Non-intersecting random processes and multi-layer random polymers

Mihai Nica

Courant Institute, NYU

April 6, 2017

Papers in this thesis

- J. Funk, M. Nica, and M. Noves.
 - Stabilization time for a type of evolution on binary strings.
 - J. Theoretical Probab., 28:848-865, 2015.
- M. Nica.

Decorated Young tableaux and the Poissonized Robinson Schensted process.

Stoch. Proc. Appl., 127:449-474, 2017.

- I. Corwin and M. Nica.

Intermediate disorder directed polymers and the multi-layer extension of the stochastic heat equation.

Electron. J. Probab., 22:1-49, 2017.

M. Nica.

Intermediate disorder limits for multi-layer semi-discrete directed polymers.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

arXiv:1609.00298, September 2016, 46 pages. Submitted.

- 1 Introduction Last Passage Percolation
- 2 Decorated Young Tableaux and Non-intersecting Poisson Arches
- 3 Limits of Multi-Layer Random Polymers
- 4 Stabilization Time Distribution for a Type of Exclusion Process

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Introduction - Last Passage Percolation

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ Ξ

ω _{8,1}	ω _{8,2}	ω _{8,3}	ω _{8,4}	ω _{8,5}	ω _{8,6}	ω _{8,7}	ω _{8,8}
ω _{7,1}	ω _{7,2}	ω _{7,3}	ω _{7,4}	ω _{7,5}	ω _{7,6}	ω _{7,7}	ω _{7,8}
ω _{6,1}	ω _{6,2}	ω _{6,3}	ω _{6,4}	ω _{6,5}	ω _{6,6}	ω _{6,7}	ω _{6,8}
ω _{5,1}	ω _{5,2}	ω _{5,3}	ω _{5,4}	ω _{5,5}	ω _{5,6}	ω _{5,7}	ω _{5,8}
ω _{4,1}	$\omega_{4,2}$	$\omega_{\!_{4,3}}$	ω _{4,4}	ω _{4,5}	ω _{4,6}	$\omega_{4,7}$	ω _{4,8}
ω _{3,1}	ω _{3,2}	ω _{3,3}	ω _{3,4}	ω _{3,5}	ω _{3,6}	ω _{3,7}	ω _{3,8}
ω _{2,1}	ω _{2,2}	ω _{2,3}	ω _{2,4}	ω _{2,5}	ω _{2,6}	ω _{2,7}	ω _{2,8}
ω _{1,1}	ω _{1,2}	ω _{1,3}	ω _{1,4}	ω _{1,5}	ω _{1,6}	ω _{1,7}	ω _{1,8}

An array of IID random variables

 $\{\omega_{i,j}\}$

ω _{8,1}	ω _{8,2}	ω _{8,3}	ω _{8,4}	ω _{8,5}	ω _{8,6}	ω _{8,7}	ω _{8,8}
ω _{7,1}	ω _{7,2}	ω _{7,3}	$\omega_{7,4}$	ω _{7,5}	ω _{7,6}	ω _{7,7}	ω _{7,8}
ω _{6,1}	ω _{6,2}	ω _{6,3}	ω _{6,4}	ω _{6,5}	ω _{6,6}	ω _{6,7}	ω _{6,8}
ω _{5,1}	ω _{5,2}	ω _{5,3}	ω _{5,4}	ω _{5,5}	ω _{5,6}	ω _{5,7}	ω _{5,8}
ω _{4,1}	ω _{4,2}	$\omega_{_{4,3}}$	$\omega_{_{4,4}}$	ω _{4,5}	ω _{4,6}	$\omega_{_{4,7}}$	ω _{4,8}
ω _{3,1}	ω _{3,2}	ω _{3,3}	ω _{3,4}	ω _{3,5}	ω _{3,6}	ω _{3,7}	ω _{3,8}
ω _{2,1}	ω _{2,2}	ω _{2,3}	ω _{2,4}	ω _{2,5}	ω _{2,6}	ω _{2,7}	ω _{2,8}
ω _{1,1}	ω _{1,2}	ω _{1,3}	ω _{1,4}	ω _{1,5}	ω _{1,6}	ω _{1,7}	ω _{1,8}

Last Passage Percolation:

$$L = \max_{X \text{ an up-right path}} \left\{ \sum_{t=1}^{2N} \omega_{X(t)} \right\}$$

ω _{8,1}	ω _{8,2}	ω _{8,3}	ω _{8,4}	ω _{8,5}	ω _{8,6}	ω _{8,7}	ω _{8,8}
ω _{7,1}	ω _{7,2}	ω _{7,3}	ω _{7,4}	ω _{7,5}	ω _{7,6}	ω _{7,7}	ω _{7,8}
ω _{6,1}	ω _{6,2}	ω _{6,3}	ω _{6,4}	ω _{6,5}	ω _{6,6}	ω _{6,7}	ω _{6,8}
ω _{5,1}	ω _{5,2}	ω _{5,3}	ω _{5,4}	ω _{5,5}	ω _{5,6}	ω _{5,7}	ω _{5,8}
ω _{4,1}	ω _{4,2}	$\omega_{\!_{4,3}}$	$\omega_{_{4,4}}$	ω _{4,5}	ω _{4,6}	$\omega_{4,7}$	ω _{4,8}
ω _{3,1}	ω _{3,2}	ω _{3,3}	ω _{3,4}	ω _{3,5}	ω _{3,6}	ω _{3,7}	ω _{3,8}
ω _{2,1}	ω _{2,2}	ω _{2,3}	ω _{2,4}	ω _{2,5}	ω _{2,6}	ω _{2,7}	ω _{2,8}
ω _{1,1}	ω _{1,2}	ω _{1,3}	ω _{1,4}	ω _{1,5}	ω _{1,6}	ω _{1,7}	ω _{1,8}

(Generalized) Last Passage Percolation:

$$L_1 = \max_{X \text{ an up-right path}} \left\{ \sum_{t=1}^{2N} \omega_{X(t)} \right\}$$

	ω _{8,1}	ω _{8,2}	ω _{8,3}	ω _{8,4}	ω _{8,5}	ω _{8,6}	ω _{8,7}	ω _{8,8}	END
	ω _{7,1}	ω _{7,2}	ω _{7,3}	$\omega_{_{7,4}}$	ω _{7,5}	ω _{7,6}	ω _{7,7}	ω _{7,8}	END
	ω _{6,1}	ω _{6,2}	ω _{6,3}	ω _{6,4}	ω _{6,5}	ω _{6,6}	ω _{6,7}	ω _{6,8}	END
	ω _{5,1}	ω _{5,2}	ω _{5,3}	ω _{5,4}	ω _{5,5}	ω _{5,6}	ω _{5,7}	ω _{5,8}	
	ω _{4,1}	$\omega_{4,2}$	ω _{4,3}	$\omega_{_{4,4}}$	ω _{4,5}	$\omega_{4,6}$	ω _{4,7}	ω _{4,8}	
START	ω _{3,1}	ω _{3,2}	ω _{3,3}	ω _{3,4}	ω _{3,5}	ω _{3,6}	ω _{3,7}	ω _{3,8}	
START	ω _{2,1}	ω _{2,2}	ω _{2,3}	ω _{2,4}	ω _{2,5}	ω _{2,6}	ω _{2,7}	ω _{2,8}	
START	ω _{1,1}	ω _{1,2}	ω _{1,3}	ω _{1,4}	ω _{1,5}	ω _{1,6}	ω _{1,7}	ω _{1,8}	

(Generalized) Last Passage Percolation Problem:

$$L_d = \max_{X_1, \dots, X_d \text{ non-intersecting paths}} \left\{ \sum_{i=1}^d \sum_{t=1}^{2N} \omega_{X_i(t)} \right\}$$

(=) (

	ω _{8,1}	ω _{8,2}	ω _{8,3}	ω _{8,4}	ω _{8,5}	ω _{8,6}	ω _{8,7}	ω _{8,8}	END
	ω _{7,1}	ω _{7,2}	ω _{7,3}				ω _{7,7}	ω _{7,8}	END
	ω _{6,1}	ω _{6,2}	ω _{6,3}	ω _{6,4}	ω _{6,5}	ω _{6,6}	ω _{6,7}	ω _{6,8}	END
	ω _{5,1}	ω _{5,2}	ω _{5,3}	ω _{5,4}	ω _{5,5}	ω _{5,6}	ω _{5,7}	ω _{5,8}	
	ω _{4,1}	ω _{4,2}	ω _{4,3}	ω _{4,4}	ω _{4,5}	ω _{4,6}	ω _{4,7}	ω _{4,8}	
START	ω _{3,1}	ω _{3,2}	ω _{3,3}	ω _{3,4}	ω _{3,5}	ω _{3,6}	ω _{3,7}	ω _{3,8}	
START	ω _{2,1}	ω _{2,2}	ω _{2,3}	ω _{2,4}	ω _{2,5}	ω _{2,6}	ω _{2,7}	ω _{2,8}	
START	ω _{1,1}	ω _{1,2}	ω _{1,3}	ω _{1,4}	ω _{1,5}	ω _{1,6}	ω _{1,7}	ω _{1,8}	

(Generalized) Last Passage Percolation:

$$L_d = \max_{X_1, \dots, X_d \text{ non-intersecting paths}} \left\{ \sum_{i=1}^d \sum_{t=1}^{2N} \omega_{X_i(t)} \right\}, \quad \lambda_d := L_d - L_{d-1}$$

(=) (

The collection $\lambda_1 \geq \lambda_2 \geq \lambda_3 \ldots \geq \lambda_N$ form a Young diagram (definition on board!).

