has at most ie
v edges with both vertices

in S and thus at least e− ie
v other edges (this fact depends critically on the fact that H is balanced, to get the upper bound ie

v ,
look at a subgraph of that copy of H, namely S ∩ T ∩ H. Since the density of this graph is less than e

v and this graph has i

vertices, the number of edges in this subgraph is less than ie
v ). We have then that:

P(AT |AS) = O(pe−
ie
v )

So we get that:

∆? =

v−1∑
i=2

O(nv−ipe−
ie
v ) =

v−1∑
i=2

O
(

(nvpe)
1− i

v

)
Hence, since p(n)� n−v/e we know that:

∆? =

v−1∑
i=2

o(nvpe) = o (E(X))

So we now have the hypothesis of the earlier corollary which gives the result. �

Theorem 23. If H is not balanced, then p = n−v/eis not the threshold function for A.

Proof. Let H1 be a subgraph of H with v1vertices, e1edges and e1/v1 > e/v. Take α so that v/e < α < v1/e1 and set p(n) = n−α

so that p� n−v/e and p� n−v1/e1 . By our earlier proof, since α < e1/v1 then E(#H1 a subgraph of G(n, p))→ 0 (this was in
the easy part of the proof, we didn't even need H1 is balanced) Hence P(H1a subgraph of G(n, p)) → 0. If there are no copies
of H1 there are de�nitely no copies of H, so P(H is a subgraph)→ 0 too. Since p� n−v/e, and yet P(H a subgraph)→ 0 this
shows that n−v/e cannot be a threshold function for A. �

Remark 24. Erdos and Renyi proved that the threshold function for containg a subgraph of H for arbitrary H is n−v1/e1 where
v1/e1 is the density of the subgraph H1 ⊂ H of maximal density. The methods we have done so far actually get us really close
to this result. The next result is a slight improvement of the hard half of the threshould function result we proved earlier.

Theorem 25. Let H be a strictly balanced graph with v vertices and e edges. Suppose that there are a automorphisms of H.

Let X be the number of copies of H in G(n, p). If p� n−v/e then we have that X ∼ n−v/e

a almost always (in the sense that the

ratio
P→ 1).

Proof. The proof is very similar to the proof of n−v/eas a threshold function. This time we use a slightly more precise counting
of the number of ways H can be put into the set Swith |S| = v. We also use the conclusion that X ∼ E(X) rather than just
X > 0 a.a. from the corollary at the end. We �ll in the details now.

Label the vertices of H by 1, . . . , v. For each ordered set of vertices x1, x2, . . . , xv let Ax1,...,xvbe the even that x1, . . . , xv
provides a copy of H in that order. (To be precise this is the event that {xi, xj} ∈ E(G) for every {i, j} ∈ E(H).) Let Ix1,...xvbe
the corresponding indicator random variable. Notice that P(Ax1,...xv ) = E(Ix1,...,xv ) = pe since there are e edges in H.

Now, we de�ne an equivalence relation on ordered v-tuples by (x1, . . . , xv) ≡ (y1, . . . yv) if there is an automorphism σof V (H)
so that yσ(i) = xi. (By the hypothesis of the problem, there are a elements in each equivalence class). De�ne now:,

X =
∑

Ix1,.,xv

Where the sum is taken over one entry from each equivalence class. There are (n)v possible ordered v−tuples, and so there
are (n)v/a equivalence classes.We have then by linearity of E that:

E(X) =
(n)v
a

E(Ix1,...,xv ) ∼ nvpe

a

Our assumption that p(n)� n−v/e tells us that E(X)→∞ so it remains only to show that ∆? = o(E(X)) and then we can
apply the corollary and get the result. Fix (x1, . . . , xv) and consider:

∆? =
∑

(y1,...,yv)∼(x1,...,xv)

P(Ay1,...,yv |Ax1,...,xv )

The tuples where (y1, . . . , yv) ∼ (x1, . . . , xv) can be divided into v disjoint pieces, where |{y1, . . . , yv} ∩ {x, . . . , xv}| = i for
i = 1, . . . v. The arguments of the last section are now used to consider each piece seperatly and see that each contributes
o(E(X)) to the sum. Hence ∆? = o(E(X)) too, as desired. We now conclude that X ∼ E(X) a.a. �
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Theorem 26. Let H be any �xed graph. For every subgraph H ′of H (including H itself) let XH′denote the number of copies of
H ′ in G(n, p). If p(n) is so that E(XH′)→∞ for every H ′, then almost always:

