
Mathematics-in-Industry
Case Studies

Chen et al. Mathematics-in-Industry Case Studies (2017) 8:4
DOI 10.1186/s40929-017-0012-0

RESEARCH Open Access

Modelling and optimizing a system for
testing electronic circuit boards
Stephen Y. Chen1, Odile Marcotte2* , Mario Leonardo Morfin Ramírez3 and Mary Pugh4

*Correspondence:
Odile.Marcotte@gerad.ca
2GERAD, HEC Montréal and
Département d’informatique,
UQAM, 3000 Côte-Sainte-Catherine,
Montréal H3T 2A7, Canada
Full list of author information is
available at the end of the article

Abstract
In this article we consider a difficult combinatorial optimization problem arising from
the operation of a system for testing electronic circuit boards (ECB). This problem was
proposed to us by a company that makes a system for testing ECBs and is looking for an
efficient way of planning the tests on any given ECB. Because of its difficulty, we first split
the problem into a covering subproblem and a sequencing subproblem. We also give
a global formulation of the test planning problem. Then we present and discuss results
pertaining to the covering and sequencing subproblems. These results demonstrate
that their solution yields testing plans that are much better than those currently used by
the company. Finally we conclude our article by outlining avenues for future research.

Keywords: Electronic circuit board, Combinatorial optimization, Covering, Mixed
integer programming, Travelling salesman problem

Introduction
In this article we study the operations of a system for testing Electronic Circuit Boards
(ECBs) that uses flying probes. Our study was carried out in cooperation with a company
that will be referred to as the Company in what follows. We first describe the broad out-
lines of this system (called the FP system); further details will be given in the following
sections. The FP system includes eight shuttles: four shuttles that are above the board and
four shuttles that are below the board. To each shuttle are attached some probes (usually
two or three probes). The board being tested contains nets, each of which can be viewed
as a wire with a finite number of points of interest (or simply points). For the purposes
of this study, a net is a set of points whose coordinates are known. Note that the nets are
pairwise disjoint, i.e., no point belongs to more than one net.
Given a subset R of nets, a test consists of assigning certain probes to nets in R so that

one point in each net is touched by one probe; the set of probes that may be used to
touch a given point is known in advance and depends upon the test being carried out.
Hence a test consists, formally, of a collection of nets and a family of probe sets (one set of
probes for each point in each net involved in the test). The probes must touch the points
simultaneously, which means that there must be a matching between a subset Q of the
probes and the collection R of nets. Of course such amatching need not exist: its existence
depends upon the locations of the eight shuttles. Figure 1 displays two tests, one of which
can be carried out in the current configuration but the other cannot.

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s40929-017-0012-0&domain=pdf
http://orcid.org/0000-0002-8015-2084
mailto: Odile.Marcotte@gerad.ca
http://creativecommons.org/licenses/by/4.0/

Chen et al. Mathematics-in-Industry Case Studies (2017) 8:4 Page 2 of 19

Fig. 1 Four nets involved in two tests. The points of interest pictured in green are those that can be touched
by at least one probe. Those pictured in red cannot be touched by any probe. The test consisting of nets 1
and 2 can be carried out in the current configuration but not the test consisting of nets 2, 3, and 4

In general, given a configuration of shuttles, only a fraction of the tests can be carried
out. Thus several configurations must be computed in order to ensure that all the tests
are covered. (Note that the initial configuration, which is also the final one, is given in
advance.) Moving the shuttles from one configuration to the next requires some time,
which can be evaluated if one knows the coordinates of the shuttles within their succes-
sive configurations. The objective of the Company is to minimize the total time needed
to move the shuttles between configurations, with the constraint that each test is cov-
ered by at least one configuration. The system currently used by the Company yields poor
results, in the sense that the number of configurations needed to cover all the tests is
far too large, resulting in many unnecessary shuttle moves. Hence the problem was pro-
posed to us by the Company at the Fields-MITACS Industrial Problem-SolvingWorkshop
(see Chen S, Gustafsson J, Marcotte O, Morfin M, Pugh M: Improved optimization for a
testing system with two mobility layers, in Proceedings of the Fields-MITACS Industrial
Problem-Solving Workshop, forthcoming).
The planning problem just described is similar to the Travelling Salesman Problem

(TSP), one of the basic problems in combinatorial optimization (see Applegate et al. [2]).
We conjecture that in its general form, the planning problem is as difficult to solve as the
TSP. Although we are not aware of any previous work on the planning problem, there are
similarities between our problem and two classes of problems that have been considered
already: geometric covering problems (see for instance the article by Arkin and Hassin [3]
and the article by Ahn et al. [1]) and some generalizations of the TSP. One of these gen-
eralizations is the Travelling Politician Problem (see Riordan [19]). Other generalizations
include the Covering Salesman Problem (see the article by Current and Schilling [5]) and
the Clustered Travelling Salesman Problem (CTSP), discussed in an article by Laporte
and Palekar [11] that includes an application of the CTSP to a circuit design problem.
The Generalized Travelling Salesman Problem (GTSP) has received a fair amount of

attention (see for example the articles [12–15] by Laporte and his colleagues). Some
authors have proposed transforming a GTSP instance into a TSP instance (for an exam-
ple see Dimitrijevic and Saric [6]). Others have proposed a Lagrangian-based approach

Chen et al. Mathematics-in-Industry Case Studies (2017) 8:4 Page 3 of 19

for the asymmetric GTSP (Noon and Bean [17]) or a branch-and-cut algorithm for the
symmetric GTSP (Fischetti et al. [8]). Fischetti et al. [7] have studied the symmetric GTSP
polytope. Recently Pop [18] and Kara, Guden, and Koc [10] have proposed new formu-
lations for the GTSP. In spite of the similarities between the planning problem and the
various problems we have just mentioned, our problem seems to be completely new and
a major portion of the present article will be devoted to its formulation as a mathematical
program.
As mentioned before, although the objective of the Company is to minimize the total

time needed to move the shuttles between configurations, the main difficulty faced by
the Company is the large number of configurations required to cover all the tests in the
system that it currently uses. Hence our first objective is to try to reduce the number
of configurations. To achieve this we tackle the planning problem in two steps. First we
construct a partition of the set of tests into subsets that can be carried out within a sin-
gle configuration. We call this problem the covering problem since we are looking for
a family of configurations that covers each and every test. Then we solve the optimal
sequence problem in order to find the best sequence of configurations (using only those
configurations that are in the solution of the covering problem). Since the decomposi-
tion of the planning problem into a covering problem and a sequencing problem does
not always yield an optimal solution, we also present a global formulation of the planning
problem.
Our article is organized as follows. The “Methods” section deals with the modelling and

solution of the planning problem. It includes a subsection on shuttles and probes; a sub-
section on power chains and avoidance of collisions; a subsection on probes, points of
interest, and reachability constraints; subsections on incompatibility constraints and tests
and feasibility constraints, respectively; a subsection on the partial covering problem; a
subsection on a greedy algorithm for the covering problem; a subsection on the optimal
sequence problem; and finally a subsection on a global formulation of the planning prob-
lem. The article continues with a section on “Results and discussion” and ends with the
“Conclusion” section.

