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Abstract—Piezoelectric devices, such as piezoelectric trav-
eling-wave rotary ultrasonic motors, have composite piezoelec-
tric structures. A composite piezoelectric structure consists of 
a combination of two or more bonded materials, at least one 
of which is a piezoelectric transducer. Piezoelectric structures 
have mainly been numerically modeled using the finite element 
method. An alternative approach based on the finite volume 
method offers the following advantages: 1) the ordinary dif-
ferential equations resulting from the discretization process 
can be interpreted directly as corresponding circuits; and 2) 
phenomena occurring at boundaries can be treated exactly. 
This paper presents a method for implementing the boundary 
conditions between the bonded materials in composite piezo-
electric structures modeled with the finite volume method. 
The paper concludes with a modeling example of a unimorph 
structure.

I. Introduction

Piezoelectric materials generate a dipole surface 
charge distribution on surfaces of the material, nor-

mal to the direction of the polarization, when the material 
is subjected to mechanical stress. This is the piezoelectric 
effect. alternatively, if the material is exposed to an elec-
tric field, the material undergoes a mechanical deforma-
tion. This is the converse piezoelectric effect. Therefore, 
these materials are used in the design and construction of 
sensors which sense and measure vibrations [1], [2], pres-
sure [3], [4], force [5], [6], acceleration [7], [8], or as energy 
harvesting devices [9]–[11]. The converse piezoelectric ef-
fect is used to generate force or mechanical displacement. 
Therefore, these materials are also used in the design and 
construction of piezoelectric traveling-wave rotary ultra-
sonic motors [12]–[14], bending actuators [15], V-stack 
actuators [16], biomorph actuators [17], and torsional ac-
tuators [18]. The piezoelectric effect and converse piezo-
electric effect are also used together in electrical energy 
conversion in the design and construction of piezoelectric 
transformers [19]–[21].

Piezoelectric materials are constructed in different 
shapes such as plates, discs, tubes, and rings and can be 
used on their own as simple piezoelectric devices such as 
piezoelectric transformers [19]–[21] or coupled with other 
metallic or nonmetallic materials as complex piezoelectric 
devices such as piezoelectric motors [12]–[14].

systematic numerical modeling of a piezoelectric plate 
has been performed in the past with the finite element 
method (FEM) in [14], [22]–[27], and more recently with 
the finite volume method (FVM) in [28]. It was shown in 
[28] that the FVM has the following strengths:

•	The FVM ordinary differential equations (odE) can 
be interpreted intuitively in terms of coupled circuits 
that represent the piezoelectric system [29]. These cir-
cuits can then be implemented using schematic cap-
ture packages. This makes it easier to interface the 
FVM model of the piezoelectric system with control 
circuits.
•	The FVM works easily with surface integrals, making 
it easier to deal with phenomena that occur at the 
boundary between two different materials. Therefore, 
this method may be more suitable to model an ul-
trasonic motor because the operating principle of the 
motor is based on the friction mechanism that takes 
place at the common contact boundary between the 
stator and the rotor. In this regard, this paper shows 
that the internal boundary conditions are handled in 
an intuitive manner when using the FVM.

The FVM model for a simple piezoelectric plate is pre-
sented in [28]. To model a composite piezoelectric struc-
ture which consists of two or more materials, one must 
model the boundaries between the materials in addition 
to modeling each material and the external boundaries. 
The objective of this paper is to present the FVM as ap-
plied to a unimorph structure and to compare the result-
ing FVM model to FEM simulations. specifically, static 
deformations are computed, as are eigenfrequencies. The 
model presented results in a system of ordinary differen-
tial equations; therefore, dynamic simulations of initial 
value problems could be performed, but are not presented 
here. simulations performed in the FEM software package 
coMsol (coMsol aB, stockholm, sweden) are used 
as a benchmark for the validation of the results obtained 
with the FVM model. coMsol is used as a benchmark 
because the displacement of a simple piezoelectric plate 
calculated using coMsol is the same as the displace-
ment calculated using a known exact solution [28]. There 
are also benchmark examples in the coMsol literature 
[30] and [31] showing a very good agreement between the 
results obtained in coMsol simulations and theoretical 
and experimental values.
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II. The Partial differential Equation Model

