
GLOBAL SOLUTIONS FOR SMALL DATA TO THE HELE-SHAW PROBLEM

P. CONSTANTIN AND M. PUGH

Appeared in Nonlinearity, volume 6, pages 393-416, 1993.

Abstract. We analyze an equation governing the motion of an interface between two fluids in a

pressure field. In two dimensions, the interface is described by a conformal mapping which is analytic
in the exterior of the unit disc. This mapping obeys a nonlocal nonlinear equation. When there is

no pumping at infinity, there is conservation of area and contraction of the length of the interface.
We prove global in time existence for small analytic perturbations of the circle as well as nonlinear

asymptotic stability of the steady circular solution. The same method yields well-posedness of the
Cauchy problem in the presence of pumping.

1. Introduction

In the Hele-Shaw problem[1-4], two fluids are confined between close sheets of glass. A viscous
incompressible fluid surrounds an inviscid incompressible fluid in which the pressure is constant. One
assumes that this is a two dimensional problem, that the viscous fluid moves with a velocity propor-
tional to the gradient of the pressure and that the interface moves with the viscous fluid. The boundary
condition at the interface is assumed to be that the jump in pressure across the interface is a constant
(the surface tension) multiple of the curvature at that point. The boundary condition at infinity can
be either zero velocity (no pumping) or a sink of strength γ (fluid flux through circles asymptotes 2πγ
at infinity).

The oversimplifications made above are discussed in the literature [5-8]. A local existence result (in
the Lagrangian formulation and a different geometry) has been proven [9].

We approach this problem with the hodographic method [10-11]. We view the interface as the image
of the unit circle under a conformal transformation. This conformal transformation maps the exterior
of the unit circle in the w complex plane to the region of z plane containing the viscous fluid. The
conformal transformation depends on time, as the interface moves in time:

z = f(w, t).

Let h be the derivative of f :
h(w, t) = ∂wf(w, t).

For this to make sense, h can have neither zeroes nor poles in the exterior of the circle. Since there
is a sink at infinity f must behave like w at infinity. In particular, f(w)

w
is bounded at infinity. This

implies that a non-constant h must have singularities inside the unit circle.
The function α ∈ [0, 2π] 7→ h(eiα) obeys the evolution equation ([12]):

∂h

∂t
= 2(I +

1
i
∂α)hA(

1
|h|2 (

γ

2π
− τ∂αHκ)).(1)

We abuse notation and write h for h(eiα). Here τ is the surface tension, γ the rate of pumping at
infinity, and κ(h) is the curvature of the interface. H is the Hilbert transform on the unit circle:

Hf(α) =
1

2π
P.V.

∫ 2π

0

cot(
α− β

2
)f(β) dβ.

1
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A is the operator

A =
1
2

(I − iH).

The τ = 0 case is known to be integrable [10,13,14] but ill-posed. The case in which h has n zeroes
and m poles (n > m) in the unit circle has been analyzed in [15]. If h is initially a rational function, it
is a rational function at least up to the time that the singularities of h hit the unit circle. The solution
breaks down when a singularity hits the unit circle [16-18]. In [12], the authors analyze a localized
version of the above equation for h and proved that in the τ = 0 case singularities of h in the interior
of the circle hit the circle in finite time. They also proved that for small τ > 0 solutions exist up to the
critical time for the corresponding zero τ solution, and are close to the zero surface tension solution at
least up to this critical time. The non-zero surface tension problem is a singular perturbation of the
zero surface tension problem [19-24].

Here are the basic questions regarding (1) and some answers provided in this paper.
• Do arbitrary initial shapes evolve if τ > 0? (Yes)
• For how long? (At least a short time, depending on the radius of convergence of h)
• Do solutions exist for all time if τ > 0 and there is no pumping ? (?)
• Do solutions exist for all time if the initial shape is near circular and no pumping is present?

(Yes)
• Do nearly circular shapes relax to circles? (Yes)
• Is the property of area preservation and length contraction sufficient for well-posedness? (No)

We prove the following global existence and stability result:

Theorem 1.1. When γ = 0, there exist constants ε > 0, C > 0 such that, if the initial datum

h0(w) =
∞∑
0

hj(0)w−j

satisfies
∞∑
1

|hj(0)|ρj ≤ ε

for some ρ > 0, then there exists a unique global solution to (1)

h(w, t) =
∞∑
0

hj(t)w−j

defined for t ≥ 0, |w| > 1. This solution satisfies
∞∑
1

|hj(t)|ρj ≤ C
∞∑
1

|hj(0)|ρj.