XH ∼ E(XH)

Proof. Say H has v vertices and e edges. Set up Ax1,...xv , Ix1,...,xv as in the above theorem. As in the above theorem, the
di�culty lies in showing that ∆? = o(E(X)). We split the sum de�ning ∆?into a �nite number of terms as follows. For every
H ′with w vertices and f edges, we consider those v−tuples (y1, . . . , yv) that overlap with the �xed (x1, . . . , xv) in a copy of H ′

(that is the overlap of the two tuples has exactly w edges and there are f edges that �come for free� because we are conditioning
on Ax1,.,xv ) For such y1, . . . yv we have that:

P(Ay1,...,yv |Ax1,...,xv ) = pe−f

There are ∼ nv−w such v−tuples (since H ′has w vertices) so the total contribution from this piece is:

nv−wpe−f = Θ

(
E[XH ]

E[XH′ ]

)
= o(E(XH))

Since E(XH′) → ∞ by hypothesis. Summing over all these �nitely many terms, we arrive at the conclusion that ∆? =
o(E(XH)) too. �

0.4. Connectivity. In this section we give a relativly simple example of the Poisson Paradigm: the rough notion that if ther
eare many rare and independent events, then the number of events has approximatly a Poisson distribution. This applies to the
connectivity of an Erdos Renyi graph, as we will see.

De�nition 27. A vertex v is called isolated if it is adjacent to no w ∈ V . In G(n, p) let X count the numebr of isolated vertices.

Theorem 28. Let p = p(n) satisfy n(1− p)n−1 = µ. Then:

lim
n→∞

P(X = 0) = e−µ

Proof. Let Xibe the indicator random variable that the vertex i is isolated, so that X =
∑n
i=1Xi. Notice that P(Xi) = (1−p)n−1

for every i, so by linearity and symmetry of the problem, E(X) = nE(Xi) = n(1 − p)n−1 = µ. Now consider the r-th factorial

moment, E((X)r) =
∏r−1
i=0 (X − i). By symetry, we have that: E(X) = (n)rE(X1X2 · · ·Xr). The product X1X2 · · ·Xr is 1 if all

of the vertices 1, . . . , r are isolated, and 0 otherwise. In order for all these to be isolated, we need each of the n− 1 edges coming
from each of the r vertices to be not-selected. However, this double counts the

(
r
2

)
edges amongst the vertices, so the total number

of edges that we need to be not-selected is r(n − 1) −
(
r
2

)
. Hence E(X1X2 . . . Xr) = P(X1X2 . . . Xr = 1) = (1 − p)r(n−1)−(r2).

Have then:
E((X)r) = (n)r(1− p)r(n−1)−(r2) ∼ nr(1− p)r(n−1) = µr as n→∞

(This is saying that the dependece among the Xi was asymptotically negligible.) These are the same moments as for a Poisson
distribution! We may now cite a fact that limn→∞E((X)r) = µr for every r implies convergence in distribution to a Poisson
random variable, X ⇒ Poiss(µ) . In our case, where we only want to show limn→∞P(X = 0)→ e−µ it is not much more work
to see it directly. The main idea is from the proof of the above convergence fact, namely that:

P(X = k) =

∞∑
r=0

(−1)r
E[(X)r]

(r − k)!k!

(This identity is proven by writing 1{X=k} =
(
X
k

)
(1− 1)X−k =

(
X
k

)∑X−k
i=0 (−1)i

(
X−k
i

)
=
∑∞
i=0(−1)i

(
X
k

)(
X−k
i

)
. Exapanding

the binomial coe�cients and taking expectation proves the above.) Right now we are interested only in limn→∞P(X = 0) :

lim
n→∞

P(X = 0) = lim
n→∞

∞∑
r=0

(−1)r
E[(X)r]

r!

=

∞∑
r=0

(−1)r
limn→∞E[(X)r]

r!

=

∞∑
r=0

(−1)r
µr

r!

