
1 Review of Probability

De�nition 1: Probability Space.

The probability space, also called the sample space, is a set which contains ALL the possible outcomes. We usually label
this with a Ω or an S. (Ω is the Greek letter �Omega�). The elements of the probability space are called outcomes also called
elementary events.

Example 1: What is the probability space for rolling a 6 sided dice?

Ω =
{
1 , 2 , 3 , 4 , 5 , 6

}
This contains the six possible outcomes.
Example 2: What is the probability space for �ipping a coin? What about for �ipping a coin twice? Three times?

Ω1 =
{
H , T

}
Ω2 =

{
H H , H T , T H , T T

}
Ω3 =

{
H H H , H T H , T H H , T T H , H H T , H T T , T H T , T T T

}
De�nition 2. Events.

Events are just subsets of your probability space. That is they are collections of outcomes. We usually label these with capital
letters.

Example 1: What is the event that the dice roll is even?

A =
{
2 , 4 , 6

}
Example 2: What is the event that there are at least as many heads as their are tails? (Use the three probability spaces

from above)

A1 =
{
H

}
A2 =

{
H H , H T , T H

}
A3 =

{
H H H , H T H , T H H , H H T

}
De�nition 3. Probability.

Probability is a number that is assigned to events. Every event has a probability. The probability is always a number between
0 and 1. We use P(A) to mean �the probability of the event A�. The probability is de�ned as:

P (A) =
#|A|
#|Ω|

Example 1: Calculate the probability of the event A =
{
2 , 4 , 6

}
in the space Ω =

{
1 , 2 , 3 , 4 , 5 , 6

}
.

P(A) =
#|

{
2 , 4 , 6

}
|

#|
{
1 , 2 , 3 , 4 , 5 , 6

}
|

=
3

6
=

1

2

Example 2: Calculate the probabilites from the previous Example 2:

P(A1) =
1

2

P(A2) =
3

4

P(A3) =
4

8
=

1

2

Exercise 1: [BONUS CONTENT] In the coin �ipping problem, suppose n is an odd number and you �ip n coins. Let An

be the event that there are at least as many H as T . Can you prove that P(An) = 1
2 for every odd number n?

Remark: The de�nition here is the simplest way to de�ne probability and it only works when all the outcomes are equally
likely. There are more general ways to de�ne probability that can handle unequal outcomes and other more complicated
situations. There is enough interesting stu� going on in this simple case we wont need any of that!
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2 Conditional Probability

Say you have a probability space Ω of all your possible outcomes. Then someone comes along and tells you: �Based on our new
information, some of these outcomes are now impossible!� In this case, you must delete some outcomes from your space Ω to
re�ect this new information. This is called conditioning.

De�nition 4: The conditional probability space and conditional probability.

Let Ω be a probability space and G an event. The conditional probability space is a new probability space, Ω|G, by by deleting
everything from Ω which is not in G. By deleting everything not in G, you remain with the set G. We write P (A|G) for
probabilities on this space. This is called the probability of A given G.

If you have an event A that you are interested in, you must also update A by deleting everything that is not in G. You will
be left with the set A ∩G; the outcomes in A AND in G. To summarize:

Ω|G = G

A|G = A ∩G

= {elements in both A and in G}

P(A|G) =
#|A|G|
#|Ω|G|

=
#|A ∩G|

#|G|
Example 3: Suppose we roll a dice. Suppose we are given that the dice is even. (For example: maybe the dice rolled on

the �oor, and before we see the dice, someone yells out: �THAT DICE IS EVEN!!!!�). What is the probability that the dice roll

is a 5 or a 6 ?
Solution: Original probability space:

Ω =
{
1 , 2 , 3 , 4 , 5 , 6

}
Event we are looking at

A =
{
5 , 6

}
Event to condition on:

G =
{
2 , 4 , 6

}
Conditional event:

A|G = A ∩G =
{
6
}

Conditional probability:

P(A|G) =
#|A ∩G|

#|G|
=

1

3

Theorem 1: Bayes' Theorem.

P(A|G) =
P(A ∩G)

P(G)

= P (G|A)
P(A)

P(G)

Proof: To see that P(A|G) = P(A∩G)
P(G) we do a sneaky multiply and divide by #|Ω|:

P(A|G) =
#|A ∩G|

#|G|

=
#|A ∩G|

#|Ω|
· #|Ω|

#|G|

= P(A ∩G) · 1

P(G)

Once you have this, you can rearrange the two formulas P(A|G) = P(A∩G)
P(G) and P(G|A) = P(A∩G)

P(A) to get Bayes' theorem.
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3 Problems

3.1 The Rare Disease Problem

Problem: Suppose there is a rare disease and you have 1 in a 10,001 chance of having it. You take a test to see if you have
the disease. If you have the disease, the test will always be positive. If you don't have the disease, the test is 99.9% accurate;
it will come back negative 999 out of 1000 times. 1 out of 1000 times it will return a false positive. Given that your test result
was positive, what is the probability you have the disease?