Methods
Shuttles and probes

We assign the indices 0, 1, . . . , 7 to the eight shuttles in the following way: the shuttles that
are above the board are labelled 0, 1, 2, 3 in the clockwise order starting with the front-
left shuttle and the shuttles below are labelled 4, 5, 6, 7 in a similar way. Hence Shuttle 0
is the front-left shuttle that is above the board, Shuttle 1 is the back-left shuttle above the
board, Shuttle 2 the back-right shuttle above the board, and so on. The dimensions of each
shuttle are 195 mm (in the horizontal direction) and 160 mm (in the vertical direction).
The dimensions of the board are 1050 mm (in the horizontal direction) and 850 mm (in
the vertical direction). We will use these constants in the model but obviously they can be
replaced by other constants if the covering problem must be solved for another system.
Each shuttle has a preferred corner, corresponding to the point where its power chain is
attached to the board. For instance, the preferred corner of the front-left shuttle that is
above (resp. below) the board is the front-left corner of this shuttle.
The initial configuration is the configuration in which the preferred corner of each shut-

tle is located at the corresponding board corner. For instance, the initial coordinates of the

Chen et al. Mathematics-in-Industry Case Studies (2017) 8:4 Page 4 of 19

preferred corner of the back-left shuttle are (0, 850). A given board cannot be introduced
into (or removed from) the FP system unless it is in the initial configuration. Hence when
the board is introduced into the FP system, one computes the tests that can be carried out
within this configuration before considering other configurations.
In our model the x-coordinate of Shuttle k (for k ∈ {0, 1, . . . , 7}) will be denoted by S2k

and its y-coordinate by S2k+1: those two expressions are variables since we are look-
ing for “good” configurations and the goal of the model is to find them. The probes,
which can come into contact with points of interest (or points, for short), are attached
to their respective shuttles. The number of probes in the system under consideration
is 21. The expression k(p) will denote the shuttle to which the probe p is attached, for
p in {0, 1, 2, . . . , 20}. For each shuttle we also know its x-offset and y-offset, denoted
respectively by Op1 and Op2. (Note that Op1 and Op2 are constants, not variables.) The
coordinates of the point where the probe p is attached to the shuttle k(p) are thus equal
to S2k(p) + Op1 and S2k(p)+1 + Op2, respectively.

Power chains and avoidance of collisions

In this subsection we first address the problem of modelling the avoidance of collisions
above the board, specifically collisions

• between the power chain of a given shuttle and any other shuttle;
• between the power chains of any two shuttles; and
• between two shuttles.

Figure 2 describes the board regions considered when studying collisions. We will first
consider modelling the avoidance of collisions between the power chain of a given shuttle
and any other shuttle. Figure 3 illustrates the forbidden region corresponding to the front-
left shuttle for each of five cases (note that Case 2 is illustrated by two subcases), where
the forbidden region denotes (roughly) the region that can be occupied by the power
chain of the front-left shuttle. Each of the five cases is described precisely below. Our
definition of forbidden region is too strict, in the sense that a shuttle or power chain
could occupy part of the forbidden region without interfering with the power chain of the
shuttle under consideration. Amore precise definition, however, would be very difficult to

Fig. 2 The six regions considered when studying the collisions between the front-left shuttle and another
shuttle

Chen et al. Mathematics-in-Industry Case Studies (2017) 8:4 Page 5 of 19

Fig. 3 Illustration of the various cases when studying the collisions between the front-left shuttle and
another shuttle : in Case 1 the other shuttle is included within the vertical strip, in Cases 2a, 2b, and 3 within
the upper horizontal strip, and in Cases 4 and 5 within the lower horizontal strip (see the text for more details)

model, since a power chain is a flexible object containing several springs and may assume
many different positions.
We now give the (mathematical) description of forbidden region that we will use. Let

(S0, S1) denote the coordinates of the preferred corner of the front-left shuttle. We first
define the large rectangle: if S1 is at least 460, the large rectangle denotes the set

{(x, y) | 0 ≤ x ≤ S0, 0 ≤ y ≤ S1};
if S1 is less than 460, it denotes the set

{(x, y) | 0 ≤ x ≤ S0, 0 ≤ y ≤ min(S1 + 160, 460)}.
If S0 is at most 350, the forbidden region is precisely the large rectangle. If S0 is greater

than 350, the forbidden region is the set difference between the large rectangle and the
small rectangle, where the latter is defined as

{(x, y) | 350 ≤ x ≤ S0, 0 ≤ y ≤ min(S1, 300)}.

Chen et al. Mathematics-in-Industry Case Studies (2017) 8:4 Page 6 of 19

We now turn to the five cases that arise when considering the avoidance of collisions
between the power chain of the front-left shuttle and any other shuttle. In Fig. 3 the front-
left shuttle is depicted in red, the other shuttle in blue, and the forbidden region in black.
Let S′

0 and S′
1 denote the coordinates of the avoidance corner of the “other” shut-

tle (which is anonymous for the time being). This avoidance corner is the front-
left corner of the other shuttle. Here are the five cases, which are not mutually
exclusive:

1. the other shuttle is included within the vertical strip (i.e., S′
0 ≥ S0 holds);

2. the other shuttle is included within the upper horizontal strip (i.e.,
S′
1 ≥ max{460, S1} holds) and S1 is at least equal to 300;

3. the other shuttle is included within the upper horizontal strip (i.e., S′
1 ≥ S1 + 160

holds) and S1 is at most equal to 300;
4. the other shuttle is included within the lower horizontal strip (i.e., S′

0 ≥ 350 and
S′
1 + 160 ≤ 300 hold), S0 is at least equal to 350, and S1 at least equal to 300;

5. the other shuttle is included within the lower horizontal strip (i.e., S′
0 ≥ 350 and

S′
1 + 160 ≤ S1 hold), S0 is at least equal to 350, and S1 at most equal to 300.