The collection $\lambda_1 \geq \lambda_2 \geq \lambda_3 \ldots \geq \lambda_N$ form a Young diagram (definition on board!). In special cases, they behave a bit like eigenvalues of a random matrix.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

The collection $\lambda_1 \geq \lambda_2 \geq \lambda_3 \ldots \geq \lambda_N$ form a Young diagram (definition on board!). In special cases, they behave a bit like eigenvalues of a random matrix. e.g.

Theorem (Baik-Deift-Johansson '99)

If weights ω_{ij} come from a uniform random permutation $\sigma \in S_N$ as $\omega_{ij} = 1\{\sigma_i = j\}$ then:

$$\lim_{N\to\infty} \mathbf{P}\left(\frac{\lambda_1 - 2\sqrt{N}}{N^{1/6}} \le x\right) = F_{GUE}(x)$$

Decorated Young Tableaux and Non-Intersecting Poisson Arches

◆□▶ ◆舂▶ ◆注≯ ◆注≯ □注□

Configurations of points

Pairs of "decorated" Young Tableaux of the same shape

Non-intersecting line ensembles

 $(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{4})$ $(\mathbf{y}_{1}, \mathbf{y}_{2}, \mathbf{y}_{3}, \mathbf{y}_{4})$

Poisson Point Process

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

A Poisson arch of parameter $\theta > 0$ is a random process on the interval $[-\theta, \theta]$ in continous time and discrete space:

A Poisson arch of parameter $\theta > 0$ is a random process on the interval $[-\theta, \theta]$ in continous time and discrete space:

A Poisson arch of parameter $\theta > 0$ is a random process on the interval $[-\theta, \theta]$ in continous time and discrete space:

• Construct a Poisson process (upsteps) at rate 1 for $t \in (- heta, 0)$

• Construct a Poisson process (downsteps) at rate 1 for $t \in (0, heta)$

A Poisson arch of parameter $\theta > 0$ is a random process on the interval $[-\theta, \theta]$ in continous time and discrete space:

- Construct a Poisson process (upsteps) at rate 1 for $t\in(- heta,0)$
- Construct a Poisson process (downsteps) at rate 1 for $t \in (0, heta)$
- Condition on the number of jumps in $(-\theta, 0)$ and $(0, \theta)$ to be equal.

Non-intersecting Poisson Arches ($\theta = 10$):

Non-intersecting Poisson Arches ($\theta = 40$):

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

How is this related to Last Passage Percolation?

How is this related to Last Passage Percolation? I present the "shadow line" graphical construction.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Robinson Schensted (Knuth) Bijection

Configurations of points \longleftrightarrow Non-intersecting line ensembles

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Robinson Schensted (Knuth) Bijection

Configurations of points \longleftrightarrow

Pairs of "decorated" Young Tableaux of the same shape

(日) (部) (注) (注)

Robinson Schensted (Knuth) Bijection

Configurations of points \longleftrightarrow

Pairs of "decorated" Young Tableaux of the same shape

 (x_1, x_2, x_3, x_4) (y_1, y_2, y_3, y_4)

・ロト < 母ト < 目ト < 目ト < 目 < のへで

Problem:

What are the finite dimensional distributions?

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで

Problem:

What are the finite dimensional distributions?

e.g.

Remark:

A priori, there is some complicated dependence due the fact that the regions overlap in non-trivial ways.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Recall the "decorated tableaux" point of view. Let L, \vec{x}, R, \vec{y} denote the two Tableaux and their decorations.

Recall the "decorated tableaux" point of view. Let L, \vec{x}, R, \vec{y} denote the two Tableaux and their decorations.

Lemma:

Have $N \sim Poisson(\theta^2)$.

Recall the "decorated tableaux" point of view. Let L, \vec{x}, R, \vec{y} denote the two Tableaux and their decorations.

Lemma:

Have $N \sim Poisson(\theta^2)$. Conditioned on $\{N = n\}$, and that $sh(L) = sh(R) = \lambda$ have:

(日) (四) (문) (문) (문)

Recall the "decorated tableaux" point of view.

Let L, \vec{x}, R, \vec{y} denote the two Tableaux and their decorations.

Lemma:

Have $N \sim Poisson(\theta^2)$. Conditioned on $\{N = n\}$, and that $sh(L) = sh(R) = \lambda$ have:

• \vec{x} and \vec{y} are independent

Recall the "decorated tableaux" point of view.

Let L, \vec{x}, R, \vec{y} denote the two Tableaux and their decorations.

Lemma:

Have $N \sim Poisson(\theta^2)$. Conditioned on $\{N = n\}$, and that $sh(L) = sh(R) = \lambda$ have:

• \vec{x} and \vec{y} are independent (order statistics of uniform $[0, \theta]$ RVs)

<ロト <四ト <注入 <注下 <注下 <

Recall the "decorated tableaux" point of view.

Let L, \vec{x}, R, \vec{y} denote the two Tableaux and their decorations.

Lemma:

Have $N \sim Poisson(\theta^2)$. Conditioned on $\{N = n\}$, and that $sh(L) = sh(R) = \lambda$ have:

• \vec{x} and \vec{y} are independent (order statistics of uniform $[0, \theta]$ RVs)

• L and R are independent
Recall the "decorated tableaux" point of view.

Let L, \vec{x}, R, \vec{y} denote the two Tableaux and their decorations.

Lemma:

Have $N \sim Poisson(\theta^2)$. Conditioned on $\{N = n\}$, and that $sh(L) = sh(R) = \lambda$ have:

- \vec{x} and \vec{y} are independent (order statistics of uniform $[0, \theta]$ RVs)
- L and R are independent (uniform from set of Young tableaux of shape λ.)

Recall the "decorated tableaux" point of view.

Let L, \vec{x}, R, \vec{y} denote the two Tableaux and their decorations.

Lemma:

Have $N \sim Poisson(\theta^2)$. Conditioned on $\{N = n\}$, and that $sh(L) = sh(R) = \lambda$ have:

- \vec{x} and \vec{y} are independent (order statistics of uniform $[0, \theta]$ RVs)
- L and R are independent (uniform from set of Young tableaux of shape λ.)

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Proof idea:

Use the fact that Poisson points are uniformly distributed and that Robinson-Schensted correspondence is a bijection.

Theorem: (N.)

$$\begin{split} \mathbf{P}\left(\lambda(t) = \lambda, \lambda(0) = \nu, \lambda(s) = \mu\right) \\ = e^{-\theta^2} s_{\lambda}(\rho_{t+\theta}) s_{\nu/\lambda}(\rho_{-t}) s_{\nu/\mu}(\rho_s) s_{\mu}(\rho_{\theta-s}) \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

where s are Schur functions, ρ_t is the "exponential" specialization.

Theorem: (N.)

$$\begin{split} \mathbf{P}\left(\lambda(t) = \lambda, \lambda(0) = \nu, \lambda(s) = \mu\right) \\ = e^{-\theta^2} s_{\lambda}(\rho_{t+\theta}) s_{\nu/\lambda}(\rho_{-t}) s_{\nu/\mu}(\rho_s) s_{\mu}(\rho_{\theta-s}) \end{split}$$

where s are Schur functions, ρ_t is the "exponential" specialization.

$$s_{\lambda/\mu}(
ho_t) = \dim(\lambda/\mu)rac{t^{|\lambda/\mu|}}{|\lambda/\mu|!}$$

where dim (λ/μ) is the number of Standard Young Tableaux of shape λ/μ .

Theorem: (N.)

$$\begin{split} \mathbf{P}\left(\lambda(t) = \lambda, \lambda(0) = \nu, \lambda(s) = \mu\right) \\ = e^{-\theta^2} s_{\lambda}(\rho_{t+\theta}) s_{\nu/\lambda}(\rho_{-t}) s_{\nu/\mu}(\rho_s) s_{\mu}(\rho_{\theta-s}) \end{split}$$

where s are Schur functions, ρ_t is the "exponential" specialization.

$$s_{\lambda/\mu}(
ho_t) = \dim(\lambda/\mu)rac{t^{|\lambda/\mu|}}{|\lambda/\mu|!}$$

where dim (λ/μ) is the number of Standard Young Tableaux of shape λ/μ .

This is a Schur Process! The diagram for this Schur process is:

$$\lambda(0)$$
 ρ_{0-t}
 $\gamma \rho_{s-0}$
 $\lambda(t)$
 $\lambda(s)$
 $\rho_{t-(-\theta)}$
 β
 β
 \emptyset
 β

Proposition:

The same formula holds for the non-intersecting Poisson arches.

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで

Proposition:

The same formula holds for the non-intersecting Poisson arches.

Proof idea:

Proven by combining the Karlin-MacGregor theorem for non-intersecting processes with the Jacobi-Trudi identity for Schur functions.

Proposition:

The same formula holds for the non-intersecting Poisson arches.