Moreover, there exist a constant A > 0 such that for α ∈ [0, 2π],

|h(t, eiα)− r| ≤ ||h(0, ·)− r||∞e−Atam
for all t ≥ 0, where r is such that πr2 is the initial area of the bubble. Hence the solution tends
asymptotically to the steady circular solution.

The paper is organized as follows: In Section 2 we discuss the equations of motion. We discuss the
properties of area preservation and of length contraction and show by example (Appendix) that they
alone are not sufficient for well-posedness. Section 3 is devoted to the proof of existence of solutions
of an auxiliary problem, and Section 4 to that of stability of the circles in the auxiliary problem. In
Section 5, the full problem is reduced to the auxiliary one.
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2. Equations of Motion

There are two independent variables in what follows. w, representing space, is complex, and t,
representing time, is real.

We analyze functions restricted to the unit circle, so |w| = 1, i.e. for α ∈ [0, 2π]

w = eiα.

If h is a function of w which has a restriction to the unit circle, we refer to the restriction α 7→ h(eiα)
by the same name, h. We hope that this causes no inconvenience to the reader. Functions can be
represented by their Fourier series:

f(α) =
∞∑
−∞

fke
ikα.

The operator D is defined as follows:

Df =
1
i
∂αf = w∂wf.

In the following, ∂ refers to ∂α.
Recall the Hilbert transform on the unit circle:

Hf(α) =
1

2π
P.V.

∫ 2π

0

cot(
α− β

2
)f(β) dβ =

∑
k 6=0

−isgn(k)fkeikα,

and
(∂Hf)k = |k|fk. i.e. ∂H = |∂|.

We define the operator A by

A =
1
2

(I − iH), that is Af(α) =
1
2
f0 +

−1∑
−∞

fke
ikα.

The equation of motion is [12]:

∂h

∂t
= 2(I +D)hA(

1
|h|2 (

γ

2π
− τ∂Hκ(h))).(2)

Where τ is the surface tension, γ the rate of pumping at infinity, and

κ(h) = |h|−1(1 + Re
Dh

h
).(3)

κ(h) corresponds to the curvature of the interface when h is, as defined above, the derivative of f .
We discuss the rate of change of the area. In order to do so, we express the area of the bubble in

terms of h. From Stokes’ theorem,

Area of the bubble =
1
2

∫
boundary

−ydx+ xdy.

In terms of the conformal transformation f , this becomes

S(h) = Area =
1
2

Re
∫ 2π

0

f(eiα)eiα
∂f

∂w
(eiα) dα.

Since h = ∂f
∂w , this equals

S(h) =
1
2
Re

∫ 2π

0

h
[
(I +D)−1h

]∗
dα.
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The equation of evolution (2) has the structure
∂h

∂t
= 2(I +D) [hAE(h)](4)

for some real-valued functional E of h,Dh, . . . . Whatever the functional form of the real expression
E, if (4) holds then the area S(h) obeys

d

dt
S(h) =

∫ 2π

0

|h|2E dα.

In the case of the equation (2), E is given by

|h|2E =
γ

2π
− τ∂Hκ.

Since ∂Hκ has mean zero, it follows that
d

dt
S(h) = γ.

Hence the area grows linearly in time, at a rate equal to the rate of pumping.
Similarly, we express the length of the boundary of the bubble in terms of h:

2πL =
∫ 2π

0

|h| dα.

If h solves (4) then the length element |h| obeys

∂|h|
∂t

= κ|h|2E − ∂(|h|HE).

In particular,
d

dt
L =

1
2π

∫ 2π

0

κ|h|2E dα.

To produce a model (4) in which
d

dt
S = 0,

d

dt
L ≤ 0,

it suffices to require ∫ 2π

0

κ|h|2E dα ≤ 0 and
∫ 2π

0

|h|2E dα = 0.

These requirements can be achieved when E is given by the rule:

|h|2E = −Mκ

where M is any nonnegative self-adjoint linear operator which is zero on constant functions. M is
determined by the pressure jump at the interface.

Therefore any nonnegative selfadjoint operator M which is zero on constant functions can be used
to produce a “surface tension” model equation which exhibits both area conservation and length
contraction. Naively one would expect this to lead to stability of circular solutions, and indeed linear
neutral stability is true. However, the equation can be ill-posed: not only nonlinearly unstable, but
catastrophically so (the higher the wave-length of the perturbation, the faster it grows). We give a
simple example of such M in the appendix. In the case (2), M = τ∂H, which is nonnegative and
self-adjoint. If γ = 0, then the area is conserved and the length does not increase in time.