To model these collision avoidance constraints, we define five binary variables yr (for
r ∈ {0, 1, 2, 3, 4}), each of which corresponding to one of the cases listed above. The first
constraint below means that one of the five cases must be chosen in order to verify that
the avoidance corner (i.e., the front-left corner of the “other” shuttle) does not belong to
the forbidden region. The second, third, and fourth constraints ensure that if yi−1 (for i in
{1, 2, 3, 4, 5}) has the value 1, the conditions on S0 and S1 in Case i are indeed verified. The
fifth (resp. eighth) constraint ensures that the coordinates S′

0 and S′
1 satisfy the conditions

in Case 1 (resp. 3). Finally the sixth and seventh (resp. ninth and tenth, eleventh and
twelfth) constraints ensure that S′

0 and S′
1 satisfy the conditions in Case 2 (resp. 4, 5).

y0 + y1 + y2 + y3 + y4 = 1

S0 ≥ 350(y3 + y4)

S1 ≥ 300(y1 + y3)

S1 ≤ 300(y2 + y4) + 850(1 − y2 − y4)

S′
0 − S0 ≥ −1050(1 − y0)

S′
1 − 460 ≥ −850(1 − y1)

S′
1 − S1 ≥ −850(1 − y1)

S′
1 − S1 − 160 ≥ −850(1 − y2)

S′
0 ≥ 350y3

S′
1 + 160 ≤ 300y3 + 850(1 − y3)

S′
0 ≥ 350y4

S′
1 + 160 − S1 ≤ 850(1 − y4)

We now simplify these constraints as follows.

y0 + y1 + y2 + y3 + y4 = 1 (1)

− S0 + 350y3 + 350y4 ≤ 0 (2)

− S1 + 300y1 + 300y3 ≤ 0 (3)

Chen et al. Mathematics-in-Industry Case Studies (2017) 8:4 Page 7 of 19

S1 + 550y2 + 550y4 ≤ 850 (4)

−S′
0 + S0 + 1050y0 ≤ 1050 (5)

− S′
1 + 850y1 ≤ 390 (6)

− S′
1 + S1 + 850y1 ≤ 850 (7)

− S′
1 + S1 + 850y2 ≤ 690 (8)

− S′
0 + 350y3 ≤ 0 (9)

S′
1 + 550y3 ≤ 690 (10)

− S′
0 + 350y4 ≤ 0 (11)

S′
1 − S1 + 850y4 ≤ 690 (12)

The above constraints are “abstract” in the sense that S′
0 and S′

1 represent the avoidance
corner of an anonymous shuttle. Actually, to model the requirement that there is no colli-
sion between the power chain of the front-left shuttle and any other shuttle, we need three
groups of 12 constraints, each corresponding to one of the following shuttles: the back-
left shuttle (S′

0 = S2, S′
1 = S3−160), the back-right shuttle (S′

0 = S4−195, S′
1 = S5−160),

and the front-right shuttle (S′
0 = S6−195, S′

1 = S7). We then obtain a complete set of con-
straints for the front-left shuttle, i.e., 36 constraints. This set requires the introduction of
15 binary variables. We need similar sets of constraints and binary variables for the other
shuttles. In total there will be 60 binary variables and 144 constraints.
We must now model the requirement that two avoidance regions cannot overlap, so

as to ensure that two power chains cannot “cross.” Consider the avoidance region of the
front-left shuttle and its relationships with the other avoidance regions.

• Given that no two shuttles intersect (see below) and no shuttle has a non-empty
intersection with the avoidance region of any other shuttle, it is enough to impose the
condition S3 ≥ S1 in order to prevent the avoidance regions of the front-left and
back-left shuttles from having a non-empty intersection.

• The back-right shuttle cannot belong to the lower horizontal region (or at least the
part of the lower horizontal region that is not already in the vertical region).
Otherwise the avoidance region of the back-right shuttle would have a non-empty
intersection with the front-left shuttle or the avoidance region of the front-left
shuttle. In practice this means that the variables y8 and y9 must equal 0.

• The front-right shuttle cannot belong to the upper horizontal region (or at least the
part of the upper horizontal region that is not already in the vertical region).
Otherwise the avoidance region of the front-right shuttle would have a non-empty
intersection with the front-left shuttle or the avoidance region of the front-left
shuttle. In practice this means that the variables y11 and y12 must equal 0.

The above conditions will ensure that there is no collision between the power chains in
pairs of shuttles that include the front-left shuttle. Similar conditions are needed for the
three other pairs of shuttles. Therefore to avoid collisions between power chains (on one
hand) and shuttles or other power chains (on the other), we can use the above constraints
(after forcing some variables to equal 0) and add the following constraints to the model.

S3 ≥ S1 (13)

S5 ≥ S7 (14)

Chen et al. Mathematics-in-Industry Case Studies (2017) 8:4 Page 8 of 19

Finally we turn to collisions between shuttles. We consider again the front-left shut-
tle and assume that S′

0 and S′
1 are the coordinates of the front-left corner of the “other”

shuttle. The variable y60 (resp. y61, y62, y63) takes the value 1 if and only if the “other” shut-
tle is to the left (resp. above, to the right, below) of the front-left shuttle. The following
constraints ensure that the two shuttles will not overlap.

y60 + y61 + y62 + y63 = 1

S′
0 + 195 ≤ S0 + 1050(1 − y60)

S′
1 + 850(1 − y61) ≥ S1 + 160

S′
0 + 1050(1 − y62) ≥ S0 + 195

S′
1 + 160 ≤ S1 + 850(1 − y63)

We obtain the following system after simplifying them.

y60 + y61 + y62 + y63 = 1 (15)

−S0 + S′
0 + 1050y60 ≤ 855 (16)

S1 − S′
1 + 850y61 ≤ 690 (17)

S0 − S′
0 + 1050y62 ≤ 855 (18)

−S1 + S′
1 + 850y63 ≤ 690 (19)

As before, the variables S′
0 and S′

1 must be replaced by the correct expressions for every
shuttle other than the front-left shuttle. The three other pairs (back-left and back-right,
back-left and front-right, back-right and front-right) must also be taken into account. For
this kind of constraints a total of 24 binary variables and 30 relations are needed.
We now have a complete system of constraints preventing collisions between shuttles

and power chains that are above the board. Of course a similar system is required for the
shuttles and power chains that are below the board. All these constraints will be referred
to as the collision avoidance constraints and denoted by CAC (Su, yr), where the variables
of the form yr are the auxiliary variables.