Proof idea:

Proven by combining the Karlin-MacGregor theorem for non-intersecting processes with the Jacobi-Trudi identity for Schur functions. In our case this says:

$$s_{\lambda/\mu}(
ho_t) = \det \left[W \Big((\lambda_i - i) - (\mu_j - j) \Big) \right]_{1 \le i,j \le n}$$

where $W(x) = t^x/x!$

Limits of Multi-Layer Random Polymers

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ Ξ

	ω _{8,1}	ω _{8,2}	ω _{8,3}	ω _{8,4}	ω _{8,5}	ω _{8,6}	ω _{8,7}	ω _{8,8}	END
	ω _{7,1}	ω _{7,2}	ω _{7,3}	ω _{7,4}	ω _{7,5}	ω _{7,6}	ω _{7,7}	ω _{7,8}	END
	ω _{6,1}	ω _{6,2}	ω _{6,3}	ω _{6,4}	ω _{6,5}	ω _{6,6}	ω _{6,7}	ω _{6,8}	END
	ω _{5,1}	ω _{5,2}	ω _{5,3}	$\omega_{_{5,4}}$	ω _{5,5}	$\omega_{_{5,6}}$	ω _{5,7}	ω _{5,8}	
	ω _{4,1}	$\omega_{4,2}$	ω _{4,3}	$\omega_{_{4,4}}$	ω _{4,5}	$\omega_{4,6}$	ω _{4,7}	ω _{4,8}	
START	ω _{3,1}	ω _{3,2}	ω _{3,3}	$\omega_{3,4}$	ω _{3,5}	ω _{3,6}	ω _{3,7}	ω _{3,8}	
START	ω _{2,1}	ω _{2,2}	ω _{2,3}	ω _{2,4}	ω _{2,5}	ω _{2,6}	ω _{2,7}	ω _{2,8}	
START	ω _{1,1}	ω _{1,2}	ω _{1,3}	ω _{1,4}	ω _{1,5}	ω _{1,6}	ω _{1,7}	ω _{1,8}	

"Soft-Max" (Generalized) Longest Increasing Subsequence:

$$Z_d^{\beta} = \mathbf{E}_{X_1,\dots,X_d} \left[\exp\left(\beta \sum_{i=1}^d \sum_{t=1}^{2N} \omega_{X_i(t)}\right) \right]$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ Ξ

"Soft-Max" (Generalized) Longest Increasing Subsequence:

$$Z_d^{\beta} = \mathbf{E}_{X_1,\dots,X_d} \left[\exp\left(\beta \sum_{i=1}^d \sum_{t=1}^{2N} \omega_{X_i(t)}\right) \right]$$

"Soft-Max" (Generalized) Longest Increasing Subsequence:

$$Z_d^{\beta} = \mathbf{E}_{X_1,\dots,X_d} \left[\exp\left(\beta \sum_{i=1}^d \sum_{t=1}^{2N} \omega_{X_i(t)}\right) \right]$$

(ロ) (部) (E) (E)

- 12

Name	Space	Time	Paths	Disorder

Name	Space	Time	Paths	Disorder
CDRP	$x \in \mathbb{R}$	$t\in \mathbb{R}^+$	Brownian Bridge	White Noise

CDRP = "continuum directed random polymer"

Name	Space	Time	Paths	Disorder
CDRP	$x \in \mathbb{R}$	$t\in \mathbb{R}^+$	Brownian Bridge	White Noise
Multi-Layer CDRP	$x \in \mathbb{R}$	$t\in \mathbb{R}^+$	N.I. Brownian Bridges	White Noise

CDRP = "continuum directed random polymer" N.I. = "non-intersecting"

Name	Space	Time	Paths	Disorder
CDRP	$x \in \mathbb{R}$	$t\in \mathbb{R}^+$	Brownian Bridge	White Noise
Multi-Layer	$x \in \mathbb{R}$	$t\in \mathbb{R}^+$	N.I. Brownian	White Noise
CDRP			Bridges	white Noise
Multi-Layer	- 77	$t\in\mathbb{N}$	N.I. Random	i.i.d. random
Discrete	$x \in \mathbb{Z}$		Walks	variables

CDRP = "continuum directed random polymer" N.I. = "non-intersecting"

Name	Space	Time	Paths	Disorder
CDRP	$x \in \mathbb{R}$	$t\in \mathbb{R}^+$	Brownian Bridge	White Noise
Multi-Layer	$x \in \mathbb{R}$	$t\in \mathbb{R}^+$	N.I. Brownian	White Noise
CDRP			Bridges	vvnite Noise
Multi-Layer		t c NI	N.I. Random	i.i.d. random
Discrete	$x \in \mathbb{Z}$	$t\in\mathbb{N}$	Walks	variables
Multi-Layer	$x \in \mathbb{N}$	$t \in \mathbb{R}^+$	N.I. Poisson	i.i.d. Brownian
Semi-Discrete		$\iota \in \mathbb{K}$	paths	motions

CDRP = "continuum directed random polymer" N.I. = "non-intersecting"

Name	Space	Time	Paths	Disorder
CDRP	$x \in \mathbb{R}$	$t\in \mathbb{R}^+$	Brownian Bridge	White Noise
Multi-Layer	vcD	$t\in \mathbb{R}^+$	N.I. Brownian	White Noise
CDRP	$x \in \mathbb{R}$	$t \in \mathbb{K}$	Bridges	vvnite Noise
Multi-Layer		t c NI	N.I. Random	i.i.d. random
Discrete	$x \in \mathbb{Z}$	$t\in\mathbb{N}$	Walks	variables
Multi-Layer	$x \in \mathbb{N}$	$t \in \mathbb{R}^+$	N.I. Poisson	i.i.d. Brownian
Semi-Discrete		$\iota \in \mathbb{R}^{n}$	paths	motions

 $\mathsf{CDRP}=\text{``continuum directed random polymer''} \ \mathsf{N}.\mathsf{I}.=\text{``non-intersecting''}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Main results that will be shown:

Name	Space	Time	Paths	Disorder
CDRP	$x \in \mathbb{R}$	$t\in \mathbb{R}^+$	Brownian Bridge	White Noise
Multi-Layer	vcD	$t\in \mathbb{R}^+$	N.I. Brownian	White Noise
CDRP	$x \in \mathbb{R}$	$t \in \mathbb{K}$	Bridges	vvnite Noise
Multi-Layer		t c NI	N.I. Random	i.i.d. random
Discrete	$x \in \mathbb{Z}$	$t\in\mathbb{N}$	Walks	variables
Multi-Layer	$x \in \mathbb{N}$	$t \in \mathbb{R}^+$	N.I. Poisson	i.i.d. Brownian
Semi-Discrete		$\iota \in \mathbb{K}$	paths	motions

CDRP = "continuum directed random polymer" N.I. = "non-intersecting"

Main results that will be shown:

Results

Name	Space	Time	Paths	Disorder
CDRP	$x \in \mathbb{R}$	$t\in \mathbb{R}^+$	Brownian Bridge	White Noise
Multi-Layer	$x \in \mathbb{R}$	$t\in \mathbb{R}^+$	N.I. Brownian	White Noise
CDRP			Bridges	vuille Noise
Multi-Layer		t c NI	N.I. Random	i.i.d. random
Discrete	$x \in \mathbb{Z}$	$t\in\mathbb{N}$	Walks	variables
Multi-Layer	$x \in \mathbb{N}$	$t \in \mathbb{R}^+$	N.I. Poisson	i.i.d. Brownian
Semi-Discrete	XEN	$\iota \in \mathbb{R}^{n}$	paths	motions

CDRP = "continuum directed random polymer" N.I. = "non-intersecting"

Main results that will be shown:

Results

If inverse temperature scaled as system size grows, $\beta_N \sim \beta N^{-\frac{1}{4}}$, then:

• Multi-Layer Discrete \Rightarrow Multi-Layer CDRP

Name	Space	Time	Paths	Disorder
CDRP	$x \in \mathbb{R}$	$t\in \mathbb{R}^+$	Brownian Bridge	White Noise
Multi-Layer	vcD	$t\in \mathbb{R}^+$	N.I. Brownian	White Noise
CDRP	$x \in \mathbb{R}$	$t \in \mathbb{K}$	Bridges	vvnite Noise
Multi-Layer		t c NI	N.I. Random	i.i.d. random
Discrete	$x \in \mathbb{Z}$	$t\in\mathbb{N}$	Walks	variables
Multi-Layer	$x \in \mathbb{N}$	$t \in \mathbb{R}^+$	N.I. Poisson	i.i.d. Brownian
Semi-Discrete		$\iota \in \mathbb{K}$	paths	motions

CDRP = "continuum directed random polymer" N.I. = "non-intersecting"

Main results that will be shown:

Results

- Multi-Layer Discrete \Rightarrow Multi-Layer CDRP
- Multi-Layer Semi-discrete ⇒ Multi-Layer CDRP

Name	Space	Time	Paths	Disorder
CDRP	$x \in \mathbb{R}$	$t\in \mathbb{R}^+$	Brownian Bridge	White Noise
Multi-Layer	vcD	$t\in \mathbb{R}^+$	N.I. Brownian	White Noise
CDRP	$x \in \mathbb{R}$	$t \in \mathbb{K}$	Bridges	vvnite Noise
Multi-Layer		t c NI	N.I. Random	i.i.d. random
Discrete	$x \in \mathbb{Z}$	$t\in\mathbb{N}$	Walks	variables
Multi-Layer	$x \in \mathbb{N}$	$t \in \mathbb{R}^+$	N.I. Poisson	i.i.d. Brownian
Semi-Discrete		$\iota \in \mathbb{K}$	paths	motions

CDRP = "continuum directed random polymer" N.I. = "non-intersecting"

Main results that will be shown:

Results

- Multi-Layer Discrete \Rightarrow Multi-Layer CDRP Universal limit!
- Multi-Layer Semi-discrete ⇒ Multi-Layer CDRP

Name	Space	Time	Paths	Disorder
CDRP	$x \in \mathbb{R}$	$t\in \mathbb{R}^+$	Brownian Bridge	White Noise
Multi-Layer	vcD	$t\in \mathbb{R}^+$	N.I. Brownian	White Noise
CDRP	$x \in \mathbb{R}$	$t \in \mathbb{K}$	Bridges	vvnite Noise
Multi-Layer		t c NI	N.I. Random	i.i.d. random
Discrete	$x \in \mathbb{Z}$	$t\in\mathbb{N}$	Walks	variables
Multi-Layer	$x \in \mathbb{N}$	$t \in \mathbb{R}^+$	N.I. Poisson	i.i.d. Brownian
Semi-Discrete		$\iota \in \mathbb{K}$	paths	motions

CDRP = "continuum directed random polymer" N.I. = "non-intersecting"

Main results that will be shown:

Results

- Multi-Layer Discrete \Rightarrow Multi-Layer CDRP Universal limit!
- Multi-Layer Semi-discrete \Rightarrow Multi-Layer CDRP Nice properties!