The dynamics of the piezoelectric material are deter-
mined [32] from newton’s second law

 ρ ρ
∂
∂

∇ ⋅
2

2 = =
u

u T
t tt , (1)

the absence of sources or sinks of charge

 ∇ ⋅ +( )eS ESε = 0, (2)

and appropriate boundary conditions. In (1), ρ is the mass 
density of the piezoelectric material and
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where u, v, and w are the local displacements from rest in 
the x-, y-, and z-directions, respectively. T(x, y, z, t) is the 
stress, S(x, y, z, t) is the strain, and E(x, y, z, t) is the elec-
tric field at each point in the material, at each moment in 
time. The actuator equation

 T c S e EE= − t , (4)

gives the stress in terms of the strain and the electric field; 
the superscript t denotes the transpose, cE is the stiffness 
or elasticity matrix, and e is the electromechanical cou-
pling matrix.

In this article, the piezoelectric material is assumed to 
be thin in the z-direction (see Fig. 1) and so the electric 
field E is assumed to be constant and in the z-direction 
only

 E( , , , ) = (0,0, ) .3x y z t E t  (5)

With this assumption, one only needs to solve (1) and (4) 
for u.

III. Modeling of a Piezoelectric-Metal 
structure

In [28], a thin piezoelectric plate was studied using 
the FVM to discretize (1) and (4). To model a composite 
piezoelectric device using a similar approach, it is first 
useful to model a unimorph structure made of two rect-
angular plates (one metal, the other piezoelectric) bonded 

together, see Fig. 1. The two plates have the same length 
and width but they differ in thickness. The piezoelectric 
plate has the polarization P oriented along its thickness.

When using the FVM to discretize the partial differ-
ential equation (PdE), one starts by dividing the domain 
into control volumes and averaging the PdE over each one. 
The averaging yields a system of odE for each volume. 
The structure of the (system of) odE is different for in-
ternal volumes (all six faces are internal to the metal or to 
the piezoelectric), face volumes (one face is at an external 
boundary or at the metal/piezo interface), edge volumes 
(two faces are at an external boundary or at the metal/
piezo interface), and corner volumes (three faces are at an 
external boundary or at the metal/piezo interface).

In [28], the odE for internal volumes [28, Eqs. (37)–
(39)] and for volumes with faces at external boundaries 
(odE [28, Eqs. (37)–(39)] with constraints [28, Eqs. (49)–
(51) and (162)–(200)]) are presented. In this article, the 
discretization for volumes at the metal/piezo interface is 
discussed. Fig. 2 shows two control volumes; one in the 
metal (centered at M) and one in the piezoelectric mate-
rial (centered at P). Their common face has the point I 
at its center. The odE for the displacements at M and 
P (uM and uP) will have terms involving the displace-
ments at I, and, hence, mechanical boundary conditions 
are needed at I.

A. Displacement Boundary Conditions

The displacement u(x, y, z, t) must be continuous at the 
metal/piezo interface: there is no jump. Hence, one can, 
without ambiguity, denote the displacement at I by uI.

B. Stress Boundary Conditions

The normal and tangential stresses must be continuous 
at the metal/piezo interface. For example, continuity of 
the tangential stress in the x-direction at point I in Fig. 
2 requires

Fig. 1. Unimorph structure.

Fig. 2. The metal-piezoelectric material interface in the xz plane.