= e−µ

(Not sure why exactly we can change the limit with the sum here...I can't get the estimates to work out for a LDCT swap, I
think you might have to do it more �hands-on� using the alternating series test) �

Theorem 29. [Erdos-Renyi �Double Exponential� ] Suppose p = p(n) is given by:

p(n) =
log n

n
+
c

n
+ o

(
1

n

)
Then:

lim
n→∞

P (G(n, p) is connected) = e−e
−c
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Proof. For such p, we have that n(1 − p)n−1 ∼ µ = e−c. By the previous theorem, the probability that X = 0 (i.e. G has no

isolated component) approaches e−µ = e−e
−c
. We will now argue that the probability that G is connected is asymptotically

equal to the probability that G has no isolated components. Indeed, if G has no isolated vertices but is not connnected, then
there is a connected component of k vertices for 2 ≤ k ≤ n

2 . Let B be the this event, the we have:

P(B) ≤
n/2∑
k=2

(
n

k

)
kk−2pk−1(1− p)k(n−1)−(k2)

The sum is over the size of the connected component.The �rst factor is the number of choices for the componet of size |S| = k,
S ⊂ V (G). The second factor is the choice of a tree on S (there are kk−2such trees, and this provides an upper bound, because
every connected component has a spanning tree). The third factor is the probability that the tree's edges are in E(G) (every
tree with k vertices has k − 1 edges). Finally, the last factor is the probability that the tree is isolated with no edges from the
tree to outside of the tree (similar to the calculation of (X)r in the above theorem). Some analysis here shows that k = 2 is the
dominating term and that P(B) = o(1). This veri�es indeed that P(G(n, p) is connected) is the same as P(X = 0) in the limit
n→∞. �

0.5. The Janson Inequalities. In many cases we would like to bound the probability that none of a set of bad events Bi i ∈ I
occur. If the events are independent, then we would have:

P

(⋂
i∈I

B̄i

)
=
∏
i∈I

P
(
B̄i
)

When the Bi are not independent but are �mostly independent� in some sense, the Janson inequalities allow us to say that
the two quantities above are �mostly equal�. Of course, we have to make this precise. We �rst describe the set up in which the
Janson inequality will apply, and then we state and prove the inequality as a theorem. The set up is similar to our framework
for ∆ and ∆? from the last few sections, but not exactly the same.

Let Ω be a �nite universal set and let R be a random subset of Ω de�ned in such a way so that:

P (r ∈ R) = pr

and moreover, so that r ∈ R is independent of s ∈ R for r 6= s. (For our purposes, we will be using Ω = E(Kn), the set of
possible edges in the graph G(n, p), and we have R = E(G(n, p)) so that pr = p is constant for us.) Let Ai,i ∈ I be subsets of Ω
for a �nite set I (e.g. a subset of possible edges). Let Bi be the event Ai ⊂ R (e.g. P(Bi) =

∏
r∈Ai pr). Let Xibe the indicator

function for Biand let X =
∑
i∈I Xi, the number of Ai ⊂ R. Notice that {X = 0} = ∩i∈IB̄i is the event that Ai * R for every i.

Let us write i ∼ j whenever i 6= j and Ai ∩Aj 6= ∅. Notice that when i ∼ j the two events are Biand Bj are dependent Aiand
Aj have some overlap, while if i � j and i 6= j then Bi and Bj are independent since Ai and Aj have no overlap. Even further,
if we have a whole collection of indices J ⊂ I and if i /∈ J and i ∼ j for all j ∈ J then Bi is mutually independent of {Bj |j ∈ J}
(i.e. indpendent of any combination of unions/intersections of these events.) As before, this happens since the event Bi depends
only on {r ∈ R} for r ∈ Ai while any event from the family {Bj |j ∈ J} can only depend on {r ∈ R}for r ∈ ∪j∈JAj . (We will
use this type of fact later on) Since these are disjoint, by the de�nition of the random set R these are independent.