Introduced by Alberts-Khanin-Quastel '14

Space	Time	Paths	Disorder

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Introduced by Alberts-Khanin-Quastel '14

Space Time	Paths	Disorder
$x \in \mathbb{R}$ $t \in \mathbb{R}^+$		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Introduced by Alberts-Khanin-Quastel '14

(ロ) (部) (注) (注) (注)

Introduced by Alberts-Khanin-Quastel '14

Introduced by Alberts-Khanin-Quastel '14

Introduced by Alberts-Khanin-Quastel '14

▲ロト ▲御ト ▲画ト ▲画ト 三回 - のへで

Introduced by Alberts-Khanin-Quastel '14

Here $\rho = \frac{1}{\sqrt{2\pi t}}e^{-\frac{x^2}{2t}}$ and :exp: is the **Wick exponential**. This is formally a **chaos series**.

Introduced by Alberts-Khanin-Quastel '14

 $\psi_k^{(t,x)}$ is k-point correlation function for $B^{(t,x)}$. $\Delta_k(0,t)$ is ordered k-tuples.

• \mathcal{Z}^{β} is a function of only the white noise field.

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで

- \mathcal{Z}^{β} is a function of only the white noise field.
- Z^β solves (as a mild solution) the stochastic heat equation (SHE) (with delta initial data)

- \mathcal{Z}^{β} is a function of only the white noise field.
- Z^β solves (as a mild solution) the stochastic heat equation (SHE) (with delta initial data)

$$\partial_t \mathcal{Z}^\beta = \frac{1}{2} \partial_{\mathsf{x}\mathsf{x}} \mathcal{Z}^\beta + \beta \mathcal{Z}^\beta \xi$$

- \mathcal{Z}^{β} is a function of only the white noise field.
- Z^β solves (as a mild solution) the stochastic heat equation (SHE) (with delta initial data)

$$\partial_t \mathcal{Z}^\beta = \frac{1}{2} \partial_{\mathsf{x}\mathsf{x}} \mathcal{Z}^\beta + \beta \mathcal{Z}^\beta \xi$$

• $\mathcal{H} = \log(\mathcal{Z}^{\beta})$ is the Hopf-Cole solution to the KPZ equation:

$$\partial_t \mathcal{H} = \frac{1}{2} \partial_{xx} \mathcal{H} - \frac{1}{2} (\partial_x \mathcal{H})^2 + \beta \xi$$
- \mathcal{Z}^{β} is a function of only the white noise field.
- Z^β solves (as a mild solution) the stochastic heat equation (SHE) (with delta initial data)

$$\partial_t \mathcal{Z}^\beta = \frac{1}{2} \partial_{\mathsf{x}\mathsf{x}} \mathcal{Z}^\beta + \beta \mathcal{Z}^\beta \xi$$

• $\mathcal{H} = \log(\mathcal{Z}^{\beta})$ is the Hopf-Cole solution to the KPZ equation:

$$\partial_t \mathcal{H} = \frac{1}{2} \partial_{xx} \mathcal{H} - \frac{1}{2} (\partial_x \mathcal{H})^2 + \beta \xi$$

• \mathcal{Z}^{β} is the limit of discrete polymer partition function when $\beta_N = \beta N^{-\frac{1}{4}}$. (other paper by Alberts-Khanin-Quastel '14)

"multi-layer extension of stochastic heat equation" (O'Connell-Warren'15)

Space	Time	Paths	Disorder

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

"multi-layer extension of stochastic heat equation" (O'Connell-Warren'15)

Space	Time	Paths	Disorder
$x \in \mathbb{R}$	$t\in \mathbb{R}^+$		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

"multi-layer extension of stochastic heat equation" (O'Connell-Warren'15)

Space	Time		Paths		Disorder
$x \in \mathbb{R}$	$t\in \mathbb{R}^+$	N.I. Brownian Bridges $ec{D}^{(t,x)}(\cdot)$	$egin{aligned} & \underline{Start} \ & \vec{\mathcal{D}}^{(t,x)}(0) = \ & (0,\ldots,0) \end{aligned}$	$egin{aligned} & \underline{End} \ & \vec{\mathcal{D}}^{(t, \mathbf{x})}(t) = \ & (x, \dots, x) \end{aligned}$	

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

"multi-layer extension of stochastic heat equation" (O'Connell-Warren'15)

Space	Time		Paths		Disorder
$x \in \mathbb{R}$	$t\in \mathbb{R}^+$	N.I. Brownian Bridges $ec{D}^{(t,x)}(\cdot)$	$egin{aligned} & \underline{Start} \ ec{\mathcal{D}}^{(t,x)}(0) = \ & (0,\ldots,0) \end{aligned}$	$egin{aligned} & \underline{End} \ & \vec{\mathcal{D}}^{(t,x)}(t) = \ & (x,\ldots,x) \end{aligned}$	White Noise $\xi(\cdot, \cdot)$

・ロト ・日下 ・日下 ・日下 ・ 日下

"multi-layer extension of stochastic heat equation" (O'Connell-Warren'15)

Space	Time		Paths		Disorder
$x \in \mathbb{R}$	$t\in \mathbb{R}^+$	N.I. Brownian Bridges $ec{D}^{(t,x)}(\cdot)$	$egin{aligned} & \underline{Start} \ ec{\mathcal{D}}^{(t,x)}(0) = \ & (0,\ldots,0) \end{aligned}$	$egin{aligned} & \underline{End} \ & \vec{\mathcal{D}}^{(t,x)}(t) = \ & (x,\ldots,x) \end{aligned}$	White Noise $\xi(\cdot, \cdot)$

・ロト ・日下 ・日下 ・日下 ・ 日下

"multi-layer extension of stochastic heat equation" (O'Connell-Warren'15)

Space	Time		Paths		Disorder
$x \in \mathbb{R}$	$t\in \mathbb{R}^+$	N.I. Brownian Bridges $ec{D}^{(t,x)}(\cdot)$	$egin{aligned} & \underline{Start} \ & ec{\mathcal{D}}^{(t,x)}(0) = \ & (0,\ldots,0) \end{aligned}$	$egin{aligned} & \displaystyle rac{End}{ec{\mathcal{D}}^{(t, imes)}(t)} = \ & (x,\ldots,x) \end{aligned}$	White Noise $\xi(\cdot, \cdot)$

200

Space	Time	Paths	Disorder

Space	Time	Paths	Disorder
$x \in \mathbb{Z}$	$t\in\mathbb{N}$		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Space	Time		Paths		Disorder
$x \in \mathbb{Z}$	$t\in\mathbb{N}$	N.I. Random Walks $ec{\chi}^{(t, imes)}(\cdot)$	$ \begin{array}{c} \displaystyle \frac{\text{Start}}{\vec{X}^{(t,x)}(0)} = \\ (0,2,\ldots,2d-2) \end{array} $	$\vec{X}^{(t,x)}(t) = (x, \dots, x + 2d - 2)$	

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ● ● ●

Space	Time		Paths		Disorder
$x \in \mathbb{Z}$	$t\in\mathbb{N}$	N.I. Random Walks $\vec{X}^{(t,x)}(.)$	$\begin{array}{c} \frac{\text{Start}}{\vec{X}^{(t,x)}(0)} = \\ (0,2,\ldots,2d-2) \end{array}$	$rac{\operatorname{End}}{ec{X}^{(t,x)}(t)} = (x,\ldots,x+2d-2)$	iid Random Variables $\omega(\cdot, \cdot)$
1		(\cdot)	$(0, 2, \dots, 20 - 2)$	$(\gamma, \ldots, \gamma + 2u - 2)$	ω(,,)

Space	Time		Paths		Disorder
$x \in \mathbb{Z}$	$t\in\mathbb{N}$	N.I. Random Walks $\vec{X}^{(t,x)}(.)$	$\begin{array}{c} \frac{\text{Start}}{\vec{X}^{(t,x)}(0)} = \\ (0,2,\ldots,2d-2) \end{array}$	$rac{\operatorname{End}}{ec{X}^{(t,x)}(t)} = (x,\ldots,x+2d-2)$	iid Random Variables $\omega(\cdot, \cdot)$
1		(\cdot)	$(0, 2, \dots, 20 - 2)$	$(\gamma, \ldots, \gamma + 2u - 2)$	ω(,,)

