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(Generalized) Last Passage Percolation:

d 2N
Ld = max Z wai(f) s )\d = Ld — Ld—l

X1,...,X4 non-intersecting paths -
i=1 t=1



The collection A\; > A\ > A3... > Ay form a Young diagram (definition
on board!).



The collection A\; > A\ > A3... > Ay form a Young diagram (definition
on board!). In special cases, they behave a bit like eigenvalues of a
random matrix.



The collection A\; > A\ > A3... > Ay form a Young diagram (definition
on board!). In special cases, they behave a bit like eigenvalues of a
random matrix. e.g.

Theorem (Baik-Deift-Johansson '99)

If weights wj; come from a uniform random permutation o € Sy as
wjj = {o; = j} then:

: A1 —2VN
lim P (”\IT < X> = Feue(x)
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Decorated Young Tableaux and Non-Intersecting Poisson Arches
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Poisson Point Process

/ \ Poisson "Arches"
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Definition
A Poisson arch of parameter § > 0 is a random process on the interval
[0, 6] in continous time and discrete space:

A

<€ >
-0 0

o Construct a Poisson process (upsteps) at rate 1 for t € (—6,0)

@ Construct a Poisson process (downsteps) at rate 1 for t € (0, 6)

e Condition on the number of jumps in (—6,0) and (0, 6) to be equal.




Non-intersecting Poisson Arches (¢ = 10):
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Non-intersecting Poisson Arches (6 = 40):




How is this related to Last Passage Percolation?



How is this related to Last Passage Percolation? | present the “shadow
line” graphical construction.
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Robinson Schensted (Knuth) Bijection
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Robinson Schensted (Knuth) Bijection
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Problem:
What are the finite dimensional distributions?




Problem:
What are the finite dimensional distributions?

e.g.




A priori, there is some complicated dependence due the fact that the
regions overlap in non-trivial ways.
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Recall the “decorated tableaux” point of view.
Let L, X, R, y denote the two Tableaux and their decorations.
Lemma:

Have N ~ Poisson(#?). Conditioned on {N = n}, and that
sh(L) = sh(R) = X have:

@ x and y are independent (order statistics of uniform [0, 6] RVs)

e L and R are independent (uniform from set of Young tableaux of
shape \.)

Proof idea:

| A\

Use the fact that Poisson points are uniformly distributed and that
Robinson-Schensted correspondence is a bijection.

.




Theorem: (N.)

P (A(t) = \A(0) = v, \(s) = )

Y
=e’ 5>\(Pt+0)5u/>\(P—t)su/u(PS)su(P(?—s)

where s are Schur functions, p; is the “exponential” specialization.
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Theorem: (N.)

P (A(t) = A, A(0) = v, A(s) = u)
_p2
=e’ 5)\(Pt+0)5y/>\(P—t)Sy/”(ps)Su(Pe—s)
where s are Schur functions, p; is the “exponential” specialization.

_ £\l
s3/upr) = dim(V/m)

where dim(\/p) is the number of Standard Young Tableaux of shape /.

This is a Schur Process! The diagram for this Schur process is:
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Proof idea:

Proven by combining the Karlin-MacGregor theorem for non-intersecting
processes with the Jacobi-Trudi identity for Schur functions.
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Proposition:
The same formula holds for the non-intersecting Poisson arches.

Proof idea:
Proven by combining the Karlin-MacGregor theorem for non-intersecting
processes with the Jacobi-Trudi identity for Schur functions. In our case
this says:

sy /ulpe) = det [W((N = 1) = (15 = )]

1<ij<n

where W(x) = t*/x!

A,




Limits of Multi-Layer Random
Polymers
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“Soft-Max" (Generalized) Longest Increasing Subsequence:

d 2N
Zg =Ex;,..x, [exp <ﬁzzwx’(t)>]

i=1 t=1
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White Noise

CDRP = “continuum directed random polymer”
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Polymer Models:

Name ‘ Space ‘ Time ‘ Paths Disorder
CDRP x€R | t € RT | Brownian Bridge | White Noise
Multi-Layer n N.I. Brownian . .
CDRP xeR | teR Bridges White Noise
Multi-Layer N.I. Random i.i.d. random
Discrete xeZ teN Walks variables
Multi-Layer 4 N.I. Poisson i.i.d. Brownian
Semi-Discrete xeN | teR paths motions
CDRP = “continuum directed random polymer” N.I. = “non-intersecting”

Main results that will be shown:

If inverse temperature scaled as system size grows, Sy ~ BN_%, then:
@ Multi-Layer Discrete = Multi-Layer CDRP — Universal limit!
@ Multi-Layer Semi-discrete = Multi-Layer CDRP — Nice properties!
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Continuum Directed Random Polymer
Introduced by Alberts-Khanin-Quastel '14
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Continuum Directed Random Polymer
Introduced by Alberts-Khanin-Quastel '14

‘ Space  Time ‘ Paths ‘ Disorder
Brownian Bridge Start End &)
L
xeR tek B(t9)() B0y =0  BEN(t) = x White Noise

2| .A'M

- m/»fw"“

o P’

WaaaaV4 v
0
-1

.0 0.2 0.4 0.6 tO.B 1.0
Zﬁ(t,x) = p(t,x)EB(t,X)(,) [:exp:(ﬁ/o f(s, B(f,x)(s))ds>:|

%2
Here p = ﬁe‘f and :exp: is the Wick exponential. This is formally

a chaos series.