De�ne now:

∆ =
∑
i∼j

P (Bi ∩Bj)

Here the sum is over unordered pairs (i, j) so we notice that ∆/2 is the same sum but over ordered pairs (i, j) by symmetry.
(This is very close to the ∆ de�ned earlier). De�ne for convenience now:

M =
∏
i∈I

P
(
B̄i
)

If all the Bi's were independent, then all the A′is would be mutually disjoint and ∆would be the empty sum, and we would have
M =

∏(
∩i∈IB̄i

)
by independence. When the Bi's are not independent, ∆ > 0 in general and M < P(∩i∈IB̄i) in general. The

Janson inequality gives an upper bound to control P(∩i∈IB̄i) in terms ofM and ∆. In practical problems, we calculate/estimate
∆(just as we have been doing until now) and then the Janson inequality gives a bound on P(∩i∈IB̄i) which we hope is useful to
us.

Theorem 30. [The Janson Inequality] Let Bi, i ∈ I, ∆,M be as above and assume that there is an ε > 0 so that P(Bi) ≤ ε for
each i ∈ I. Then:

M ≤ P
(
∩i∈IB̄i

)
≤M exp

(
1

1− ε
∆

2

)
Corollary 31. In the above set up, let µ = E(X) =

∑
i∈I P(Bi). Then notice that P(B̄i) = 1−P(Bi) ≤ exp(−P(Bi)), so then,

multiplying over i ∈ I we have that M =
∏
i∈I P

(
B̄i
)
≤ exp(−µ). Hence the Janson inequality gives:

exp(−µ) ≤ P
(
∩i∈IB̄i

)
≤ exp

(
−µ+

1

1− ε
∆

2

)
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Example 32. Here is an example of the Janson inequality from a problem we did before with our less re�ned corollary (the
∆ = o(E(X)) one). Say p(n) = cn−2/3 and we are interested in the probability that G(n, p) contains no K4. Let Bi 1 ≤ i ≤

(
n
4

)
range over all the possible K4's in the graph G(n, p). Each is a 6 element subset of Ω = {possible edges}. As we calculated
before, we have P(Bi) = p6 so that we can take ε = o(1). As we calculated before, p(n) = cn−2/3 is chosen just right so that

∆ = o(1) too, and we have that µ = E(X) = c6

24 . Hence the Janson inequality gives a perfect sandwhich from which we conclude

that P (no copy of K4) = P
(
∩i∈IB̄i

)
→ exp(−µ) = exp

(
− c6

24

)
The above shows how well the Janson inequality can work if ∆ = o(1). For large ∆ , the Janson inequality becomes less

precise. Indeed, when ∆ ≥ 2µ(1 − ε) the Janson inequality upper bound is greater than 1; a useless upper bound. In these
circumstances, the following generalized result is more useful.

Theorem 33. [Generalized Janson Inequality] In the same set up as above, and still assuming that there is an ε > 0 so that
P(Bi) ≤ ε for each i ∈ I, assume also that ∆ ≥ µ(1− ε). Then:

P
(
∩i∈IB̄i

)
≤ exp

(
−µ

2(1− ε)
2∆

)
Remark 34. This generalized inequality really is much better than what we have been using so far (which ultimately boiled down
to a Chebyshev inequality). For example, in our earlier framework, Chebyshev gave us the bound:

P
(
∩i∈IB̄i

)
= P (X = 0) ≤ Var(X)

E(X)2
≤ µ+ ∆

µ2

For µ � ∆, this bound is P(X = 0) ≤ µ2

∆ . Compare this to the generalized Janson inequality, P(X = 0) ≤ exp
(
−µ

2

∆ C
)
.

This is a much improved bound!

0.6. The Proofs. The original proofs are based on estimates using Laplace transforms. Instead of doing that, we will do the
proof following Boppana and Spencer [1989]. We will use the inequalities:

P
(
Bi| ∩j∈J B̄j

)
≤ P (Bi)

whenever J ⊂ I and i /∈ J . (This is clear because of the non-negative correlation between the events Bi and Bj . To
see this, just write out the probabilities of P(Bi ∩ Bj),P(Bi)P(Bj) in terms of events r ∈ R and probabilities pr to get

P(Bi ∩Bj) = P(Ai ∪Aj ∈ R) =
P(Ai∈R)P(Aj∈R)

P(Ai∩Aj∈R) ≥ P(Ai ∈ R)P(Aj ∈ R) = P(Bi)P(Bj) )

We will also use:

P

Bi
∣∣∣∣∣∣Bk ∩

⋂
j∈J

B̄j

 ≤ P (Bi |Bk )

This is really the same as the above inequality: we can view conditioning on Bk as the same as setting pr = 1 for each r ∈ Ak.
We are now in a position to prove Janson's inequality.