Space	Time		Paths		Disorder
$x \in \mathbb{Z}$	$t\in\mathbb{N}$	N.I. Random Walks $\vec{X}^{(t,x)}(.)$	$\begin{array}{c} \frac{\text{Start}}{\vec{X}^{(t,x)}(0)} = \\ (0,2,\ldots,2d-2) \end{array}$	$rac{\operatorname{End}}{ec{X}^{(t,x)}(t)} = (x,\ldots,x+2d-2)$	iid Random Variables $\omega(\cdot, \cdot)$
1		(\cdot)	$(0, 2, \dots, 20 - 2)$	$(\gamma, \ldots, \gamma + 2u - 2)$	ω(,,)

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

• Rotate by 45 degrees to interpret as up-right lattice paths

・ロト ・ 日下・ ・ ヨト・・

2

• Rotate by 45 degrees to interpret as up-right lattice paths

• $Z_d^{\beta,disc}$ is then the *d*-th row in geometric RSK

Rotate by 45 degrees to interpret as up-right lattice paths

Z^{β,disc} is then the *d*-th row in geometric RSK
This is a "tropicalization" of Last Passage Percolation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Name	Space	Time	Paths	Disorder	Start	End
$\begin{array}{c} Multi-Layer \\ CDRP \\ \mathcal{Z}^{\beta}_d(t,x) \end{array}$	$x \in \mathbb{R}$	$t \in \mathbb{R}^+$	<i>D</i> (∙) N.I. Brownian Bridges	$\xi(\cdot, \cdot)$ White Noise	$ec{D}(0)= \ (0,0,\ldots,0)$	$ec{D}(t) = (x,x,\ldots,x)$
$\begin{array}{c c} Multi-Layer \\ Discrete \\ Z^{\beta, \mathit{disc}}_d(t, x) \end{array}$	$x \in \mathbb{Z}$	$t\in\mathbb{N}$	X⊄(·) N.I. Random Walks	$\omega(\cdot, \cdot)$ i.i.d. random variables	$\vec{X}(0) = \\ (0,2,\ldots,2d-2)$	$ec{X}(t) = (x, \dots, x+2d-2)$

Name	Space	Time	Paths	Disorder	Start	End
$\begin{array}{c} Multi-Layer \\ CDRP \\ \mathcal{Z}^{\beta}_d(t,x) \end{array}$	$x \in \mathbb{R}$	$t \in \mathbb{R}^+$	<i>D</i> (∙) N.I. Brownian Bridges	$\xi(\cdot, \cdot)$ White Noise	$ec{D}(0)= \ (0,0,\ldots,0)$	$ec{D}(t) = (x, x, \dots, x)$
$\begin{array}{c} Multi-Layer \\ Discrete \\ Z^{\beta, \mathit{disc}}_d(t, x) \end{array}$	$x \in \mathbb{Z}$	$t\in\mathbb{N}$	$ec{X}(\cdot)$ N.I. Random Walks	$\omega(\cdot, \cdot)$ i.i.d. random variables	$\vec{X}(0) = \\ (0,2,\ldots,2d-2)$	$\vec{X}(t) = (x, \dots, x+2d-2)$

Theorem (Corwin, N.)

Suppose the variables ω are centered, unit variance and have finite exponential moments:

$$\Lambda(eta) := \log\left(\mathcal{E}(e^{eta \omega(0,0)})
ight)$$

Name	Space	Time	Paths	Disorder	Start	End
$\begin{array}{c} Multi-Layer\\ CDRP\\ \mathcal{Z}^\beta_d(t,x) \end{array}$	$x \in \mathbb{R}$	$t \in \mathbb{R}^+$	<i>D</i> (∙) N.I. Brownian Bridges	$\xi(\cdot, \cdot)$ White Noise	$ec{D}(0)= \ (0,0,\ldots,0)$	$ec{D}(t) = (x,x,\ldots,x)$
$\begin{array}{c} Multi-Layer \\ Discrete \\ Z^{\beta, \mathit{disc}}_d(t, x) \end{array}$	$x \in \mathbb{Z}$	$t\in\mathbb{N}$	X⊄(·) N.I. Random Walks	$\omega(\cdot, \cdot)$ i.i.d. random variables	$\vec{X}(0) = \\ (0,2,\ldots,2d-2)$	$ec{X}(t) = (x, \dots, x+2d-2)$

Theorem (Corwin, N.)

Suppose the variables ω are centered, unit variance and have finite exponential moments:

$$\Lambda(eta) := \log \left(\mathcal{E}(e^{eta \omega(0,0)})
ight)$$

For $\beta > 0$ set $\beta_N = N^{-\frac{1}{4}}\beta$.

Name	Space	Time	Paths	Disorder	Start	End
$\begin{array}{c} Multi-Layer\\ CDRP\\ \mathcal{Z}^\beta_d(t,x) \end{array}$	$x \in \mathbb{R}$	$t \in \mathbb{R}^+$	<i>D</i> (∙) N.I. Brownian Bridges	$\xi(\cdot, \cdot)$ White Noise	$ec{D}(0)= \ (0,0,\ldots,0)$	$ec{D}(t) = (x, x, \dots, x)$
Multi-Layer Discrete $Z_d^{\beta,disc}(t,x)$	$x \in \mathbb{Z}$	$t\in\mathbb{N}$	X⊄(·) N.I. Random Walks	$\omega(\cdot, \cdot)$ i.i.d. random variables	$\vec{X}(0) = \\ (0,2,\ldots,2d-2)$	$\vec{X}(t) =$ (x,,x+2d-2)

Theorem (Corwin, N.)

Suppose the variables ω are centered, unit variance and have finite exponential moments:

$$\Lambda(eta) := \log\left(\mathcal{E}(e^{eta\omega(0,0)})
ight)$$

For $\beta > 0$ set $\beta_N = N^{-\frac{1}{4}}\beta$. Then:

$$Z_d^{\beta_N,disc}\left(\lfloor Nt \rfloor, \lfloor \sqrt{N}x \rfloor\right) \exp\left(-dNt\Lambda(\beta_N)\right) \Rightarrow \frac{\mathcal{Z}_d^{\sqrt{2\beta}}(t,x)}{\rho(t,x)^d}$$

$$Z_d^{\beta_N,disc}\left(\lfloor Nt \rfloor, \lfloor \sqrt{N}x \rfloor\right) \exp\left(-dNt\Lambda(\beta_N)\right) \Rightarrow \frac{\mathcal{Z}_d^{\sqrt{2}\beta}(t,x)}{\rho(t,x)^d}$$

Remarks:

$$Z_d^{\beta_N,disc}\left(\lfloor Nt \rfloor, \lfloor \sqrt{N}x \rfloor\right) \exp\left(-dNt\Lambda(\beta_N)\right) \Rightarrow \frac{\mathcal{Z}_d^{\sqrt{2}\beta}(t,x)}{\rho(t,x)^d}$$

Remarks:

$$Z_d^{\beta_N,disc}\left(\lfloor Nt\rfloor,\lfloor\sqrt{N}x\rfloor\right)\exp\left(-dNt\Lambda(\beta_N)\right) \Rightarrow \frac{\mathcal{Z}_d^{\sqrt{2}\beta}(t,x)}{\rho(t,x)^d}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Remarks:

 $\bullet\,$ The LHS is mean 1 for every N

$$Z_d^{\beta_N,disc}\left(\lfloor Nt\rfloor,\lfloor\sqrt{N}x\rfloor\right)\exp\left(-dNt\Lambda(\beta_N)\right) \Rightarrow \frac{\mathcal{Z}_d^{\sqrt{2}\beta}(t,x)}{\rho(t,x)^d}$$

Remarks:

- The LHS is mean 1 for every N
- $\sqrt{2}$ comes from the "periodicity" of the lattice

$$Z_d^{\beta_N,disc}\left(\lfloor Nt\rfloor,\lfloor\sqrt{N}x\rfloor\right)\exp\left(-dNt\Lambda(\beta_N)\right) \Rightarrow \frac{\mathcal{Z}_d^{\sqrt{2}\beta}(t,x)}{\rho(t,x)^d}$$

Remarks:

- The LHS is mean 1 for every N
- $\sqrt{2}$ comes from the "periodicity" of the lattice
- The result is "universal": does not depend on details of lattice weights.

$$Z_d^{\beta_N,disc}\left(\lfloor Nt\rfloor,\lfloor\sqrt{N}x\rfloor\right)\exp\left(-dNt\Lambda(\beta_N)\right) \Rightarrow \frac{\mathcal{Z}_d^{\sqrt{2}\beta}(t,x)}{\rho(t,x)^d}$$

Remarks:

- The LHS is mean 1 for every N
- $\sqrt{2}$ comes from the "periodicity" of the lattice
- The result is "universal": does not depend on details of lattice weights.
- The case d = 1 is exactly the result of Alberts-Khanin-Quastel '15

$$Z_d^{\beta_N,disc}\left(\lfloor Nt\rfloor,\lfloor\sqrt{N}x\rfloor\right)\exp\left(-dNt\Lambda(\beta_N)\right) \Rightarrow \frac{\mathcal{Z}_d^{\sqrt{2}\beta}(t,x)}{\rho(t,x)^d}$$

Remarks:

- The LHS is mean 1 for every N
- $\sqrt{2}$ comes from the "periodicity" of the lattice
- The result is "universal": does not depend on details of lattice weights.
- The case d = 1 is exactly the result of Alberts-Khanin-Quastel '15

<ロト <四ト <注入 <注下 <注下 <

• Conjectured to have universality for fixed $\beta > 0$

$$Z_d^{\beta_N,disc}\left(\lfloor Nt\rfloor,\lfloor\sqrt{N}x\rfloor\right)\exp\left(-dNt\Lambda(\beta_N)\right) \Rightarrow \frac{\mathcal{Z}_d^{\sqrt{2}\beta}(t,x)}{\rho(t,x)^d}$$