IEEE TransacTIons on UlTrasonIcs, FErroElEcTrIcs, and FrEqUEncy conTrol, vol. 59, no. 1, JanUary 2012158

 c
u
z

w
x c

u
z

w
x55m

m

I

m

I
55p

p

I

p

I

∂
∂

+
∂
∂( ) ∂

∂
+
∂
∂( )= , (6)

where c55p and c55m are entries from the stiffness matrices 
of the metal and the piezoelectric material and the deriva-
tives at I are the limiting values of the derivatives taken 
from within the respective materials (see Fig. 2). The par-
tial derivatives of the displacements in (6) are then ap-
proximated using the displacements at the points M, P, I, 
IE, and IW, yielding
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Eq. (7) then yields the displacement uI as a linear combi-
nation of other displacements. In a similar way, the con-
tinuity of the normal stress and the tangential stress in 
the y-direction yields the displacements vI and wI as linear 
combinations of other displacements (see supplemental 
technical report ). The forcing terms generated by the 
electric field appear in the normal stress equation and 
hence in the equation for wI.

Fig. 2 shows control volumes that are away from exter-
nal boundaries. Fig. 3 presents volumes that also have a 
face on an external boundary; the point IE is on both an 
external boundary and on the metal/piezo interface. In 
this case, the displacements at IE can be found via either 
interpolation or extrapolation. For example, if uIE is ex-
pressed as a linear extrapolation of uI and uIW, and wIE 
is expressed as a linear extrapolation of wI and wIW, then

 u u u uIE I
XIEI

XIWI
I IW= −+

δ
δ ( ) (8)

 w w w wIE I
XIEI

XIWI
I IW= −+

δ
δ ( ). (9)

The displacements at similar points where the interface 
meets an external boundary are presented in the technical 

report ( ), as are the displacements when interpolation 
is used.

IV. The system of Equations

The system of equations necessary to solve the uni-
morph structure shown in Fig. 1 consists of the odE [28, 
Eqs. (37)–(39)] with constraints [28, Eqs. (49)–(51) and 
(162)–(200)], as well as the constraints (7)–(9) in the pre-
vious section and similar constraints in the technical re-
port ( ). This results in a system of odE of the form

 
d
dt X X= 1 1A B+ , (10)

where A1 is the system matrix and the vector B1 includes 
the forces from the electric field and boundary conditions 
(see [28, Eq. (59)]). The system of equations (10) can then 
be processed as shown in [28] and solved in a program 
such as Matlab (The MathWorks Inc., natick, Ma).

V. Example—Unimorph structure

In this section, the FVM discretization is compared 
with the FEM discretization of coMsol. For the simu-
lation, the unimorph structure shown in Fig. 1 is held 
fixed at one end and is otherwise free to move. an electric 
field is applied along polarization direction of the piezo-
electric material, resulting in a deformation. The result-
ing stresses at the metal/piezoelectric interface will then 
cause the metal to deform. It is a fully three-dimensional 
deformation with bending in both the xz-plane (see Fig. 
4) and in the yz-plane. To sample the bending, the posi-
tion of a point a is tracked; this point is the midpoint of 
the metal portion of the face furthest from the fixed end. 
The dimensions of the unimorph structure are length = 
0.021 m, width = 0.003 m, piezoelectric material height = 
0.0005 m, and metal height = 0.001 m. The metal used is 
copper and the piezoelectric material used is the PIc151 
piezo-ceramic material manufactured by Physik Instru-
mente (Karlsruhe, Germany). see the technical report for 
the material properties ( ).

A. Static Analysis

For the static analysis, a 100-V voltage is applied to 
the piezoelectric plate. The FVM model is then used to 
compute an (approximate) solution to the PdE (1) and 

Fig. 3. The IE point at the East boundary.

Fig. 4. Bending of the unimorph piezoelectric-metal plate.
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(4) under the assumption (5). The z-component of the 
resulting displacement uA is tabulated in Table I for an 
increasing number of control volumes.