The dependent variable in (4) is not the most natural one. We would prefer a variable which is
more directly related to the geometry of the boundary. A first choice would be the curvature κ(h) but
the equation for it is not explicit. An even more natural choice is |h|κ(h) because it corresponds to
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κds in physical variables and by virtue of the Umlaufsatz, its integral is the winding number of the
boundary:

1
2π

∫ 2π

0

|h|κ(h) dα = the winding number of the interface = 1.

Thus |h|κ(h) should have mean equal to 1, for all time. Note that, because of (3),

1− |h|κ(h) = ∂Hu

where u is given by
u = log(|h|).

It turns out that u is a natural choice for dependent variable.
Because f is a diffeomorphism, its derivative, h, never vanishes in the exterior of the disc. Since

f equates asymptotically to w at infinity, h tends to a non-zero constant as w tends to infinity. This
implies that h is analytic at infinity. Let h̃(w) = h( 1

w
). h̃ is analytic in the unit disc, as is 1

h̃
.

Because the unit disc is simply connected, there is a holomorphic function on the unit disc such that
h̃ = exp(ψ̃). It follows that ψ(w) = ψ̃( 1

w ) satisfies h = exp(ψ). This shows that we can define log(h)
and it is analytic in the exterior of the disc, as well as at infinity. Because logh can be extended to an
analytic function in the exterior of the unit circle, we can recover h from knowledge of u via

h = ρeiφ,

where
ρ = exp(u)

and

φ− φ = −H logρ, and φ =
1

2π

∫ 2π

0

φ dα.

The analyticity of log(h) at infinity also implies∫
γ

log(h(z)) dz = 0 for any closed loop γ.

Specifically, ∫ 2π

0

log(h(eiθ))eiθ dθ = 0.

Using the fact that log(h) = u+ i(−Hu + φ̄), we find that∫ 2π

0

u(eiθ)eiθ dθ = 0.

That is, u has no ±1 Fourier modes.
From the equation (4) and the above, we obtain the equation for u:

∂u

∂t
= (I − ∂H)E(u)− (∂Hu)E(u) − (∂u)(HE(u)),(5)

whereE(u) = e−2u
( γ

2π
− τ∂Hκ(u)

)
and κ(u) = e−u(1− ∂Hu).

The circle is a steady solution of the above equation when there is no pumping, i.e. if γ = 0. The
circle corresponds to u = constant. In this case, κ(u) = constant, hence E(u) = 0. Thus ∂u

∂t = 0 for
the circle.
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To show that the solution tends to a circle, it suffices to show that u tends to a constant function.
For this reason, we analyze a pair of equations: one for the zero mode, and one for the non-zero modes.
This is done by projecting the equation (5) onto the appropriate subspaces:

du0

dt
= e−3u0(t)P0(E(v))(6)

∂v

∂t
= e−3u0(t) [(1− ∂H)(E(v) − P0E(v)) − (∂Hv)E(v) − (∂v)HE(v)] .(7)

This is the notation that is used in the rest of the paper. u0 represents the zero mode of u and v
represents the remaining part, i.e. v = u − u0. (Not to be confused with the common notation for
initial data.)

The pair of equations (6) (7) are coupled. We decouple them by reparametrizing time in such a way
as to remove the coupling e−3u0(t) terms. To do this, take

∂v

∂s

ds

dt
= e−3u0(t)N(v),

where N(v) represents the non-linear term. This would imply

∂v

∂s
= N(v) if

ds

dt
= e−3u0(t).

Reparametrizations of this sort are often not meaningful, as it is sometimes possible to reparametrize
time in such a way that the new equation has global existence, even when it is known that the original
equation blows up in finite time. A simple example of this can be found looking at Burger’s equation
viewed as a coupled system like ours and reparametrizing appropriately.

We prove that, in this particular case, the reparametrization is valid, and that global existence for
the following reparametrized system implies global existence for the original system:

du0

ds
= P0(E(v)),(8)

∂v

∂s
= [(1 − ∂H)(E(v) − P0E(v)) − (∂Hv)E(v) − (∂v)HE(v)] .(9)

We keep two different notations for time in the following: t represents the original time and s represents
the reparametrized time.

The method of proof is similar to that in [CK1]. We construct an iterative scheme and prove it
converges to a solution.