Probes, points of interest, and reachability constraints

We now introduce the binary variables Xαp for every point α and every probe p, where
Xαp is a binary variable that equals 1 if and only if probe p (attached to the shuttle k(p))
can reach the point α (whose coordinates are denoted by Pα1 and Pα2, respectively). We
wish to model the constraint that if Xαp equals 1, then the probe p can actually reach the
point α. Given the system we are studying, this amounts to saying that if Xαp equals 1, the
expression |S2k(p)+Op1−Pα1| should be at most 30.0 and the expression |S2k(p)+1+Op2−
Pα2| at most 33.5. In other words, if Xαp equals 1, the following relations must be satisfied.

S2k(p) + Op1 − Pα1 ≤ 30.0

−S2k(p) − Op1 + Pα1 ≤ 30.0

S2k(p)+1 + Op2 − Pα2 ≤ 33.5

−S2k(p)+1 − Op2 + Pα2 ≤ 33.5

Chen et al. Mathematics-in-Industry Case Studies (2017) 8:4 Page 9 of 19

We can rewrite them as follows.

S2k(p) ≤ −Op1 + Pα1 + 30.0

−S2k(p) ≤ Op1 − Pα1 + 30.0

S2k(p)+1 ≤ −Op2 + Pα2 + 33.5

−S2k(p)+1 ≤ Op2 − Pα2 + 33.5

The variable S2k(p) (resp. S2k(p)+1) must satisfy the above constraints if Xαp equals 1;
otherwise it is bounded from above (resp. below) by its upper (resp. lower) bound. Here
are the constraints that we include into the model.

S2k(p) ≤ (−Op1 + Pα1 + 30.0
)
Xαp + UB2k(p)

(
1.0 − Xαp

)
(20)

−S2k(p) ≤ (
Op1 − Pα1 + 30.0

)
Xαp − LB2k(p)

(
1.0 − Xαp

)
(21)

S2k(p)+1 ≤ (−Op2 + Pα2 + 33.5
)
Xαp + UB2k(p)+1

(
1.0 − Xαp

)
(22)

−S2k(p)+1 ≤ (
Op2 − Pα2 + 33.5

)
Xαp − LB2k(p)+1

(
1.0 − Xαp

)
(23)

These inequalities (called reachability constraints) are required for each couple (α, p).
The set of reachability constraints will be denoted by REACH

(
Su,Xαp

)
.

Incompatibility constraints

These constraints are not necessary for modelling our problem but allow us to strengthen
its linear programming relaxation. Assume that α and β denote two points of interest and
p and q two probes attached to the same shuttle. It is easy to derive from the reachability
constraints some conditions implying that Xαp and Xβq cannot both equal 1. So for each
pair of couples (α, p) and (β , q) satisfying those conditions, we may add the constraint
Xαp + Xβq ≤ 1 to the model. In practice we do not add all the incompatibility constraints
to themodel: rather we solve its linear relaxation and add to themodel all such constraints
that are violated in the current optimal solution and verify Xαp ≥ 0.2 and Xβq ≥ 0.2 in
the current optimal solution. The set of all incompatibility constraints included into the
model will be denoted by INC

(
Xαp

)
.

Tests and feasibility constraints

Given the current configuration (i.e., a set of values for the variables Su representing the
shuttles coordinates), we wish to determine whether a specific test can be carried out or
not. We introduce, for each �, a binary variable Y� that may take the value 1 only if the
test � can be carried out within the current configuration. We must find a way of relating
the value of Y� to those of the Xαp. First we show that the test � can be performed within
the current configuration if and only if there is a matching of a certain type in a bipartite
graph (denoted G�) that we now describe. Let N� denote the set of nets involved in test �

and U� the set of points belonging to some net in N�. The graph G� contains two kinds of
vertices: the points inU� and the probes. It contains an edge between point α and probe p
if and only if probe p can be used to touch point α within the test � (i.e., the couple (α, p)
is admissible) and Xαp equals 1. Recall that the admissibility of the couple (α, p) depends
upon �. We denote by E� the set of admissible couples for test �. In Fig. 4 all the edges
in E� are represented: the green edges are those defining graph G� and the black edges
represent couples (α, p) that are admissible but verify Xαp = 0. Note that Net 0 (resp. Net
1, Net 2) is the set {0, 1, 2} (resp. {3, 4, 5}, {6, 7, 8}).

Chen et al. Mathematics-in-Industry Case Studies (2017) 8:4 Page 10 of 19

Fig. 4 The graph for a specific test (assuming the number of probes equals 18): the set of all the edges
represented is E� while the green edges are those defining the graph G�

From the definition of “carrying out a test,” it follows that a test can be performedwithin
the current configuration if and only if G� contains a matching saturating exactly one
point within each net in N�. For instance the green graph G� in Fig. 4 contains the match-
ing {(1, 10), (4, 7), (8, 12)}, showing that probe 10 (resp. 7, 12) can touch point 1 (resp. 4,
8) in Net 0 (resp. 1, 2). Hence the test � can be carried out within the current configu-
ration. We now observe that finding a matching saturating exactly one point within each
net in N� is equivalent to finding a system of distinct representatives for the collection of
sets {Zi}, where Zi is the set of probes that can be used to touch a point in the net i, i.e.,

Zi = {
p ∈ P | (α, p) is admissible and Xαp = 1 for some α in net i

}

and P denotes the set of probes. A classical theorem in combinatorial optimization asserts
that the collection of sets {Zi}i∈N�

has a system of distinct representatives if and only if
the condition

∣
∣
∣
∣∣

⋃

i∈M
Zi

∣
∣
∣
∣∣
≥ |M|

is satisfied for every subset M of N� (see in particular the seminal text by Ford and
Fulkerson [9] and the book by Chvátal [4]). This theorem can be rephrased as follows:

Chen et al. Mathematics-in-Industry Case Studies (2017) 8:4 Page 11 of 19

the collection {Zi}i∈N�
has a system of distinct representatives if and only if the

condition
(

⋃

i∈M
Zi

)

∩ Q �= ∅

holds for every set Q verifying |Q| = |M| − 1 (where Q denotes the complement of Q).
Let M denote any nonempty subset of N� and U(M) the union of all the points

belonging to nets inM. The statement
(

⋃

i∈M
Zi

)

∩ Q �= ∅

is equivalent to the statement
∑

(α,p)∈E�
α∈U(M),p∈Q

Xαp ≥ 1,

by the definition of the Zi. We thus obtain the following proposition.