Remarks:

- The LHS is mean 1 for every N
- $\sqrt{2}$ comes from the "periodicity" of the lattice
- The result is "universal": does not depend on details of lattice weights.
- The case d = 1 is exactly the result of Alberts-Khanin-Quastel '15

<ロト <四ト <注入 <注下 <注下 <

• Conjectured to have universality for *fixed* $\beta > 0$ but this is hard.

$$Z_d^{\beta_N,disc}\left(\lfloor Nt\rfloor,\lfloor\sqrt{N}x\rfloor\right)\exp\left(-dNt\Lambda(\beta_N)\right) \Rightarrow \frac{\mathcal{Z}_d^{\sqrt{2}\beta}(t,x)}{\rho(t,x)^d}$$

Remarks:

- The LHS is mean 1 for every N
- $\sqrt{2}$ comes from the "periodicity" of the lattice
- The result is "universal": does not depend on details of lattice weights.
- The case d = 1 is exactly the result of Alberts-Khanin-Quastel '15
- Conjectured to have universality for *fixed* β > 0 but this is hard. (The method of using chaos series expansions does not seem to apply)

Space	Time	Paths	Disorder

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Space	Time	Paths	Disorder
$x \in \mathbb{N}$	$t\in \mathbb{R}$		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Space	Time		Paths		Disorder
$x \in \mathbb{N}$	$t\in \mathbb{R}$	N.I. Poisson paths $ec{S}^{(t,x)}(\cdot)$	$rac{ ext{Start}}{ec{S}^{(t,x)}(0)}=\ (1,2,\ldots,d)$	$ec{\mathcal{S}^{(t,x)}(t)} = (x+1,\ldots,x+d)$	

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへで

Spac	e Time		Paths		Disorder
$x \in \mathbb{R}$	\mathbb{N} $t\in\mathbb{R}$	N.I. Poisson paths $\vec{S}^{(t,x)}(\cdot)$	$egin{array}{l} rac{ ext{Start}}{ec{S}^{(t,x)}(0)}=\ (1,2,\ldots,d) \end{array}$	$ec{\mathcal{S}^{(t,x)}(t)} = (x+1,\ldots,x+d)$	iid Brownian motions <i>B</i> .(·)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Spac	e Time		Paths		Disorder
$x \in \mathbb{R}$	\mathbb{N} $t\in\mathbb{R}$	N.I. Poisson paths $\vec{S}^{(t,x)}(\cdot)$	$egin{array}{l} rac{ ext{Start}}{ec{S}^{(t,x)}(0)}=\ (1,2,\ldots,d) \end{array}$	$ec{\mathcal{S}^{(t,x)}(t)} = (x+1,\ldots,x+d)$	iid Brownian motions <i>B</i> .(·)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○
d - layer Semi-Discrete Polymer

 $\lim_{\beta \to \infty} \beta^{-1} \log \left(Z_k^{\beta, sd}(t, N) \right) \stackrel{d}{=} k \text{-th eigenvalue of } N \times N \text{ GUE (Variance } t)$

d - layer Semi-Discrete Polymer

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Name	Space	Time	Paths	Disorder	Start	End
$\begin{array}{c c} Multi-Layer \\ CDRP \\ \mathcal{Z}^{\beta}_d(t,x) \end{array}$	$x \in \mathbb{R}$	$t \in \mathbb{R}^+$	<i>D</i> (∙) N.I. Brownian Bridges	$\xi(\cdot, \cdot)$ White Noise	$ec{D}(0)=(0,0,\ldots,0)$	$ec{D}(t) = (x, x, \dots, x)$
$\begin{array}{c} Multi-Layer\\ Semi-Discrete\\ Z^{\beta,sd}_d(t,x) \end{array}$	$x \in \mathbb{N}$	$t\in \mathbb{R}^+$	$ec{S}(\cdot)$ N.I. Poisson paths	B.(·) i.i.d. Brownian motions	$ec{S}(0) = (1, 2, \dots, d)$	$\vec{S}(t) = (x+1,\ldots,x+d)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Name	Space	Time	Paths	Disorder	Start	End
$\begin{array}{c} Multi-Layer\\ CDRP\\ \mathcal{Z}^\beta_d(t,x) \end{array}$	$x \in \mathbb{R}$	$t \in \mathbb{R}^+$	<i>D</i> (∙) N.I. Brownian Bridges	$\xi(\cdot, \cdot)$ White Noise	$ec{D}(0)=(0,0,\ldots,0)$	$ec{D}(t) = (x, x, \dots, x)$
$\begin{matrix} Multi-Layer\\ Semi-Discrete\\ Z^{\beta,sd}_d(t,x) \end{matrix}$	$x \in \mathbb{N}$	$t\in \mathbb{R}^+$	$ec{S}(\cdot)$ N.I. Poisson paths	B.(·) i.i.d. Brownian motions	$ec{S}(0) = \ (1,2,\ldots,d)$	$\vec{S}(t) = (x+1,\ldots,x+d)$

Theorem (N.)

For $\beta > 0$, set $\beta_N = N^{-\frac{1}{4}}\beta$.

Name	Space	Time	Paths	Disorder	Start	End End
$\begin{array}{c} Multi-Layer\\ CDRP\\ \mathcal{Z}^{\beta}_d(t,x) \end{array}$	$x \in \mathbb{R}$	$t \in \mathbb{R}^+$	<i>D</i> (∙) N.I. Brownian Bridges	$\xi(\cdot, \cdot)$ White Noise	$ec{D}(0)=(0,0,\ldots,0)$	$ec{D}(t) = (x, x, \dots, x)$
$\begin{matrix} Multi-Layer \\ Semi-Discrete \\ Z^{\beta,sd}_d(t,x) \end{matrix}$	$x \in \mathbb{N}$	$t\in \mathbb{R}^+$	$ec{S}(\cdot)$ N.I. Poisson paths	B.(·) i.i.d. Brownian motions	$ec{S}(0) = \ (1,2,\ldots,d)$	$\vec{S}(t) = (x+1,\ldots,x+d)$

Theorem (N.)

For $\beta > 0$, set $\beta_N = N^{-\frac{1}{4}}\beta$. Then:

$$Z_d^{eta_N, sd}\left(\mathsf{N}t, \lfloor \mathsf{N}t + \sqrt{\mathsf{N}}x
floor
ight) \exp\left(-rac{1}{2}d\mathsf{N}teta_N^2
ight) \Rightarrow rac{\mathcal{Z}_d^{eta}(t,x)}{
ho(t,x)^d}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○○

Name	Space	Time	Paths	Disorder	Start	End End
$\begin{array}{c} Multi-Layer\\ CDRP\\ \mathcal{Z}^{\beta}_d(t,x) \end{array}$	$x \in \mathbb{R}$	$t \in \mathbb{R}^+$	<i>D</i> (∙) N.I. Brownian Bridges	$\xi(\cdot, \cdot)$ White Noise	$ec{D}(0)=(0,0,\ldots,0)$	$ec{D}(t) = (x, x, \dots, x)$
$\begin{matrix} Multi-Layer \\ Semi-Discrete \\ Z^{\beta,sd}_d(t,x) \end{matrix}$	$x \in \mathbb{N}$	$t\in \mathbb{R}^+$	$ec{S}(\cdot)$ N.I. Poisson paths	B.(·) i.i.d. Brownian motions	$ec{S}(0) = \ (1,2,\ldots,d)$	$\vec{S}(t) = (x+1,\ldots,x+d)$

Theorem (N.)

For $\beta > 0$, set $\beta_N = N^{-\frac{1}{4}}\beta$. Then:

$$Z_d^{\beta_N, sd}\left(Nt, \lfloor Nt + \sqrt{N}x \rfloor\right) \exp\left(-\frac{1}{2}dNt\beta_N^2\right) \Rightarrow \frac{\mathcal{Z}_d^{\beta}(t, x)}{\rho(t, x)^d}$$

and there is a coupling so the convergence holds in L^p for any $p \ge 1$.

For
$$\beta > 0$$
, set $\beta_N = N^{-\frac{1}{4}}\beta$. Then:

$$Z_d^{\beta_N,sd}\left(Nt, \lfloor Nt + \sqrt{N}x \rfloor\right) \exp\left(-\frac{1}{2}dNt\beta_N^2\right) \Rightarrow \frac{\mathcal{Z}_d^{\beta}(t,x)}{\rho(t,x)^d}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ Ξ

and there is a coupling so the convergence holds in L^p for any $p \ge 1$.

Remarks:

For $\beta > 0$, set $\beta_N = N^{-\frac{1}{4}}\beta$. Then:

$$Z_{d}^{\beta_{N},sd}\left(Nt,\lfloor Nt+\sqrt{N}x\rfloor\right)\exp\left(-\frac{1}{2}dNt\beta_{N}^{2}\right)\Rightarrow\frac{\mathcal{Z}_{d}^{\beta}(t,x)}{\rho(t,x)^{d}}$$

<ロト <四ト <注入 <注下 <注下 <

and there is a coupling so the convergence holds in L^p for any $p \ge 1$.