Continuum Directed Random Polymer
Introduced by Alberts-Khanin-Quastel '14

‘ Space  Time ‘ Paths ‘

Disorder
o | Brownian Bridge Start End ()
xeR teR B(t)(.) B0y =0  BEN)(¢) — x White Noise
2 MM
_ wrd ]
3, ,,"‘V'W\,J'/J
Y
_:0 0.2 0.4 0.6 0.8 1.0
K (t Kf gz g
Zﬁ(t x) = p(t,x Zﬁ //1#,( ) (t1,x1), - (t, xk))E25(dT, dX)
TV fen,(o,1)
ZeRK

w,((t’x) is k-point correlation function for B(t%). a,(0,t) is ordered k-tuples.
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Remarks:
e 27 is a function of only the white noise field.

o Z” solves (as a mild solution) the stochastic heat equation (SHE)
(with delta initial data)

1
02" = 002" + p27¢

o H = log(2”) is the Hopf-Cole solution to the KPZ equation:
1 1 )
8t7-[ — §8XX/H - 5 (axH) + Bg

o 2 is the limit of discrete polymer partition function when
Bn = BN_%. (other paper by Alberts-Khanin-Quastel '14)
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d - layer Discrete Polymer
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d - layer Discrete Polymer

‘ Space  Time ‘ Paths ‘ Disorder ‘
N.I. Random _ Start _ End iid Random
x€Z teN Walks XEX)(0) = XEX)(1) = Variables

X(Ex)(.) (0,2,...,2d —2) (X, ..., x+2d —2) w(-, )
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Remarks

@ Rotate by 45 degrees to interpret as up-right lattice paths
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° Zg’disc is then the d-th row in geometric RSK

@ This is a “tropicalization” of Last Passage Percolation
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Convergence of Discrete to Continuum

‘ Name ‘ Space ‘ Time ‘ Paths ‘ Disorder ‘ Start ‘ End ‘
Multi-Layer D() SN SN
CDRP | xeR| teR* | NI Brownian tht(e’N)oise (ODO(O) o) ( (&) = )
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(X,...,x+2d=2)

variables

Multi-Layer
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Theorem (Corwin, N.)

Suppose the variables w are centered, unit variance and have finite
exponential moments:
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For B> 0 set By = N4 .




Convergence of Discrete to Continuum

‘ Name ‘ Space ‘ Time ‘ Paths ‘ Disorder ‘ Start ‘ End ‘
Multi-Layer 5() - o
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Theorem (Corwin, N.)

Suppose the variables w are centered, unit variance and have finite
exponential moments:

A(B) :=log (S(eﬁ‘”(o’o))>
For B> 0 set By = N4 /3. Then:
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Theorem (Corwin, N.)

isc Zﬁﬂ y X
z6md (LNt |, [VNx J) exp (—dNtA(By)) = ﬁ

Remarks:
@ The LHS is mean 1 for every N
@ /2 comes from the “periodicity” of the lattice

@ The result is “universal”: does not depend on details of lattice
weights.

@ The case d = 1 is exactly the result of Alberts-Khanin-Quastel '15

e Conjectured to have universality for fixed 5 > 0 but this is hard. (The
method of using chaos series expansions does not seem to apply)
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d - layer Semi-Discrete Polymer

‘ Space  Time ‘ Paths ‘ Disorder ‘
N.I. Poisson B Start B End iid Brownian
xeN teR paths S5(E(0) = SEN(1) = motions
S 1,2,...,d) (x+1,...,x+d) B.(-)
16F ‘ ‘ ‘ :

1 L
B s

S
T

0 2 4 6 é 10
Zg’Sd has nice structure (O'Connell '12). “Positive Temperature”

generalization of:

Jim 5 og (zﬁ»sd (t, /\/)) 2 k-th eigenvalue of N x N GUE (Variance t)
—00
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Multi-Layer 5() . _—
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Zj(t,x) Bridges ,0,..., X, Xy ooy X
Multi-Layer §() B.(+) S N
Semi-Discrete | x e N | t € Rt N.I. Poisson i.i.d. Brownian 1 52(0) 7d 15(t) - d
ZE'Sd(t,X) paths motions (1.2.....d) (x+1,....x+d)

Theorem (N.)
For 3> 0, set By = N"43. Then:

Zbnsd (Nt, | Nt + v/Nix j) exp ( - %dNtﬁfv) =

Z0(t,%)
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For B > 0, set By = N_%B. Then:

1 Z’B t,
705 (Nt, | Nt + WXJ) exp ( - §dNtﬁ’2") = pgt(x;’)

and there is a coupling so the convergence holds in LP for any p > 1.