Proposition 2.1 The graph G� contains a matching saturating exactly one point within
each net in N� if and only if the inequalities

∑

(α,p)∈E�
α∈U(M),p∈Q

Xαp ≥ 1

hold for all sets M, Q such that M is not empty, Q is a subset of probes, and |Q| equals
|M| − 1 (where Q denotes the complement of Q).

For each test � we include into our model the constraints
∑

(α,p)∈E�
α∈U(M),p∈Q

Xαp ≥ Y� (24)

for all setsM, Q such thatM is not empty, Q is a subset of probes, and |Q| equals |M| − 1.
They will be called feasibility constraints and denoted by FEAS

(
Xαp,Y�

)
. Proposition 2.1

implies that if Y� equals 1, then the graphG� contains a matching of the required type and
test � can be carried out within the current configuration.
For an illustration we give the feasibility constraints for the test represented in Fig. 4.

First we assume that |M| equals 1 and write the following constraints.

X0,0 + X0,6 + X0,9 + X1,0 + X1,10 + X2,6 + X2,7 ≥ Y�

X3,8 + X3,11 + X4,7 + X4,11 + X5,8 + X5,13 ≥ Y�

X6,6 + X6,12 + X6,16 + X7,7 + X7,9 + X8,0 + X8,10 + X8,12 + X8,15 ≥ Y�

For the case where |M| equals 2, we need all the constraints of the form
∑

(α,p)∈E�
α∈U(M),p �=q

Xαp ≥ Y�

for some probe q. For instance, ifM consists of nets 0 and 1 and q equals 6, we have

X0,0 + X0,9 + X1,0 + X1,10 + X2,7 + X3,8 + X3,11 + X4,7 + X4,11 + X5,8 + X5,13 ≥ Y�.

Chen et al. Mathematics-in-Industry Case Studies (2017) 8:4 Page 12 of 19

Finally, for the case where |M| equals 3, we need all the constraints of the form

∑

(α,p)∈E�

α∈U(M),p �=q,q′

Xαp ≥ Y�

for some pair of probes {q, q′}. For instance, if q equals 6 and q′ equals 7, we have

X0,0 + X0,9 + X1,0 + X1,10 + X3,8 + X3,11 + X4,11 + X5,8 + X5,13 + X6,12 + X6,16 + X7,9

+ X8,0 + X8,10 + X8,12 + X8,15 ≥ Y�.

When the model containing these feasibility constraints returns a solution, one must do
a little bit of work to compute the couples (α, p) that describe the implementation of test
� (for each �). Actually it suffices to solve a bipartite matching problem in the graph G�

corresponding to this solution.We now comment on the number of feasibility constraints
for a given �. Assuming that there are 21 probes (as in the case of our data sets), this
number equals

|N�|∑

m=1

(|N�)|
m

) ∑

Q:|Q|=21−(m−1)
1 =

|N�|∑

m=1

(|N�|
m

)(
21

m − 1

)

and grows rapidly as a function of |N�|. This is not an issue because in our data sets |N�|
is almost always less than five. Nonetheless one might ask why we do not model directly
the requirement that there be a matching between nets and probes (in order to carry out
a specific test). The reason is that to do so, we would need to introduce variables of the
form Xαp� and the resulting model would contain too many variables.
If one does not want to use the above feasibility constraints when |N�| is at least

three (note that the number of constraints equals 276 when N� contains three nets!), an
alternative is to introduce the supplementary variablesXαp� and the following constraints.

∑

(α,p)∈E�
α∈U(N�)

Xαp� ≤ 1 for all p ∈ P

Y� ≤
∑

(α,p)∈E�
α∈k,p∈P

Xαp� ≤ 1 for all k ∈ N�

Xαp� ≤ Xαp for all (α, p, �)

The partial covering problem

It is natural to ask the following question: what is the maximum number of tests that can
be carried out while the system is in a given configuration? This problem, which we call
the partial covering problem, can be formulated as follows: maximize the function

∑
� Y�

subject to the collision avoidance constraints CAC(Su, yr), the reachability constraints
REACH(Su,Xαp), the incompatibility constraints INC(Xαp), the feasibility constraints
FEAS(Xαp,Y�), the lower and upper bound constraints on all the variables, and the inte-
grality constraints on the binary variables. The resulting mixed integer linear program
can be solved by using a commercial solver.

Chen et al. Mathematics-in-Industry Case Studies (2017) 8:4 Page 13 of 19

A greedy algorithm for the covering problem

The covering problem can be solved in a heuristic fashion through repeated calls of
an algorithm for solving the partial covering problem. This method is summarized in
Algorithm 1. Note that in the first line of the loop body, T can be replaced by a sub-
set of tests. Then one must determine which of the omitted tests are covered by the
configuration C before removing them from T .

Algorithm 1 A greedy algorithm for the covering problem
1: C ←− {the initial configuration}
2: let T denote the set of all tests
3: remove from T the tests that can be carried out within the initial configuration
4: n ←− 1
5: while T is not empty do
6: compute a configuration C covering the maximum number of tests in T
7: include C in C
8: remove from T the tests covered by C
9: n ←− n + 1

10: end while

The optimal sequence problem

Let C be the set of configurations computed by the above algorithm and n its cardinality.
Thus C is of the form {C1,C2, . . . ,Cn}, where Ci denotes the ith configuration (C1 being
the initial configuration). Let also d

(
Ci,Cj

)
denote the time taken by the FP system to go

from the configuration Ci to the configuration Cj. We wish to compute the best sequence
of configurations, i.e., a sequence

(
C1 = Cσ(1),Cσ(2), . . . ,Cσ(n),C1

)
(where σ denotes a

permutation) that minimizes
∑

{d (
Ci,Cj

) | j follows i in the sequence}.