Theorem 35. [Recap of the Janson Inequality] In our setup, let Bi, i ∈ I, ∆ =
∑
i∼j P (Bi ∩Bj); M =

∏
i∈I P

(
B̄i
)
and assume

that there is an ε > 0 so that P(Bi) ≤ ε for each i ∈ I. Then:

M ≤ P
(
∩i∈IB̄i

)
≤M exp

(
1

1− ε
∆

2

)
Proof. To get the lower bound, just apply the fact that the Bi's are positivly correlated directly (the �rst inequality above). Say
WOLOG that I = {1, . . . ,m}, so then:

P

Bi
∣∣∣∣∣∣
⋂

1≤j≤i

B̄j

 ≤ P (Bi)

So then:

P

B̄i
∣∣∣∣∣∣
⋂

1≤j≤i

B̄j

 ≥ P
(
B̄i
)

And so, using a �telescoping product� we write:

P

 ⋂
1≤j≤m

B̄i

 =

m∏
i=1

P

B̄i
∣∣∣∣∣∣
⋂

1≤j≤i−1

B̄j

 ≥ m∏
i=1

P
(
B̄i
)

= M

Now we work on the upper bound. For a given i, we will be interested in the connection between Bi and Bj for those indices
j < i (we are setting up for another telescoping product at the end, just like above). Some of the indices j < i have i ∼ j and
some have i � j. For convenience, relabel the vertices so that i ∼ j for 1 ≤ j ≤ d and i � j for d+ 1 ≤ j ≤ i− 1 .
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Now, we use the inequality P (A |B ∩ C ) ≤ P (A ∩B |C ) which is valid for any A,B,C. If we let A = Bi, letB = B̄1 ∩ B̄2 ∩
. . . ∩ B̄d and let C = B̄d+11 ∩ B̄d+2 ∩ . . . ∩ B̄i−1, then we have:

P

Bi
∣∣∣∣∣∣
⋂

1≤j≤i−1

B̄j

 = P (A |B ∩ C ) ≥ P (A ∩B |C ) = P(A |C )P (B |A ∩ C )

From the de�nition of C and since i � j for d+1 ≤ j ≤ i−1 we know that A and C are independent. Hence P(A |C ) = P(A).
To handle P (B |A ∩ C ), we do the bound:

P (B |A ∩ C ) ≥ 1−
d∑
j=1

P (Bj |Bi ∩ C ) ≥ 1−
d∑
j=1

P (Bj |Bi )

The last bound follows again because the B′is all have non-negative correlation. Multiplying through by P(Bi) = P(A), this
is (actually a bit more manipulation is needed again here, I think we use the correlation again):

P

Bi
∣∣∣∣∣∣
⋂

1≤j≤i−1

B̄j

 ≥ P (Bi)−
d∑
j=1

P (Bj ∩Bi)

Reversing this, and using P
(
B̄i
)
≥ 1− ε gives:

P

B̄i
∣∣∣∣∣∣
⋂

1≤j≤i−1

B̄j

 ≤ P
(
B̄i
)

+

d∑
j=1

P (Bj ∩Bi)

≤ P
(
B̄i
)1 +

1

1− ε

d∑
j=1

P (Bj ∩Bi)


Now use the inequality 1 + x ≤ exp(x) to get:

P

B̄i
∣∣∣∣∣∣

⋂
1≤j≤m−1

B̄j

 ≤ P
(
B̄i
)

exp

 1

1− ε

d∑
j=1

P (Bj ∩Bi)


Finally, use this inequality in our �telescoping product� formula:

P

 ⋂
1≤j≤m

B̄i

 =

m∏
i=1

P

B̄i
∣∣∣∣∣∣
⋂

1≤j≤i−1

B̄j


≤

m∏
i=1

P
(
B̄i
)

exp

 1

1− ε

d∑
j=1

P (Bj ∩Bi)


=

(
m∏
i=1

P
(
B̄i
))

exp

 1

1− ε

m∑
i=1

di∑
j=1

P (Bj ∩Bi)