Remarks:

• The LHS is mean 1 for every N

For $\beta > 0$, set $\beta_N = N^{-\frac{1}{4}}\beta$. Then:

$$Z_d^{\beta_N,sd}\left(\mathsf{N}t,\lfloor\mathsf{N}t+\sqrt{\mathsf{N}}x\rfloor\right)\exp\left(-\frac{1}{2}d\mathsf{N}t\beta_N^2\right) \Rightarrow \frac{\mathcal{Z}_d^\beta(t,x)}{\rho(t,x)^d}$$

and there is a coupling so the convergence holds in L^p for any $p \ge 1$.

Remarks:

- The LHS is mean 1 for every N
- The case d = 1 is by Moreno Flores-Quastel-Remenik (in preparation)

<ロト <四ト <注入 <注下 <注下 <

For $\beta > 0$, set $\beta_N = N^{-\frac{1}{4}}\beta$. Then:

$$Z_d^{\beta_N,sd}\left(\mathsf{N}t,\lfloor\mathsf{N}t+\sqrt{\mathsf{N}}x\rfloor\right)\exp\left(-\frac{1}{2}d\mathsf{N}t\beta_N^2\right) \Rightarrow \frac{\mathcal{Z}_d^\beta(t,x)}{\rho(t,x)^d}$$

and there is a coupling so the convergence holds in L^p for any $p \ge 1$.

Remarks:

- The LHS is mean 1 for every N
- The case d = 1 is by Moreno Flores-Quastel-Remenik (in preparation)

< □ > < @ > < 注 > < 注 > ... 注

• Structure that is known for semi-discrete polymers (O'Connell generalization of GUE eigenvalues) is carried over in this limit.

For
$$\beta > 0$$
, set $\beta_N = N^{-\frac{1}{4}}\beta$. Then:

$$Z_{d}^{\beta_{N},sd}\left(Nt,\lfloor Nt+\sqrt{N}x\rfloor\right)\exp\left(-\frac{1}{2}dNt\beta_{N}^{2}\right)\Rightarrow\frac{\mathcal{Z}_{d}^{\beta}(t,x)}{\rho(t,x)^{d}}$$

and there is a coupling so the convergence holds in L^p for any $p \ge 1$.

Remarks:

- The LHS is mean 1 for every N
- The case d = 1 is by Moreno Flores-Quastel-Remenik (in preparation)
- Structure that is known for semi-discrete polymers (O'Connell generalization of GUE eigenvalues) is carried over in this limit.
- The L^p convergence gives contour integral formulas for the moments of Z^β_d (Conjectured in "MacDonald Processes" Borodin-Corwin '14)

For
$$\beta > 0$$
, set $\beta_N = N^{-\frac{1}{4}}\beta$. Then:

$$Z_d^{\beta_N,sd}\left(\mathsf{N}t,\lfloor\mathsf{N}t+\sqrt{\mathsf{N}}x\rfloor\right)\exp\left(-\frac{1}{2}d\mathsf{N}t\beta_N^2\right) \Rightarrow \frac{\mathcal{Z}_d^\beta(t,x)}{\rho(t,x)^d}$$

and there is a coupling so the convergence holds in L^p for any $p \ge 1$.

Remarks:

- The LHS is mean 1 for every N
- The case d = 1 is by Moreno Flores-Quastel-Remenik (in preparation)
- Structure that is known for semi-discrete polymers (O'Connell generalization of GUE eigenvalues) is carried over in this limit.
- The L^p convergence gives contour integral formulas for the moments of Z^β_d (Conjectured in "MacDonald Processes" Borodin-Corwin '14)
- Verifies conjecture that $\{Z_d^\beta\}_{d=1}^\infty$ yields a KPZ line ensemble (Corwin-Hammond '15).

Corollary (Conjecture from KPZ line ensemble modulo constants)

There are explicit constants $c_{m,t}$ so that if we set set:

$$\mathcal{H}_m^t(x) = \log\left(\frac{c_{m,t}\mathcal{Z}_m^1(t,x)}{c_{m-1,t}\mathcal{Z}_{m-1}^1(t,x)}\right)$$

(日) (四) (코) (코) (코) (코)

then for each fixed t , $\{\mathcal{H}_m^t(x)\}_{n\in\mathbb{N}}$ is a KPZ_t line ensemble.

Corollary (Conjecture from KPZ line ensemble modulo constants)

There are explicit constants $c_{m,t}$ so that if we set set:

$$\mathcal{H}_m^t(x) = \log\left(\frac{c_{m,t}\mathcal{Z}_m^1(t,x)}{c_{m-1,t}\mathcal{Z}_{m-1}^1(t,x)}\right)$$

then for each fixed t , $\{\mathcal{H}_m^t(x)\}_{n\in\mathbb{N}}$ is a KPZ_t line ensemble.

The KPZ line ensemble is a multi-layer generalization of the KPZ equation:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Top line $\mathcal{H}_1^t(x)$ is the solution to the KPZ equation at time t

• Top line $\mathcal{H}_1^t(x)$ is the solution to the KPZ equation at time t

<ロ> (四) (四) (四) (日) (日)

- 2

• Has a Gibbs resampling property:

- Top line $\mathcal{H}_1^t(x)$ is the solution to the KPZ equation at time t
- Has a Gibbs resampling property: Resample lines k_1, \ldots, k_2 in a window [a, b] according to Brownian Bridges and accept sample with probability proportional to:

$$\exp\Big\{-\sum_{i=k_1-1}^{k_2}\int_a^b e^{\mathcal{H}_{i+1}(x)-\mathcal{H}_i(x)}\Big\}$$

- Top line $\mathcal{H}_1^t(x)$ is the solution to the KPZ equation at time t
- Has a Gibbs resampling property: Resample lines k_1, \ldots, k_2 in a window [a, b] according to Brownian Bridges and accept sample with probability proportional to:

$$\exp\Big\{-\sum_{i=k_1-1}^{k_2}\int_a^b e^{\mathcal{H}_{i+1}(x)-\mathcal{H}_i(x)}\Big\}$$

• $\mathcal{H}_m^t(x) + \frac{x^2}{2t}$ conjectured to converge to Airy line ensemble as $t \to \infty$

• Use chaos series to reduce problem to convergence of *k*-point correlation functions

<ロ> (四) (四) (三) (三) (三)

3

• Use chaos series to reduce problem to convergence of *k*-point correlation functions

$$\psi_k^{(t,x)}\Big((s_1,y_1),\ldots,(s_k,y_k)\Big)=\mathbf{P}\Big(\vec{D}^{(t,x)}(s_i)\in dy_i\Big)$$

<ロ> (四) (四) (三) (三) (三)

3

• Use chaos series to reduce problem to convergence of *k*-point correlation functions

$$\psi_k^{(t,x)}\Big((s_1,y_1),\ldots,(s_k,y_k)\Big)=\mathbf{P}\Big(\vec{D}^{(t,x)}(s_i)\in dy_i\Big)$$

・ロト ・日本・ ・ ヨト・・

• Need convergence as L^2 functions on $((0, t) \times \mathbb{R})^k$.

• Use chaos series to reduce problem to convergence of *k*-point correlation functions

$$\psi_k^{(t,x)}\Big((s_1,y_1),\ldots,(s_k,y_k)\Big)=\mathbf{P}\Big(\vec{D}^{(t,x)}(s_i)\in dy_i\Big)$$

- Need convergence as L^2 functions on $((0, t) \times \mathbb{R})^k$.
- This is a type of "enhanced" local limit theorem.

• Use chaos series to reduce problem to convergence of *k*-point correlation functions

$$\psi_k^{(t,x)}\Big((s_1,y_1),\ldots,(s_k,y_k)\Big) = \mathbf{P}\Big(\vec{D}^{(t,x)}(s_i) \in dy_i\Big)$$

- Need convergence as L^2 functions on $((0, t) \times \mathbb{R})^k$.
- This is a type of "enhanced" local limit theorem.
- L^2 bounds hard to prove near endpoint t = 0

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

• Pointwise convergence:

- Pointwise convergence:
 - Write as $k \times k$ determinants of correlation kernels

- Pointwise convergence:
 - Write as $k \times k$ determinants of correlation kernels

$$\psi_k^{(t,x)} = \det \left[\mathcal{K}^{(t,x)} \left((s_i, y_i); (s_j, y_j) \right) \right]_{i,j=1}^k$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- Pointwise convergence:
 - Write as $k \times k$ determinants of correlation kernels

$$\psi_k^{(t,x)} = \det \left[\mathcal{K}^{(t,x)} \left((s_i, y_i); (s_j, y_j) \right) \right]_{i,j=1}^k$$

◆□ → ◆□ → ◆ = → ◆ = → のへで

• Write kernel $K^{(t,x)}$ in terms of orthogonal polynomials

- Pointwise convergence:
 - Write as $k \times k$ determinants of correlation kernels

$$\psi_k^{(t,x)} = \det \left[\mathcal{K}^{(t,x)} \left((s_i, y_i); (s_j, y_j) \right) \right]_{i,j=1}^k$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Write kernel K^(t,x) in terms of orthogonal polynomials
 N.I. Brownian Bridges ↔ Hermite polynomials

- Pointwise convergence:
 - Write as $k \times k$ determinants of correlation kernels

$$\psi_k^{(t,x)} = \det \left[\mathcal{K}^{(t,x)} \left((s_i, y_i); (s_j, y_j) \right) \right]_{i,j=1}^k$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Write kernel $K^{(t,x)}$ in terms of orthogonal polynomials
 - N.I. Brownian Bridges \leftrightarrow Hermite polynomials
 - N.I. random walks \leftrightarrow Hahn polynomials