3. Existence for the Reparametrized Equations

We have an equation (9) of the form
∂v

∂s
= N(v),

where N(v) is a nonlocal nonlinear operator. We use the following iterative scheme:

∂vn
∂s

= N(vn−1) +N ′(vn−1)(vn − vn−1) for n > 0,

∂v0

∂s
= 0.

Each step has the same initial conditions: vn(z, 0) = v0(z). Here vn is the nth iterate, not the nth
Fourier coefficient. We use n consistently throughout for the nth iterate. Fourier coefficients appear
with indices other than n. Also note that the 0th iterate is the initial data and is time independent.
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The equation for the differences wn = vn − vn−1 is of the form
∂wn
∂s
−N ′(vn−1)wn = N(vn−1)−N(vn−2)−N ′(vn−2)wn−1.(10)

The right hand side of the above equation suggests that the right choice of functional calculus would
make it quadratic in wn−1.

First we define function spaces, as in [12]:

||u||ρ =
∞∑

j=−∞
|uj|ρj,

||u||ρ,S =
∞∑

j=−∞
sup

0≤s≤S
|uj(s)|ρj .

These norms determine the following classes of functions:

Bρ =

v | v =
∞∑

j=−∞
vjz

j , ||v||ρ <∞

 ,

Bρ,S =

v | v =
∞∑

j=−∞
vj(s)zj , 0 ≤ s ≤ S, ||v||ρ,S <∞

 .

The spaces Bρ and Bρ,S satisfy the following:

||uv||ρ,S ≤ ||u||ρ,S||v||ρ,S,

||∂Hu||ρ′,S ≤
2

1− ρ′

ρ

||u||ρ,S.

Any analytic function f can be viewed as a map between these spaces. If f, f ′, f ′′ belong to some
Br , then f is an analytic change of variables in the ball of radius r in all the spaces Bρ,S . If
||u1||ρ,S, ||u2||ρ,S ≤ r, the following hold:

||f(u1)||ρ,S ≤ ||f ||ρ,
||f(u2)− f(u1)||ρ,S ≤ ||f ′||ρ||u2− u1||ρ,S,

||f(u2) − f(u1)− f ′(u1)(u2 − u1)||ρ,S ≤
1
2
||f ′′||ρ||u2 − u1||2ρ,S.

Lemma 3.1. If w satisfies
∂w

∂s
+ (∂H)3w = a(∂H)3b w(0) = 0,

then the following bound on w is true:

||w||ρ,S ≤ C||a||ρ,S||b||ρ,S.

Proof. The jth Fourier coefficient of the equation satisfies the following:

ẇj + |j|3wj =
∑
k+l=j

ak|l|3bl

d

ds
(e|j|

3swj) = e|j|
3s
∑
k+l=j

ak|l|3bl

e|j|
3swj(s) =

∫ s

0

e|j|
3σ
∑
k+l=j

ak|l|3bl dσ
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wj(s) =
∫ s

0

e−|j|
3(s−σ)

∑
k+l=j

ak|l|3bl dσ

|wj(s)| ≤
∫ s

0

e−|j|
3(s−σ)

∑
k+l=j

|ak||l|3|bl| dσ

|wj(s)|ρ|j| ≤
∫ s

0

e−|j|
3(s−σ)

∑
|l|>2|j|

|ak|ρ|k||l|3|bl|ρ|l|ρ−(|l|+|k|−|j|) dσ

+ρ|j|
∫ s

0

e−|j|
3(s−σ)

∑
|l|≤2|j|

|ak||l|3|bl| dσ = I1 + I2.

For the first integral, use the following: if l + k = j and |l| > 2|j|, then |k| > |j| and hence
ρ−(|l|+|k|−|j|) < ρ−|l|, so

|wj(s)|ρ|j| ≤
∫ s

0

e−|j|
3(s−σ)

∑
|l|>2|j|

|ak|ρ|k||l|3|bl|ρ|l|ρ−|l| dσ + I2.

Let K = supl∈Z(|l|3ρ−|l|). Then

|wj(s)|ρ|j| ≤ K
∫ s

0

e−|j|
3(s−σ)

∑
|l|>2|j|

|ak|ρ|k||bl|ρ|l| dσ + I2

sup
0≤s≤S

|wj(s)|ρ|j| ≤ K
∑
|l|>2|j|

sup
0≤s≤S

|ak(s)|ρ|k| sup
0≤s≤S

|bl(s)|ρ|l|
∫ s

0

e−|j|
3(s−σ) dσ

+ I2.