Answer: 1
11 ≈ 9%

Solution: What are the possible outcomes? Before you take your test, you either have the disease or you dont. Since you
are 10, 000 times more likely to not have the disease than to have it, we include 10, 000 outcomes where you don't have it and 1
outcome where you do have it:

Ω = { /︸︷︷︸
1 disease

,,,,,,, . . . ,,︸ ︷︷ ︸
10,000 healthy

}

After you take the test, your probability space is pairs, your disease state and your test result. The disease state always leads
to a positive test result. The healthy state leads to a negative test result 99.9% of the time and a positive test result 0.1% of the
time. So of the 10, 000 healthy states, 10, 000× 99.9% = 9, 990 are negative and 10, 000× 0.1% = 10 are positive. So we have:

Ω = { /+︸︷︷︸
1 disease,+test

,,−,,−,,−, . . . ,,−︸ ︷︷ ︸
9,990 healthy,-test

, ,+, . . . ,,+︸ ︷︷ ︸
10 healthy +test

}

What is the event we are conditioning on? The event is G = {You tested positive}. This is anything in the probability space
that has a + with it. This is:

G =

 /+︸︷︷︸
1 disease,+test

,,+, , . . . ,,+︸ ︷︷ ︸
10 healthy +test


Now we are interested in the event A = {You have the disease}. There is only one state where you have the disease here:

A = {/+}

Notice that this is in the set G, so A = A ∩G. So the conditional probability is:

P (A|G) =
#|A ∩G|

#|G|
=

1

11
≈ 9%

Remark: You can also solve this with Bayes' theorem, but if you do it this way, its a bit harder to visualize:

P(A|G) = P(G|A)
P(A)

P(G)
= (100%)× 1/10, 001

(100%)× 1/10, 001 + (0.1%)× 10, 000/10, 001
=

1

11

3.2 Two Children Problem

Problem: I have two children.
a) What is the probability I have two girls?
b) Given that I have at least one girl, what is the probability I have two girls?
c) Given that I have at least one girl who was born in the AM, what is the probability I have two girls?
d) Given that I have at least one girl who was born on a Monday, what is the probability I have two girls?
e) Given that I have at least one girl who was born on April 20th, what is the probability I have two girls?
[Assumptions: Before conditioning, you should assume that the date/time of their birth is uniformly likely to be any date/time.

Also assume that each child is equally likely to be a Boy or a Girl]
Answers:

a) 1
4 ≈ 25% b) 1

3 ≈ 33% c) 3
7 ≈ 43% d) 13

27 ≈ 48% e) 729
1459 ≈ 49.97%

Solutions:

a) The probability space is the same as that for two coin �ips. (Use B = Boy and G = Girl )

Ω =

{
B B , B G ,

G B , G G

}
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The event that I have two girls is A =
{
G G

}
. So we have:

P(A) =
#|A|
#|Ω|

=
1

4

b) Now we condition on the event G = {I have at least one girl}. This is:

Ω|G = G =

{
, B G ,

G B , G G

}
So the conditional probability is:

P(A|G) =
#|A ∩G|

#|G|
=

1

3

b) This time, we have to distinguish what time of day the child was born on. This means we have a much bigger starting
space:

Ω =


B-AM B-AM , B-PM B-AM , G-AM B-AM , G-PM B-AM ,

B-AM B-PM , B-PM B-PM , G-AM B-PM , G-PM B-PM ,

B-AM G-AM , B-PM G-AM , G-AM G-AM , G-PM G-AM ,

B-AM G-PM , B-PM G-PM , G-AM G-PM , G-PM G-PM


The event G = {I have at least one girl born in the AM} is:

G =


G-AM B-AM ,

G-AM B-PM ,

B-AM G-AM , B-PM G-AM , G-AM G-AM , G-PM G-AM

G-AM G-PM ,


The event A = {I have at least two girls }is:

A =

{
G-AM G-AM , G-PM G-AM

G-AM G-PM , G-PM G-PM

}
So A ∩G is:

A ∩G =

{
G-AM G-AM , G-PM G-AM

G-AM G-PM ,

}
Finally then:

P(A|G) =
#|A ∩G|

#G|
=

3

7

c) In the same way as b) if we draw G we see that it will consist of a row and a column that cross:

G =



G-Mon B-Mon ,

G-Mon B-Tue ,
...

B-Mon G-Mon , B-Tue G-Mon . . . G-Mon G-Mon , . . . G-Fri G-Mon
...

G-Mon G-Fri ,


So #|G| = 14 + 14− 1 = 27. The set A ∩G is the bottom piece of this:

A ∩G =


G-Mon G-Mon , . . . G-Fri G-Mon

...

G-Mon G-Fri ,


So #|A ∩G| = 7 + 7− 1 = 13. Finally then:

P(A|G) =
#|A ∩G|

#G|
=

13

27

d) Following the patterns of the last two parts, #|G| = 2× 365 + 2× 365− 1 and #|A ∩G| = 365 + 365− 1 so we have:

P(A|G) =
#|A ∩G|

#G|
=

365 + 365− 1

2× 365 + 2× 365− 1
=

729

1459
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4 More Info

4.1 Wikipedia

• Conditioning (probability)

• Conditional probability

• Bayes' theorem

• Monty Hall problem [see section on conditional probability]

4.2 Kahn Academy

• Probability and combinatorics
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