This is exactly the inequality we wanted, since M =

∏m
i=1 P

(
B̄i
)
and the double sum in the exponent sums over each ordered

pair (i, j),j < i with i ∼ j once, so its exactly equal to ∆
2 . �

Theorem 36. [Generalized Janson Inequality] In the same set up as above, and still assuming that there is an ε > 0 so that
P(Bi) ≤ ε for each i ∈ I, assume also that ∆ ≥ µ(1− ε). Then:

P
(
∩i∈IB̄i

)
≤ exp

(
−µ

2(1− ε)
2∆

)
Proof. As discussed early, the Janson inequality is often written as:

P

(⋂
i∈I

B̄i

)
≤ exp

(
−µ+

1

1− ε
∆

2

)
Where µ = E(X) =

∑
i∈I P(Bi). Taking logarithms from this gives:

− log

(
P

(⋂
i∈I

B̄i

))
≥
∑
i∈I

P(Bi)−
1

2(1− ε)
∑
i∼j

P (Bi ∩Bj)

The same inequality holds for a subset S ⊂ I. This is:

− log

(
P

(⋂
i∈S

B̄i

))
≥
∑
i∈S

P(Bi)−
1

2(1− ε)
∑

i,j∈S,i∼j
P (Bi ∩Bj)
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Now we will do something very sneaky, and we will look at random subsets S⊂ I. This will let us use probabilistic methods
to prove a probability theorem....very sneaky! Suppse S ⊂ I is a random subset chosen so that P(i ∈ S) = p and the events
{i ∈ I} are all mutually independent (We will choose p more precisely later on) Now that S is random, we see that since above
inequality holds for every S, it holds when we take E over the random subset S (we will denote this as ES to keep it separate
from the other P's going on ). Have:

ES

[
− log

(
P

(⋂
i∈S

B̄i

))]
≥ ES

[∑
i∈S

P(Bi)

]
− 1

2(1− ε)
ES

 ∑
i,j∈S,i∼j

P (Bi ∩Bj)


Each term P(Bi) for i ∈ I appears with probability p in the �rst sum on the right and each term P (Bi ∩Bj) appears with

probability p2 in the second term on the right. This observation gives us:

ES

[
− log

(
P

(⋂
i∈S

B̄i

))]
≥

∑
i∈I

pP(Bi)−
1

2(1− ε)
∑
i∼j

p2P (Bi ∩Bj)

= pµ− 1

2(1− ε)
p2 ∆

2

The choice of p = µ(1−ε)
∆ gives us the best possible inequality now. Have:

ES

[
− log

(
P

(⋂
i∈S

B̄i

))]
≥ µ2(1− ε)

2∆

Finally, we observe that if the expectation over all the possible S ⊂ I is ≥ µ2(1−ε)
2∆ , then there is at least one subset S0 that

obeys this inequality too. Have:

− log

(
P

( ⋂
i∈S0

B̄i

))
≥ µ2(1− ε)

2∆

This completes the proof, as we have now:

P

(⋂
i∈I

B̄i

)
≤ P

( ⋂
i∈S0

B̄i

)
≤ exp

(
−µ

2(1− ε)
2∆

)
�

0.7. Appearance of Small Subgraphs Revisited. We can use Janson's inequality to improve our results about the appear-
ance of strictly balanced graphs H appearing as a subgraph of G(n, p). Before, we showed n−v/e was a threshold function and
we understood the behavior when p � n−v/e. Using Janson's inequality, we can examine the �ne threshold behavior, that is
when p(n) = cn−v/e.