The integral in time above is bounded, since j 6= 0, and we get

sup
0≤s≤S

|wj(s)|ρ|j| ≤ K
∑
k+l=j

sup
0≤s≤S

|ak(s)|ρ|k| sup
0≤s≤S

|bl(s)|ρ|l| + 2nd integral.

Now to bound I2:

I2 = ρ|j|
∫ s

0

e−|j|
3(s−σ)

∑
|l|≤2|j|

|ak||l|3|bl| dσ

≤
∫ s

0

e−|j|
3(s−σ)

∑
|l|≤2|j|

8|j|3|ak|ρ|k||bl|ρ|l|ρ−(|k|+|l|−|j|) dσ.

We know ρ−(|k|+|l|−|j|) ≤ 1. Hence

I2 ≤
∫ s

0

e−|j|
3(s−σ)

∑
|l|≤2|j|

8|j|3|ak|ρ|k||bl|ρ|l| dσ

≤ 8
∑
|l|≤2|j|

sup
0≤s≤S

|ak(s)|ρ|k| sup
0≤s≤S

|bl(s)|ρ|l|
∫ s

0

|j|3e−|j|3(s−σ) dσ.

The last integral is less than 1. Note that the boundedness of this integral depended on the nonlinear
term having no more derivatives than the linear part. Again, we sum over all terms

≤ 8
∑
k+l=j

sup
0≤s≤S

|ak(s)|ρ|k| sup
0≤s≤S

|bl(s)|ρ|l| .
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Putting these two bounds together, and taking C = K + 8, we have

sup
0≤s≤S

|wj(s)|ρ|j| ≤ C
∑
k+l=j

sup
0≤s≤S

|ak(s)|ρ|k| sup
0≤s≤S

|bl(s)|ρ|l|.

Summing in j,

∞∑
j=−∞

sup
0≤s≤S

|wj(s)|ρ|j| ≤ C
∞∑

k=−∞
sup

0≤s≤S
|ak|ρ|k|

∞∑
l=−∞

sup
0≤s≤S

|bl(s)|ρ|l| .

The above inequality is related to our norm. Our norm involves ρjs, whereas we have ρ|j| above.
However, since our functions are real valued, the two norms are equivalent. This implies

||v||ρ,S ≤ C||a||ρ,S||b||ρ,S as desired.

The above lemma also holds for equations in which the nonlinearity is of the form

a(∂H)2b, a∂Hb, ∂H(a(∂H)2b), or (∂H)2(a∂Hb),

as well as those of the form (∂a)(Hb).
The lemma is also true for equations of the form

∂w

∂s
− ∂H(1 − (∂H)2)w = a(∂H)3b.

Lemma 3.2. If w satisfies
∂w

∂s
+ (∂H)3w = ∂H(a∂H(b∂Hc)),

then the following bound on w is true:

||w||ρ,S ≤ C||a||ρ,S||b||ρ,S||c||ρ,S.

Proof. The right hand side is of the form

|j|
∑
k+l=j

ak|l|
∑
p+q=l

bp|q|cq.

Repeat the above argument, breaking the sum into four sums:∑
|l|<2|j| |q|<3|j|

∑
|l|≥2|j| |q|<3|j|

∑
|l|<2|j| |q|≥3|j|

∑
|l|≥2|j| |q|≥3|j|

.

We use these lemmas to prove convergence of the iteration scheme.

Lemma 3.3. Let ρ, S be arbitrary. Then the solution wn of

∂wn
∂s
−N ′(vn−1)wn = N(vn−1)−N(vn−2)−N ′(vn−2)wn−1,

wn(z, 0) = 0 for n ≥ 2,
satisfies the inequality

||wn||ρ,S ≤
CB||wn−1||2ρ,S

1− CA ,

where given ε > 0 there exists a δ > 0 such that ||vn−1||ρ,S < δ implies Max(A,B) < ε.
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We sketch the proof in what follows.
Writing the equation (10) out in full we get a large number of terms. One of the terms from

N ′(vn−1)wn is −∂H(1−(∂H)2)wn. We keep this term on the left hand side of the equation, and move
the remaining terms to the right hand side. We then use our lemma to bound each term on the right
hand side.

There are two types of terms on the right hand side: those from N ′(vn−1)wn and those from
N(vn−1) −N(vn−2)−N ′(vn−2)wn−1. Each is treated as follows:

A sample term from N ′(vn−1)wn is

∂H((e−2vn−1 − 1)∂H(wne−vn−1)).

This is bounded by
Cer||vn−1||ρ,S ||wn||ρ,S||evn−1 ||ρ,S.