These results are to be compared with those from the 
FEM discretization of the PdE (1), (2), and (4), as im-
plemented by coMsol, shown in Table II. note that 
coMsol simulates solutions of the full system, whereas 
the FVM model simulates solutions of the approximate 
system (for which the electric field is assumed to be con-
stant and unidirectional).

coMsol is set to use linear tetrahedral elements and 
no losses. coMsol uses both the structural mechanics 
module (for the metal plate) and the MEMs module Piezo 
solid 3 (for the piezoelectric plate). coMsol automati-
cally imposes the restriction that the internal boundary 
is bonded to the materials on each side—there can be no 
relative motion; the displacements are continuous across 
the internal boundary. Both modules require that the type 
of load is specified at the internal boundary; the type of 
load is taken to be distributed load with zero loads. also, 
both modules require a constraint condition at the internal 
boundary; it is taken to be free. The mechanical boundary 
conditions at the external boundaries were taken to be 
free at five faces and fixed at the sixth. In addition, the 
Piezo solid 3 module requires electrical boundary condi-
tions; the internal boundary was set to ground and the 

bottom of the piezoelectric plate is taken to be a constant 
potential of −100 V.

The simulations show that as the number of degrees of 
freedom increase, the two solutions appear to be converg-
ing to similar, but slightly different, limits—this shows 
that the constant electric field assumption (5) was not an 
extreme one.1 For the purposes of computing a relative 
error for the FVM model, the displacement provided by 
the best-resolved coMsol run (7.044 μm) is taken as the 
true value of the displacement. In a given period of time, 
coMsol was able to compute a solution with many more 
degrees of freedom than the FVM model run on Matlab 
could—this is to be expected because coMsol is a well-
developed commercial product which has been optimized 
in a variety of ways.

The results are shown in Tables I and II and plotted 
in Fig. 5. The FEM and FVM models are discretizations 
of related, but different, systems of PdE and so their so-
lutions will not be exactly the same; however, with only 
about 10 600 degrees of freedom, the FVM model is within 
2% of the highly resolved FEM model; the FEM model 
needs about 142 000 degrees of freedom to get that close.

TaBlE I. The displacements in the z-direction at Point a calculated With the Proposed FVM 
Model for different numbers of control Volumes, the corresponding degrees of Freedom 

(doF), and the deviation From the Best available approximation of the displacement (7.044 μm). 

Volume doF
displacement 

(μm)

approximate 
relative error 

(%)

35 105 1.334 −81.06
315 945 4.617 −34.45
875 2625 6.034 −14.34
1715 5145 6.581 −6.57
2835 8505 6.835 −2.97
4235 12 705 6.972 −1.02
5915 17 745 7.054 0.14
7875 23 625 7.107 0.89
10 115 30 345 7.143 1.41

TaBlE II. The displacements in the z-direction at Point a simulated in coMsol for different 
numbers of Elements in the Mesh, the corresponding degrees of Freedom (doF), and the 

deviation From the Best available approximation of the displacement (7.044 μm). 

number of 
tetrahedra doF

displacement 
(μm)

relative error 
(%)

84 137 0.541 −92.32
222 318 2.346 −66.70
1076 1247 3.839 −45.50
1458 1596 4.369 −37.98
4146 3716 5.593 −20.60
23 852 16 833 6.549 −7.03
84 899 59 977 6.821 −3.17
264 969 173 495 6.935 −1.55
833 552 532 897 7.001 −0.61
2 561 662 1 603 052 7.029 −0.21
7 966 923 4 894 756 7.044

1 Indeed, the electric field that coMsol computes is nearly constant 
and unidirectional.
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The number of degrees of freedom for Table I is taken 
to be three times the number of volumes, because to find 
the displacements, a linear system AX = B must be solved 
where A is 3N × 3N and N is the number of volumes (see 
[28, Eq. (57)]). rather than solving for six unknowns per 
node in the piezoelectric region (the displacements u, v, 
w, and the electric field E), coMsol solves for four un-
knowns per node: the displacements u, v, w, and the volt-
age V. In the metal region, there are three unknowns per 
node: the displacements u, v, and w. Hence, coMsol’s 
number of degrees of freedom is 3a + 4b − 3c where a is 
the number of nodes in the metal region, b is the number 
of nodes in the piezoelectric material, and c is the number 
of nodes that are in both regions (i.e., are in the internal 
boundary). The 3c term is subtracted to prevent over-
counting.