When a shuttle moves from one configuration to the next, it travels at the same speed in
the horizontal direction as in the vertical direction, and thus the time it takes to do so is
proportional to the L∞ distance between the respective positions of the shuttle in the two
configurations. Hence we assume that d

(
Ci,Cj

)
is the L∞ distance between Ci and Cj.

Since the distances are symmetric (meaning that d
(
Ci,Cj

) = d
(
Cj,Ci

)
holds for any

pair {i, j}), we can model the optimal sequence problem as a Travelling Salesman Problem
(TSP) on an undirected graph. The TSP itself can be modelled by using degree con-
straints (each vertex must be of degree 2) and subtour elimination constraints (enforcing
the condition that there be at least two edges between a subset S of vertices and its com-
plement, for any S verifying 2 ≤ |S| ≤ n − 2). We introduce the binary variables zij for
1 ≤ i < j ≤ n, where zij equals 1 if and only if the edge ij belongs to the tour. Here is the
integer programming formulation of the optimal sequence problem.

min
n−1∑

i=1

n∑

j=i+1
d

(
Ci,Cj

)
zij

Chen et al. Mathematics-in-Industry Case Studies (2017) 8:4 Page 14 of 19

subject to
i−1∑

j=1
zji +

n∑

j=i+1
zij = 2 ∀i ∈ {1, 2, . . . , n} (25)

∑

i∈S

∑

j/∈S
j>i

zij +
∑

i∈S

∑

j/∈S
j<i

zji ≥ 2 ∀S ⊂ {1, 2, . . . , n}, 2 ≤ |S| ≤ n − 2 (26)

zij ∈ {0, 1} ∀i,∀j such that i < j

A global formulation of the planning problem

We now give a formulation of the planning problem that is global but unlikely to be
solved for large data sets. In this formulation we are looking for several configurations
at once, so that each test is covered by at least one configuration. We assume that there
are at most n configurations. We introduce a group of variables

(
Siu, yir ,Xi

αp,Y i
�

)
for each

i ∈ {1, 2, . . . , n}, that is, for each potential configuration. The variable Y i
� equals 1 if and

only if the test � is covered by the configuration represented by the shuttles coordinates
Siu. For each i the vector

(
Siu, yir ,Xi

αp,Y i
�

)
must satisfy the constraints in CAC

(
Siu, yir

)
,

REACH
(
Siu,Xi

αp

)
, INC

(
Xi

αp

)
, and FEAS

(
Xi

αp,Y i
�

)
, as well as the bound and nonnega-

tivity constraints on the variables and the integrality constraints on all the variables except
the Siu.
To these constraints one must add constraints ensuring that each test is covered by at

least one configuration. These constraints can be expressed as
∑n

i=1 Y i
� ≥ 1 for every �.

We now introduce variables and constraints to model the choice of the optimal configu-
ration sequence. For i in {1, 2, . . . , n}, let wi be a binary variable that equals 1 if and only
if Configuration i is chosen. For any nonempty proper subset S of {1, 2, . . . , n}, let wS be a
binary variable that equals 1 if and only if S contains at least one of the chosen configu-
rations. As in the subsection “The optimal sequence problem”, we introduce the variables
zij defined as follows: zij (for 1 ≤ i < j ≤ n) equals 1 if and only if Configuration i appears
immediately before or after Configuration j in the sequence of configurations. Finally we
let dij denote the L∞ distance between Configurations i and j. We can now propose a
model for choosing an optimal configuration sequence.

min
n−1∑

i=1

n∑

j=i+1
dijzij

subject to

n∑

i=1
Y i

� ≥ 1 ∀� (27)

Y i
� ≤ wi ∀i ∈ {1, 2, . . . , n},∀� (28)

wi ≤ wS ∀i ∈ S,∀S ⊂ {1, 2, . . . , n}, S �= ∅ (29)
i−1∑

j=1
zji +

n∑

j=i+1
zij = 2wi ∀i ∈ {1, 2, . . . , n} (30)

∑

i∈S

∑

j/∈S
j>i

zij +
∑

i∈S

∑

j/∈S
j<i

zji ≥ 2(wS + wS − 1) ∀S ⊂ {1, 2, . . . , n}, S �= ∅ (31)

Chen et al. Mathematics-in-Industry Case Studies (2017) 8:4 Page 15 of 19

dij ≥ |Siu − Sju| ∀u,∀i,∀j such that i < j (32)

CAC
(
Siu, yir

) ∀i
REACH

(
Siu,Xi

αp

)
∀i

INC
(
Xi

αp

)
∀i

FEAS
(
Xi

αp,Y i
�

)
∀i

Y i
� ∈ {0, 1} ∀i ∈ {1, 2, . . . , n},∀�

wi ∈ {0, 1} ∀i ∈ {1, 2, . . . , n}
wS ∈ {0, 1} ∀S ⊂ {1, 2, . . . , n}, S �= ∅
zij ∈ {0, 1} ∀i,∀j such that i < j

dij ≥ 0 ∀i,∀j such that i < j

Siu ≥ 0 ∀i,∀u
yir ∈ {0, 1} ∀i,∀r

Xi
αp ∈ {0, 1} ∀i,∀(α, p)

This model is a mixed integer program with linear constraints and a nonlinear objective
function. It can be linearized by introducing the nonnegative real variables Dij, where
Dij stands for the product dijzij for each i and j with i < j. After replacing the objective
function by

∑n−1
i=1

∑n
j=i+1 Dij and adding the constraints Dij ≥ dij − M(1 − zij) (whereM

is a constant larger than any distance between two configurations), we obtain a model of
our problem that is actually a mixed integer linear program.
We expect that n (the maximum number of configurations) will be relatively small for

most data sets, i.e., smaller than 30. If the number of tests is large, however, the above
MILP will be hard to solve and one will have to investigate the use of column generation
or other decomposition techniques for solving our problem. We also note that the set
of solutions of this model exhibits many symmetries. This difficulty could be partially
overcome by introducing the constraints wi ≥ wi+1 (for i in {1, 2, . . . , n − 1}) into the
model.