- Pointwise convergence:
 - Write as $k \times k$ determinants of correlation kernels

$$\psi_k^{(t,x)} = \det \left[\mathcal{K}^{(t,x)} \Big((s_i, y_i); (s_j, y_j) \Big) \right]_{i,j=1}^k$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

- Write kernel $K^{(t,x)}$ in terms of orthogonal polynomials
 - N.I. Brownian Bridges \leftrightarrow Hermite polynomials
 - $\bullet \ \ N.I. \ random \ walks \leftrightarrow Hahn \ polynomials$
 - N.I. semi-discrete \leftrightarrow Krawtchouk polynomials

- Pointwise convergence:
 - Write as $k \times k$ determinants of correlation kernels

$$\psi_k^{(t,x)} = \det \left[\mathcal{K}^{(t,x)} \Big((s_i, y_i); (s_j, y_j) \Big) \right]_{i,j=1}^k$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

- Write kernel $K^{(t,x)}$ in terms of orthogonal polynomials
 - N.I. Brownian Bridges \leftrightarrow Hermite polynomials
 - $\bullet \ \ N.I. \ random \ walks \leftrightarrow Hahn \ polynomials$
 - $\bullet \ \ N.I. \ semi-discrete \leftrightarrow Krawtchouk \ \ polynomials$
- Convergence of K is NOT in L^2 near t = 0

• Bounds on L^2 norm near t = 0:
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- Bounds on L^2 norm near t = 0:
 - Look at the overlap between two independent path copies

- Bounds on L^2 norm near t = 0:
 - Look at the overlap between two independent path copies

$$O = \sum_{a,b=1}^{m} \int_{0}^{t} \mathbb{1}\left\{X_{a}(s) = \tilde{X}_{b}(s)\right\} ds$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- Bounds on L^2 norm near t = 0:
 - Look at the overlap between two independent path copies

$$O = \sum_{a,b=1}^{m} \int_{0}^{t} 1\left\{X_{a}(s) = \tilde{X}_{b}(s)\right\} ds$$

• This works since

 $\mathsf{E}\left[O^k\right] = \|\psi_k\|_{L^2}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Bounds on L^2 norm near t = 0:
 - Look at the overlap between two independent path copies

$$O = \sum_{a,b=1}^{m} \int_{0}^{t} 1\left\{X_{a}(s) = \tilde{X}_{b}(s)\right\} ds$$

This works since

$$\mathsf{E}\left[O^k\right] = \|\psi_k\|_{L^2}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Bounds on moments O via stochastic analysis

- Bounds on L^2 norm near t = 0:
 - Look at the overlap between two independent path copies

$$O = \sum_{a,b=1}^{m} \int_{0}^{t} 1\left\{X_{a}(s) = \tilde{X}_{b}(s)\right\} ds$$

This works since

$$\mathsf{E}\left[O^k\right] = \|\psi_k\|_{L^2}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Bounds on moments O via stochastic analysis
 - Bounds on "drift" of the processes

- Bounds on L^2 norm near t = 0:
 - Look at the overlap between two independent path copies

$$O = \sum_{a,b=1}^{m} \int_{0}^{t} 1\left\{X_{a}(s) = \tilde{X}_{b}(s)\right\} ds$$

This works since

$$\mathsf{E}\left[O^k\right] = \|\psi_k\|_{L^2}$$

- Bounds on moments O via stochastic analysis
 - Bounds on "drift" of the processes
 - (discrete) Tanaka's formula

- Bounds on L^2 norm near t = 0:
 - Look at the overlap between two independent path copies

$$O = \sum_{a,b=1}^{m} \int_{0}^{t} 1\left\{X_{a}(s) = \tilde{X}_{b}(s)\right\} ds$$

This works since

$$\mathsf{E}\left[O^k\right] = \|\psi_k\|_{L^2}$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

- Bounds on moments O via stochastic analysis
 - Bounds on "drift" of the processes
 - (discrete) Tanaka's formula
 - Azuma's inequality

References

- J. Funk, M. Nica, and M. Noyes.

Stabilization time for a type of evolution on binary strings.

- J. Theoretical Probab., 28:848-865, 2015.
- M. Nica.

Decorated Young tableaux and the Poissonized Robinson Schensted process.

Stoch. Proc. Appl., 127:449-474, 2017.

L. Corwin and M. Nica.

Intermediate disorder directed polymers and the multi-layer extension of the stochastic heat equation.

Electron. J. Probab., 22:1-49, 2017.

M. Nica.

Intermediate disorder limits for multi-layer semi-discrete directed polymers.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

arXiv:1609.00298, September 2016, 46 pages. Submitted.

Stabilization Time Distribution for a Type of Exclusion Process

◆□▶ ◆舂▶ ◆注≯ ◆注≯ □注□

An interacting particle system in discrete time with determenistic evolution:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

 $\bigcirc \bullet \rightarrow \bullet \bigcirc$

 $\bigcirc \bullet \rightarrow \bullet \bigcirc$

 $\bigcirc \bullet \rightarrow \bullet \bigcirc$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 $\bigcirc \bullet \rightarrow \bullet \bigcirc$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 $\bigcirc \bullet \rightarrow \bullet \bigcirc$

Example:

Start from a random initial condition: How long until all particles on the left and all holes on the right?

Theorem (Funk, N., Noyes)

Let T_n^p be the stabilization time from a Bernoulli initial condition of n sites, and particles are present with probability p.

Theorem (Funk, N., Noyes)

Let T_n^p be the stabilization time from a Bernoulli initial condition of n sites, and particles are present with probability p. In the case $p > \frac{1}{2}$:

$$rac{T_n^p-pn}{\sqrt{n}} \Rightarrow N(0,p(1-p))$$

(日) (四) (문) (문) (문)

Theorem (Funk, N., Noyes)

Let T_n^p be the stabilization time from a Bernoulli initial condition of n sites, and particles are present with probability p. In the case $p > \frac{1}{2}$:

$$\frac{T_n^p - pn}{\sqrt{n}} \Rightarrow N(0, p(1-p))$$

In the case $p = \frac{1}{2}$:

$$\frac{T_n^{1/2} - \frac{1}{2}n}{\sqrt{n}} \Rightarrow \frac{1}{2}\chi_3$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

where $\chi_3 \stackrel{d}{=} \sqrt{Z_1^2 + Z_2^2 + Z_3^2}$, the norm of a 3D standard Gaussian.

Pf Ideas: Convert the starting string to a down right path by setting \bigcirc to a right step and \bullet to a downstep.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Pf Ideas: Convert the starting string to a down right path by setting \bigcirc to a right step and \bullet to a downstep. The rule $\bigcirc \bullet \rightarrow \bullet \bigcirc$ is the "corner cutting" rule.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

1		
2		
	1	
	2	1
		2

1		
2		
3	1	
	2	1
	3	2

1		
2		
3	1	
4	2	1
	3	2

1			
2			
3	1		
4	2	1	
5	3	2	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Pf Ideas: Convert the starting string to a down right path by setting \bigcirc to a right step and O to a downstep. The rule $\bigcirc \textcircled{O} \rightarrow \textcircled{O}$ is the "corner cutting" rule. E.g $\bigcirc \textcircled{O} \textcircled{O} \textcircled{O} \textcircled{O} \textcircled{O}$ becomes:

1		
2		
3	1	
4	2	1
5	3	2

This leads to:

$$T_n = \max_{\text{path}} \{i + j - 1\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

1		
2		
3	1	
4	2	1
5	3	2

This leads to:

$$T_n = \max_{\text{path}} \{i + j - 1\}$$

which leads to

$$T_n \stackrel{d}{=} \frac{1}{2}n + \max_{0 \le k \le n} S_k - \frac{1}{2}S_n$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

where S_k is a Bernoulli-*p* random walk.

The stabilization time turns out to be the same as Last Passage

Percolation in a $n \times 2$ strip.

The stabilization time turns out to be the same as Last Passage Percolation in a $n \times 2$ strip. Set \bullet to $\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ and \bigcirc to $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

0	1	1	0	1	0	1	1
1	0	0	1	0	1	0	0

Δ	1	1		1	Δ	1	1
U	T	Т	Ψ	Т	0	Т	1
1	0	0	-	0	1	Δ	Δ
Г	0	0		0	T	U	U

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The stabilization time turns out to be the same as Last Passage Percolation in a $n \times 2$ strip. Set \bullet to $\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ and \bigcirc to $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ e.g. $\bigcirc \bullet \odot \bullet \odot \bullet \bullet \bullet \bullet$ is the array

0	1	1	Q-	1	0	1	-1
1-	0	0	-1	0	1	0	0

Works since $\bigcirc \bullet \rightarrow \bullet \bigcirc$ corresponds to

$$\begin{array}{c|c} 0 & 1 \\ \hline 1 & 0 \\ \end{array} \rightarrow \begin{array}{c} 1 & 0 \\ \hline 0 & 1 \\ \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

which reduces Last Passage Time by exactly 1.

Asymptotics

(=) (

Asymptotics: Re-scaling near top. (e.g. $\theta = 400$):

▲ロト ▲圖ト ▲国ト ▲国ト 三国 - のへで

Asymptotics: Re-scaling near top. (e.g. $\theta = 400$):

Asymptotics

(Comes by applying results in Borodin-Olshanski 2006)

$$\frac{\lambda_1(2\theta^{2/3}\tau) - 2\left(\theta - \theta^{2/3} |\tau|\right)}{\theta^{1/3}} \Rightarrow \mathcal{A}_2(\tau) - \tau^2,$$

where $\mathcal{A}_2(\cdot)$ is the Airy 2 process.