Here we are assuming ||vi||ρ,S ≤ r and use one of the Taylor expansion inequalities. Note that the
above term is of the form

||wn||ρ,S · ( something that is small if ||vn−1||ρ,S is small ).

All the terms from N ′(vn−1)wn are bounded in this way.
We group the terms from N(vn−1) − N(vn−2) − N ′(vn−2)wn−1 in such a way that as to get the

desired quadratic behavior in wn−1. For example, one group of 3 terms reduces to

∂H
(
e−2vn−1∂H((e−vn−1 − e−vn−2 +wn−1e

−vn−1)∂Hvn−1)
)
.

The lemma bounds this by

C||e−2vn−1||ρ,S||e−vn−1 − e−vn−2 + wn−1e
−vn−2 ||ρ,S||vn−1||ρ,S

C ≤ e||vn−1||ρ,S 1
2
er ||wn−1||2ρ,S||vn−1||ρ,S .

Again, we used one of the Taylor expansion inequalities and the fact that Bρ,S is a Banach algebra.
We assume throughout that ||vi||ρ,S ≤ r. Proceeding in this way, we arrive at an inequality of the
form

||wn||ρ,S ≤ CA||wn||ρ,S +CB||wn−1||2ρ,S.
Since A and B can be taken arbitrarily small,

||wn||ρ,S ≤
CB||wn−1||2ρ,S

1−CA
when A is such that AC < 1.

Terms like P0(E(vn−1)) were not mentioned in the above analysis. Observe that for our equations,

wn0(0) = 0 and
dwn0

ds
= 0.

Here wn0 represents the 0th Fourier coefficient of the nth difference. Hence wn0(s) = 0 for all s. For
our norms, this implies that

||wn||ρ,S = ||wn −wn0||ρ,S ≤ ||an − an0||ρ,S ≤ ||an||ρ,S.
Here an− an0 represents any term from the right hand side. (They all have no zero mode or have had
their zero mode subtracted off.) This is why the projected terms have no contribution.

Thus we have bounds for all the difference equations except the first one:
∂w1

∂s
= N(v0) +N ′(v0)w1.

Proceeding in the same manner as above, we find a bound

terms from N ′(v0)w1 ≤ A||w1||ρ,S,
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where A is the same constant as above, and

terms from N(v0) ≤ B̃||v0||ρ,S.
This proves the following lemma:

Lemma 3.4. Let ρ, S be arbitrary. Then the solution w1 of
∂w1

∂s
= N(v0) +N ′(v0)w1,

w1(z, 0) = 0,
satisfies the inequality

||w1||ρ,S ≤
CB̃||v0||ρ,S

1− CA .

A is the same as in the previous lemma and B̃ can be taken arbitrarily small.

We therefore prove by induction that the series
∑
||wn||ρ,S converges. This implies the following

Theorem 3.5. There exist two numbers ε and C such that, if initial datum v0 satisfies

||v0||ρ ≤ ε
for some ρ > 0, there exists, for all s, a solution to the reparametrized equation v(w, s), belonging to
Bρ,S for all S > 0 and satisfying

||v||ρ,S ≤ C||v0||ρ.

4. Stability

We now show that the solution decays to a circle. This requires showing that all the non-constant
modes decay to zero.

First we define a new norm.

||v||2α =
∞∑

j=−∞
|j|2a|vj|2.

This is a Sobolev norm, it is the same as

||v||2α =
1

2π

∫ 2π

0

|∂αv|2 dθ

when α is an integer. Since all of our functions have zero mean, this is a norm, rather than a seminorm.
We use these the following inequalities:
Hölder’s Inequality:∫

|fg| dµ ≤ (
∫
|f |p dµ)

1
p (
∫
|g|q dµ)

1
q where

1
p

+
1
q

= 1.

Young’s Inequality:

|a||b| ≤ |a|
p

p
+
|b|q
q

where p and q are conjugate exponents as above.
Boundedness of the Hilbert transform as an operator from Lp([0, 2π]) to Lp([0, 2π]) for 1 < p <∞:∫ 2π

0

|Hf(x)|p dx ≤ Cp
∫ 2π

0

|f(x)|p dx.

Gagliardo-Nirenberg Inequality:∫
|∂αf(x)| 2sα dx ≤ Cα,s||f ||

2s
α −2
∞

∫
|∂sf(x)|2 dx where 1 ≤ α ≤ s.
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(9) is an equation of the form
dv

ds
= N(v).