Theorem 37. Let H be a strictly balanced graph with v vertices, e edges and a automorphisms. Let c > 0 be arbitary. Let A

be the property that G contains no copy of H. Then with p = cn−v/ewe have that:

lim
n→∞

P (G(n, p) ∈ A) = exp

(
−c

e

a

)
Proof. Let Aα, with the index 1 ≤ α ≤

(
n
v

)
v!
a range over the edge sets of possible copies of H, and let Bα be the event that

G(n, p) ⊃ Aα (This is consistent with our notation from the Janson inequalities) In that notation, we have that:

µ =
∑

1≤α≤(nv)
v!
a

P(Bi)

=

(
n

v

)
v!

a
pe

→ ce

a
as n→∞

So then we havelimn→∞M ≤ exp
(
− c

e

a

)
. Now, let us examine ∆ =

∑
α∼β P(Bα ∩ Bβ). We use the same idea as before to

split the sum into pieces, so that |{vertices of overlap between α and β}| = j is �xed on each piece (notice that this is di�erent
than |Aα∩Aβ | = #edges of intersection). If j = 0 or j = 1 then Aα∩Aβ = ∅ so that α ∼ β cannot occur (they are independent).
For 2 ≤ j ≤ v let fj be the maximal overlap of |Aα ∩ Aβ | where α ∼ βand α, β intersect in j vertices. As α 6= β, we know that
fj ≤ e− 1. When 2 ≤ j ≤ v − 1 the critical observation is that Aα ∩Aβ is a subgraph of H and hence, as H is stricly balanced:

fj
j
<
e

v

There are O(n2v−j) choices of α, β intersecting in j points since α, β are determined up to reordering by 2v − j points. For
each such α, β we have:

P (Bα ∩Bβ) = p|Aα∩Aβ | = p2e−|Aα∩Aβ | ≤ p2e−fj
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Thus:

∆ =

v∑
j=2

O(n2v−j)O(n−
v
e (2e−fj))

But

2v − j − v

e
(2e− fj) =

vfj
e
− j < 0

so each of the terms in the sum for ∆ is o(1). Hence ∆ = o(1) ! In this case Janson's inequality gets asymptoically close to
equality, and so:

lim
n→∞

P
(
∩B̄α

)
= lim
n→∞

M = exp(−c
e

a
)

�

Remark 38. This kind of calculation has been worked out for arbitrary graphs, but the calculation gets very messy.

0.8. Some Very Low Probabilities. Let A be the property that G does not contain K4and consider P(G(n, p) ∈ A) as p
varies. We know that p(n) = n−2/3is a threshold function, so that for p � n−2/3the probability is o(1). Here we want to
estimate that probability. If we were to do the most naive estimate, and treat every potential copy of K4 as independent, we

would have P(G(n, p) ∈ A) ≥
(
1− p6

)(n4) = exp(−n4p6 + o(1)), for p small this turns out to be the right order, but for larger p,

say p = 1
2 , we have an even more naive estimate that is better, namely P(G(n, p) ∈ A) ≥ P(G(n, p) is empty) = (1 − p)(

n
2) =

2(n2) = exp(−n2 + o(1)). We can use Janson's inequalities to �nd the regimes where each estimate is the better one.

Theorem 39. Say p(n) = n−α. For 2
3 > α > 0, p(n)� n−2/3 so we know that P(G(n, p) ∈ A) = o(1). Moreover we have:

P(G(n, p) ∈ A) = exp
(
−n4−6α+o(1)

)
for

2

3
> α ≥ 2

5

P(G(n, p) ∈ A) = exp
(
−n2−α+o(1)

)
for

2

5
≥ α > 0

Proof. The lower bound comes from P(G(n, p) ∈ A) ≥ max
(

(1− p6)(
n
4), (1− p)(

n
2)
)
as described above (this can also be seen

as the lower bound for Janson's inequality, using potential K4s once and using potential K2s once.)
The upper bound comes from the upper bound in Janson's inequalities. For each set Aα of 4 vertices, let Bα be the event that

that 4−set gives a K4. From our earlier work, we have µ = Θ
(
n4p6

)
and − lnM ∼ µ and ∆ = θ (µ∆?)with ∆? = Θ

(
n2p5 + np3

)
.

For p = n−α and 2
3 > α > 2

5 we have ∆? = o(1) so that:

P
(⋂

B̄α

)
≤ exp (−µ(1 + o(1)) = exp

(
−n4−6α+o(1)

)
When 2

5 ≥ α > 0, then ∆? = Θ
(
n2p5

)
so we use the extended Janson inequality to get:

P
(⋂

B̄α

)
≤ exp

(
−Θ

(
µ2

∆

))
= exp

(
−n2−α+o(1)

)
�

Remark 40. There is a general result for arbitary graphs H due to Luczak, Rucinski and Janson (1990).