Results and discussion
In this section we present results pertaining to the solution of the covering and sequenc-
ing subproblems. As mentioned in the subsection “A global formulation of the planning
problem”, the global formulation cannot be used for large data sets, particularly the kind
of data sets that the Companymust handle.We start by describing the format of each data
set, consisting of a probe file, a point file, and a test file. The probe file contains the descrip-
tion of each probe, namely: a numerical identifier; the string “top” or “bot” to indicate
whether the shuttle to which the probe is attached is on top or on bottom of the board; a
string indicating the position of that shuttle (for instance “fl” refers to a front-left shuttle);
and the coordinates of the point of attachment of the probe with respect to the preferred
corner of the shuttle to which it is attached. Here is an example of such a description.

0 top fl 65.0 79.0

This means that Probe 0 is attached to the front-left shuttle on top of the board and that
it is attached to this shuttle at the point of coordinates (65.0, 79.0) (since the preferred
corner of a front-left shuttle is the point of coordinates (0.0, 0.0)). The point file contains

Chen et al. Mathematics-in-Industry Case Studies (2017) 8:4 Page 16 of 19

the description of each point, i.e., a numerical identifier and the coordinates of that point.
For example the line corresponding to Point 0 is the following.

0 525.0 425.0

The test file consists of a sequence of test descriptions (each of which occupying several
lines). For instance the description of Test 4908 is as follows.

test 4908 2

net 9816 3

3120

1 2 3 4 5 6 7 8 10 11 13 14 15 16 19 20

3121

1 2 3 4 5 6 7 8 10 11 13 14 15 16 19 20

3122

1 2 3 4 5 6 7 8 10 11 13 14 15 16 19 20

net 9817 4

5268

1 2 3 4 5 6 7 8 10 11 13 14 15 16 19 20

5269

1 2 3 4 5 6 7 8 10 11 13 14 15 16 19 20

5270

1 2 3 4 5 6 7 8 10 11 13 14 15 16 19 20

5271

1 2 3 4 5 6 7 8 10 11 13 14 15 16 19 20

Note that the second number on the first line represents the number of nets within
the test (2, in this example). Therefore the first line in the test description is followed by
the description of the first net, Net 9816, followed by the description of the second one,
Net 9817. Net 9816 consists of three points, represented by their identifiers and whose
coordinates are stored in the point file. The points in question are Points 3120, 3121,
and 3122, and each point identifier is followed (on the next line) by the list of probes
that may touch that particular point. Naturally Net 9817 is described in a similar fashion.
Table 1 summarizes the characteristics of the four instances that we used for our tests. It
turns out that some of the tests in each of the four data sets are infeasible, i.e., there are
tests that no configuration can “cover.” For this reason our program begins by determin-
ing which tests are infeasible through solving a series of partial covering problems (each
with a data set consisting of one test). Then we solve the partial covering problem (see
section “Methods”) for the remaining tests, each of which is feasible. Note that we did not
include into the model the tests that consist of 5 nets or more, because the correspond-
ing feasibility constraints (see the subsection “Tests and feasibility constraints”) are too
numerous. In any case only Dataset 3 contains such tests and there are only 6 of them.
In our experiments we solved the covering problem by using Cplex to find a solution of

each of the partial covering problems. Note that Cplex implements a branch-and-bound

Table 1 Characteristics of the instances

Instance identifier Nb. of probes Nb. of points Nb. of tests Nb. of nets

Dataset3 21 1034 2035 4388

Dataset4 21 7445 9832 19664

7700FC 21 3016 4423 10996

pinPCB_15mils 21 6659 3331 6659

Chen et al. Mathematics-in-Industry Case Studies (2017) 8:4 Page 17 of 19

algorithm for solving mixed integer linear programming problems (see Nemhauser and
Wolsey [16] for a description of the branch-and-bound method). Our initial intention
was to solve the covering problem by solving partial covering problems until all the tests
had been covered, as explained in the subsection “A greedy algorithm for the covering
problem”. Unfortunately the number of constraints of our model is huge and including
into it all the feasible tests consumed too much memory. Therefore instead of solving a
partial covering problem including all the feasible tests, we included at most 400 tests in
each of the successive partial covering problems solved by our algorithm. The configura-
tion obtained after solving a given partial covering problemmay actually cover more than
the number of covered tests indicated in the solution; therefore we look for all the tests
covered by the current configuration before solving the next partial covering problem.
The mixed integer linear program (MILP) corresponding to a partial covering problem

has a weak linear relaxation and many of its solutions have the same objective function
value. Hence finding a (provably) optimal solution of a given partial covering problem
takes too much time and we decided to put a limit on its execution time. For each of
the four data sets, we tried three such limits: 90 seconds, 180 seconds, and 270 seconds,
respectively. For instance, in Table 2, the identifier 7700FC-180 refers to an experiment
with data set 7700FC in which we let the Cplex MILP algorithm run for at most 180 sec-
onds when attempting to solve a partial covering problem. We ran our tests on a machine
with an Intel Core i7-860, 2.80GHz, and a 2G memory.
Intuitively, if we spend more time finding a good solution for each of the partial cover-

ing problems, we should be able to cover all the tests with fewer configurations and hence
obtain a better solution of the planning problem. With one exception (Dataset4-90), the
results in Table 2 show that spending 270 seconds to solve each partial covering prob-
lem always yields a solution that is better (i.e., of smaller length) than those obtained after
spending only 90 or 180 seconds on each partial covering problem. This is true even if
spending 90 or 180 seconds on each partial covering problem yields a solution with fewer
configurations. Overall the results are very encouraging, because the system currently in
use at the Company produces plans that may include hundreds of configurations while

Table 2 Results. Real time represents the time (in minutes) needed to solve the covering problem,
User time the time (in minutes) consumed by all the processors, Nb. of config. the number of partial
covering problems that were solved, and Sol. value the optimal value of the sequencing problem
described in the subsection “The optimal sequence problem”

Instance Nb. feasible tests Real time User time Nb. of config. Sol. value

Dataset3-90 1404 65 192 28 12531.5

Dataset3-180 1404 80 281 24 12927.5

Dataset3-270 1404 116 387 26 11370.3

Dataset4-90 9813 57 141 17 6887.0

Dataset4-180 9813 62 188 14 7616.6

Dataset4-270 9813 81 292 15 7016.7

7700FC-90 2855 89 139 20 9953.6

7700FC-180 2855 104 185 17 8347.6

7700FC-270 2855 77 206 15 6844.7

pinPCB_15mils-90 2360 60 103 13 6178.8

pinPCB_15mils-180 2360 65 164 11 5301.2

pinPCB_15mils-270 2360 81 261 11 5284.0

Chen et al. Mathematics-in-Industry Case Studies (2017) 8:4 Page 18 of 19

our solutions include fewer than 30 configurations. The real time consumed for comput-
ing a solution is considered reasonable by the Company, since the time needed to test a
single board is itself substantial. Therefore it is feasible to spend one hour or so preparing
the sequence of configurations that will be used for testing a specific board.