Taking the inner product with (∂H)5v, we bound the term 〈N(v), (∂H)5v〉 as follows:

1
2
d

ds
||v||25/2 = 〈N(v), (∂H)5v〉 ≤ −A||v||24,

where A depends on ||v||α in such a way that, if ||v||α is sufficiently small, A is positive.
Assume this bound is true. Since we know ||v||5/2 ≤ ||v||4,

d

ds
||v||25/2 ≤ −A||v||24 ≤ −A||v||25/2 < 0.

Taking α ≤ 5
2 , the decay in ||v||5/2 ensures that ||v||α remains sufficiently small to keep ||v||5/2 de-

creasing. Hence
||v||25/2(s) ≤ ||v||25/2(0)e−As,

as desired.
This shows that ||v||5/2 decays to zero as time goes to infinity.
Thus it suffices to prove the above bound.
The equation (9) is

dv

ds
= ∂H(1 − (∂H)2)v − (1− ∂H) [E(v) + ∂H(1 + ∂H)v]− P0(E(v))

− (∂Hv)(E(v)) − (∂v)(HE(v)),

where
E(v) = −e−2v(∂H(e−v(1− ∂Hv))).

The first term of the right hand side of the equation is linear and has negative eigenvalues. (The
±1 modes are zero.) The second term is at least quadratic in v, although this is not immediate on
inspection. The fourth and fifth terms are also at least quadratic in v. Since v = 0 is a solution, if v is
small in some appropriate norm, the right hand side should be dominated by the linear term, implying
decay of v in time.

The first thing we do is write the second term so that, rather than being a sum of at most linear
terms whose sum is at least quadratic, it is a sum of at least quadratic terms:

E(v) + ∂H(1 + ∂H)v = ∂H(v∂Hv + (e−v − 1 + v) − (e−v − 1 + v)∂Hv)

+ (e−2v − 1)∂H(e−v(1− ∂Hv)).

Take the inner product, 〈N(v), (∂H)5v〉, and use linearity to write it as a sum of inner products.
We bound specific terms.
First, the linear term:

〈∂H(1− (∂H)2)v, (∂H)5v〉 =
∞∑
−∞
|k|6(1− |k|2)|vk|2 ≤

∞∑
−∞
−|k|8|vk|2 = −||v||24.

Now, the projected term:

〈P0(E(v)), (∂H)5v〉 = (E(v))0((∂H)5v)0 = 0.

This vanishes since ∂Hv has no zero mode.
The quadratic terms are all that remain. We now bound a specific term:

1
2
d

dt
||v||25/2 = Terms − 〈(∂Hv)(E(v)), (∂H)5v〉.
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First use the fact that ∂H is self-adjoint:

− 〈(∂Hv)(E(v)), (∂H)5v〉 = −〈∂H((∂Hv)(E(v))), (∂H)4v〉
≤ |〈∂H((∂Hv)(E(v))), (∂H)4v〉| ≤ ||v||4||∂H((∂Hv)(E(v))||L2 .

It suffices to bound ||∂H((∂Hv)(E(v)))||L2 by C||v||4||v||α, since, we can take the coefficient of ||v||24
to be small.

In the following we use C for the constant, although it may be a different (larger) constant after
each step.

||∂H((∂Hv)(E(v)))||L2 =

√∫ 2π

0

|∂H((∂Hv)(E(v)))|2

=

√∫ 2π

0

|H∂((∂Hv)(E(v)))|2 ≤ C

√∫ 2π

0

|∂((∂Hv)(E(v)))|2 .

Here we used the fact that H and ∂ commute and that the Hilbert transform is a bounded operator.

≤ C

√∫ 2π

0

|(∂∂Hv)(E(v))|2 +
∫ 2π

0

|(∂Hv)(∂E(v))|2

≤ C

√∫ 2π

0

|(∂∂Hv)(E(v))|2 +

√∫ 2π

0

|(∂Hv)(∂E(v))|2
 .

We bound each of the above terms separately. In the first term, notice that it is the product of two
terms, each of which has two derivatives. We use Young’s inequality with p = 2 and q = 2. This choice
of p and q does not put a higher Lp norm on one or another, since they are essentially the same, each
having two derivatives.

≤ C

√∫ 2π

0

|(∂∂Hv)(E(v))|2 ≤ C(

√∫ 2π

0

|∂∂Hv|4 +
∫ 2π

0

|E(v)|4)

≤ C

√∫ 2π

0

|H(∂)2v|4 +

√∫ 2π

0

|E(v)|4


≤ C

√∫ 2π

0

|(∂)2v|4 +

√∫ 2π

0

|e−2v∂H(e−v(1− ∂Hv))|4


≤ C

√∫ 2π

0

|(∂)2v|4 + ||e−2v||2∞

√∫ 2π

0

|H∂(e−v(1− ∂Hv))

 = X.