In the technical report ( ), the effect of choosing dif-
ferent approximations of the displacements at points like 
IE in Fig. 3 are considered; no large effects were found.

B. Eigenfrequency Analysis

The eigenfrequency analysis of the piezoelectric-metal 
unimorph structure, consists of calculating the system 

matrix [A1 from (7)] and finding its eigenvectors and 
eigenvalues. For a given eigenvector, the displacement u 
is reconstructed. deformations for which all control vol-
umes move simultaneously up or down in the z-direction 
(see the bending mode in Fig. 4) are then collected and 
the one with the lowest eigenvalue is used as a diagnos-
tic. Table III presents the results for the FVM model. 
Table IV presents the corresponding results for the FEM 
model. The coMsol implementation is as discussed in 
section V-a except that the structural mechanics mod-
ule is used for both the metal and the piezoelectric do-
mains because the electric field does not enter into the 
system matrix A1.

as discussed previously, the best-resolved FEM run 
provides an approximate true value of 1728 Hz to use in 
defining a relative error. as shown in Tables III and IV 
and plotted in Fig. 6, the FVM model has a relative er-
ror less than 1% using around 20 100 degrees of freedom, 
whereas the FEM model requires around 170 000 degrees 
of freedom to achieve the same relative error.

The number of degrees of freedom in Table III is taken to 
be six times the number of volumes, because to find the ei-
genfrequencies, one works with the system matrix A1, where 
A1 is 6N × 6N and N is the number of volumes [see (7)].

Fig. 5. The displacements in the z-direction at point a on the unimorph piezoelectric-metal structure calculated with the finite volume method 
(FVM) model and simulated in coMsol.
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TaBlE III. The Eigenfrequencies for the Unimorph structure calculated With the 
Proposed FVM Model for different numbers of control Volumes, the corresponding 

degrees of Freedom (doF), and the deviation From the Best available approximation of the 
Eigenfrequency (1728 Hz). 

Volume doF
Frequency 

(Hz)

approximate 
relative error 

(%)

100 600 2213.3 28.08
900 5400 1805 4.46
2500 15 000 1751.3 1.35
4900 29 400 1734.3 0.36
8100 48 600 1726.9 −0.06

TaBlE IV. The Eigenfrequencies for the Unimorph structure simulated in coMsol for 
different numbers of Elements in the Mesh, the corresponding degrees of Freedom (doF), and 

the deviation From the Best available approximation of the Eigenfrequency (1728 Hz).

number of 
mesh elements doF

Frequency 
(Hz)

relative error 
(%)

80 108 6519 277.26
225 261 3720 115.28
1076 999 2537 46.82
1379 1290 2334 35.07
4154 3171 2043 18.23
23 744 14 670 1836 6.25
84 738 53 070 1767 2.26
264 991 154 602 1746 1.04
784 207 448 593 1733 0.29
2 381 511 1 347 036 1728

Fig. 6. The eigenfrequencies for the displacements in the z-direction at point a on the unimorph piezoelectric-metal structure calculated with the 
finite volume method (FVM) model and simulated in coMsol.
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VI. conclusions

This paper extends the work of [28] by implementing 
internal boundary conditions in composite piezoelectric 
structures using the FVM approach. The FVM approach 
was used because of its advantages: 1) the ordinary differ-
ential equations resulting from the discretization process 
can be interpreted directly as corresponding circuits; and 
2) phenomena occurring at boundaries can be treated ex-
actly. The boundary conditions at the metal/piezo inter-
face were chosen so that there was no relative motion with 
respect to one another; however, boundary conditions that 
allow relative motion could be easily implemented and 
used in future work, for example, to develop a model for 
the contact between the rotor and the stator of a piezo-
electric traveling-wave rotary ultrasonic motor.

The FVM model is then demonstrated for a unimorph 
piezoelectric structure and its performance is compared 
with coMsol’s implementation of an FEM discretiza-
tion. We find that the FVM simulations are able to get 
within 1 to 2% of the best available limiting value using 
fewer degrees of freedom.
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