Remarks:
@ The LHS is mean 1 for every N
@ The case d =1 is by Moreno Flores-Quastel-Remenik (in preparation)

@ Structure that is known for semi-discrete polymers (O'Connell
generalization of GUE eigenvalues) is carried over in this limit.

@ The LP convergence gives contour integral formulas for the moments
of Zg (Conjectured in “MacDonald Processes” Borodin-Corwin '14)

o Verifies conjecture that {25}30:1 yields a KPZ line ensemble
(Corwin-Hammond '15).
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Corollary (Conjecture from KPZ line ensemble modulo constants)

There are explicit constants ¢y, + so that if we set set:

cmﬁtZ,ln(t,x) )

Cm_latZI]';'I—l(t’ X)

Hm(x) = log <

then for each fixed t , {M},(x)},cy is @ KPZ; line ensemble.

The KPZ line ensemble is a multi-layer generalization of the KPZ
equation:
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5 10 15

o
P

e Top line Hi(x) is the solution to the KPZ equation at time t

@ Has a Gibbs resampling property: Resample lines ki,..., k> in a
window [a, b] according to Brownian Bridges and accept sample with
probability proportional to:

kk b
exp{— Z /eHi+1(X)—H,-(x)}

i=ki—17

2 . . .
o H!(x)+ 5; conjectured to converge to Airy line ensemble as t — oo
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Use chaos series to reduce problem to convergence of k-point
correlation functions

O (1), G5k 90)) = P(D(s:) € )

Need convergence as L? functions on ((0,t) x ]R)k.
This is a type of “enhanced” local limit theorem.

L2 bounds hard to prove near endpoint t = 0
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@ Pointwise convergence:
o Write as k x k determinants of correlation kernels

k

U = det |K® ((s10): (57,9) )| =1

o Write kernel K(t%) in terms of orthogonal polynomials

o N.I. Brownian Bridges <> Hermite polynomials
@ N.I. random walks <> Hahn polynomials
o N.I. semi-discrete <> Krawtchouk polynomials

o Convergence of K is NOT in L2 near t =0
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Proof ideas — L convergence of k-point correlation functions

@ Bounds on L? norm near t = 0:
o Look at the overlap between two independent path copies

0= zm: /1 {Xa(s) - Xb(s)} ds

a,b=1 0

o This works since

E[0"] = |9,

e Bounds on moments O via stochastic analysis
@ Bounds on “drift” of the processes
o (discrete) Tanaka's formula
@ Azuma's inequality
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An interacting particle system in discrete time with determenistic
evolution: At each step, all particles simultaneously jump to their right if
possible i.e.

O® — @O

Example:

o 1 Je] el I J
{ 1] 1 J®] 1e] J
00000000
000000 0
000000 0
00000000

AR

Start from a random initial condition: How long until all particles on the
left and all holes on the right?
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Theorem (Funk, N., Noyes)

Let TP be the stabilization time from a Bernoulli initial condition of n
sites, and particles are present with probability p.
In the case p >

N[ =

TP — pn
T2~ (o, p(1 - p))

N[

In the case p =

— __Z ~
\/ﬁ 2X3

where x3 g \JZE+Z3+ Z32, the norm of a 3D standard Gaussian.
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Pf Ideas: Convert the starting string to a down right path by setting O to
a right step and @ to a downstep. The rule O@®@ — @O is the “corner
cutting” rule. E.g C0@O@O@®® becomes:

gl W N =
=

This leads to:
Tp=max{i+j—1}
path
which leads to 1

d 1
T, = 5” + Orénfgn Sk — 55,,

where S is a Bernoulli-p random walk.
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The stabilization time turns out to be the same as Last Passage
0

Percolation in a n x 2 strip. Set @ to 10/ and O to

e.g. COOOOOO® is the array

O[1|1]|@gE7OE1
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The stabilization time turns out to be the same as Last Passage
0

Percolation in a n x 2 strip. Set @ to 0] and O to

e.g. COOOOOO® is the array

0(1]|1]|¢1+tr06+1+1
HO+6- 1
Works since O@ — @O corresponds to
01 1/0
110 5|01

which reduces Last Passage Time by exactly 1.
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Asymptotics: Re-scaling near top. (e.g. 6 = 400):
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Asymptotics
(Comes by applying results in Borodin-Olshanski 2006)

M(20%/37) —2(0 — 62/3|7])
f1/3

= Ay(7) — 72,

where Aj3(-) is the Airy 2 process.
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