Conclusion
In this article we have shown that the use of modelling and mathematical programming
yields solutions of the test planning problem that are much better than those currently
used by the Company. The new solutions can be obtained within times that are rea-
sonable. Our results indicate that the system currently used by the Company could be
replaced by a system based on mathematical programming. More work remains to be
done, however, in order to strenghten the formulation of the partial covering problem. In
particular we would like to find new families of cutting planes, whose introduction into
the model will speed up the solution process and thus yield better solutions of the par-
tial covering problem. Another avenue is to design heuristics (not making use of MILP
models) in order to cover a large number of tests with few configurations. One could then
use the MILP model described in section “Methods” to cover the remaining tests, pre-
sumably those complicated tests that include three or more nets. These improvements
may enable us to find solutions of the planning problem that are as good as those reported
in this article but take less time to compute. As for the model in the subsection “A global
formulation of the planning problem”, we could test it on small data sets and then look
for more sophisticated approaches for solving it, in the hope of computing solutions for
real-world problems within reasonable times.

Funding
Some of the work described in this article was carried out while Mario Morfin was a postdoctoral fellow at the Company.
His two internships were supported by Mitacs Inc. and NSERC, respectively, and were also partially supported by the
Company.

Authors’ contributions
The four authors started collaborating with the Company during the 2010 Fields-MITACS Industrial Problem-Solving
Workshop. Together they proposed a first attempt at modelling the problem submitted by the Company to the
workshop. MM then spent two semesters at the Company in order to understand and improve the system the Company
is currently using. His work was supervised by SC. MM and OM worked on the model presented in our article and OM
completed the computational work and the article itself. All authors read and approved the final manuscript.

Competing interests
None of the authors has any competing interests (financial or otherwise) regarding the work described in this article.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1School of Information Technology, York University, 3068 TEL Building, 4700 Keele Street, Toronto M3J 1P3, Canada.
2GERAD, HEC Montréal and Département d’informatique, UQAM, 3000 Côte-Sainte-Catherine, Montréal H3T 2A7,
Canada. 3MOAI Solutions Inc., 3-143 Arlington Ave., Toronto M6C 2Z3, Canada. 4Department of mathematics, University
of Toronto, 40 St. George St, room 6290, Toronto M5S 2E4, Canada.

Received: 15 September 2016 Accepted: 11 August 2017

References
1. Ahn H-R, Bae SW, Demaine ED, Demaine ML, Kim S-S, Korman M, Reinbacher I, Son W (2011) Covering points by

disjoint boxes with outliers. Comput Geometry 44(3):178–90
2. Applegate DL, Bixby RE, Chvátal V, Cook WJ (2006) The Traveling Salesman Problem: a computational study.

Princeton Series in Applied Mathematics. Princeton University Press, Princeton
3. Arkin EM, Hassin R (1994) Approximation algorithms for the geometric covering salesman problem. Discret Appl

Math 55(3):197–218

Chen et al. Mathematics-in-Industry Case Studies (2017) 8:4 Page 19 of 19

4. Chvátal V (1983) Linear programming. Freeman and Company, WH. New York
5. Current JR, Schilling DA (1989) The Covering Salesman Problem. Transp Sci 23(3):208–13
6. Dimitrijevic V, Saric Z (1997) An efficient transformation of the generalized traveling salesman problem into traveling

salesman problem on digraphs. Inf Sci 102:105–10
7. Fischetti M, Gonzales JJS, Toth P (1995) The symmetric generalized traveling salesman polytope. Networks 26:113–23
8. Fischetti M, Gonzales JJS, Toth P (1997) A Branch-and-cut Algorithm for the Symmetric Generalized Traveling

Salesman Problem. Oper Res 45:378–94
9. Ford LR, Fulkerson DR (1962) Flows in Networks. Princeton University Press, Princeton
10. Kara I, Guden H, Koc ON (2012) New formulations for the generalized traveling salesman problem. In: Proceedings of

the 6th International Conference on Applied Mathematics, Simulation, Modelling World Scientific and Engineering
Academy and Society (WSEAS). Stevens Point, Wisconsin. pp 60–5

11. Laporte G, Palekar U (2002) Some applications of the clustered travelling salesman problem. J Oper Res Soc 53:972–6
12. Laporte G, Asef-Vaziri A, Sriskandarajah C (1996) Some applications of the generalized traveling salesman problem.

J Oper Res Soc 47:1461–7
13. Laporte G, Mercure H, Nobert Y (1987) Generalized travelling salesman problem through n sets of nodes: the

asymmetrical cases. Discret Appl Math 18:185–97
14. Laporte G, Nobert Y (1983) Generalized travelling salesman problem through n sets of nodes: an integer

programming approach. INFOR 21:61–75
15. Laporte G, Semet F (1999) Computational evaluation of a transformation procedure for the symmetric generalized

traveling salesman problem. INFOR 37:114–20
16. Nemhauser GL, Wolsey LA (1988) Integer and combinatorial optimization. Wiley, New York
17. Noon CE, Bean JC (1991) A Lagrangian based approach for the asymmetric generalized traveling salesman problem.

Oper Res 39:623–32
18. Pop, PC (2007) New integer programming formulations of the generalized traveling salesman problem. Am J Appl

Sci 4(11):932–7
19. Riordan T (2011) Solving the problem of the traveling politician. https://eqn.princeton.edu/2011/12/_text_goes_

here/. Accessed 2 Feb 2017

https://eqn.princeton.edu/2011/12/_text_goes_here/
https://eqn.princeton.edu/2011/12/_text_goes_here/

	Abstract
	Keywords

	Introduction
	Methods
	Shuttles and probes
	Power chains and avoidance of collisions
	Probes, points of interest, and reachability constraints
	Incompatibility constraints
	Tests and feasibility constraints
	The partial covering problem
	A greedy algorithm for the covering problem
	The optimal sequence problem
	A global formulation of the planning problem

	Results and discussion
	Conclusion
	Funding
	Authors' contributions
	Competing interests
	Publisher's Note
	Author details
	References