14 P. CONSTANTIN AND M. PUGH

Now use the Gagliardo-Nirenberg inequality with α = 2 and s = 4 to bound
∫ 2π

0
|(∂)2v|4

X ≤ C(||v||∞||v||4 + ||e−2v||2∞

√∫ 2π

0

|∂(e−v(1− ∂Hv))|4)

≤ C(||v||∞||v||4 + ||e−2v||2∞(

√∫ 2π

0

|∂v|4|e−v|4 +

√∫ 2π

0

|∂v|4|∂Hv|4|e−v|4

+

√∫ 2π

0

|e−v|4|(∂)2Hv|4))

≤ C(||v||∞||v||4 + ||e−2v||2∞||e−v||2∞(

√∫ 2π

0

|∂v|4

+

√∫ 2π

0

|∂v|4|∂Hv|4 +

√∫ 2π

0

|(∂)2v|4)).

The Gagliardo-Nirenberg inequality bounds the first and third term above. We use Young’s inequality
with p = 2 and q = 2 (because the number of derivatives is equal in each term) so that we can then
apply the Gagliardo-Nirenberg inequality.

X ≤ C(||v||∞||v||4 + ||e−2v||2∞||e−v||2∞(||v||∞||v||2 +

√∫ 2π

0

|∂v|8 + ||v||∞||v||4))

≤ C(||v||∞||v||4 + ||e−2v||2∞||e−v||2∞(||v||∞||v||2 + ||v||3∞||v||4 + ||v||∞||v||4)).

Using the fact that ||v||2 ≤ ||v||4 and a Sobolev theorem that tells us ||v||∞ ≤ ||v||α if α > dim
2 , we

bound the above as follows:

X ≤ C(||v||α||v||4 + ||e−2v||2α||e−v||2α(||v||α||v||4 + ||v||3α||v||4 + ||v||α||v||4)).

In this way, we have shown

||(∂∂Hv)(E(v))||L2 ≤ C||v||α||v||4.

The constant C above depends on ||v||α in a way that one can easily see from the bounds, but we are
not too interested in its behavior. We now bound the second term from the inner product:

||(∂Hv)(∂E(v))||L2 =

√∫ 2π

0

|∂Hv|2|∂E(v)|2 = Y.

The first thing we do is apply Young’s inequality. We know that the ∂E(v) term yields a term with
three derivatives on v. The Gagliardo-Nirenberg inequality would suggest a power of 8

3
on this term.

This would come from a use of p = 4 and q = 4
3 in Young’s inequality. This looks promising, as it

yields a power of 8 on the ∂Hv term, which is consistent with our bounds from above. This type of
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logic determines p and q in the following.

Y ≤ C(

√∫ 2π

0

|∂Hv|8 +

√∫ 2π

0

|∂E(v)| 83 ))

≤ C(||v||3∞||v||4 +

√∫ 2π

0

|∂v| 83 |E(v)| 83 +

√∫ 2π

0

|e−2v∂2H(e−v − e−v∂Hv)| 83 )

≤ C(||v||3∞||v||4 +

√∫ 2π

0

|∂v|8 +

√∫ 2π

0

|E(v)|4

+

√∫ 2π

0

|e−2v| 83 |∂2H(e−v − e−v∂Hv)| 83 ).

We used Young’s inequality again here, with p = 3 and q = 3
2 . The L4 norm of E(v) was bounded

above.

Y ≤ C(||v||3∞||v||4 + ||v||α||v||4 + ||e−2v||
4
3∞

√∫ 2π

0

|∂2(e−v − e−v∂Hv)| 83 .

As before, we expand this out and bound each term.

Y ≤ C(||v||3∞||v||4 + ||v||α||v||4 + (||e−2v||∞||e−v||∞)
4
3 (

√∫ 2π

0

|∂2v| 83

+

√∫ 2π

0

|∂v| 16
3 +

√∫ 2π

0

|(∂2v)(∂Hv)| 83 +

√∫ 2π

0

|((∂v)2)(∂Hv)| 83

+

√∫ 2π

0

|(∂v)(∂2Hv)| 83 +

√∫ 2π

0

|∂3Hv| 83 )).

Proceed as before, applying Young’s inequality and then the Gagliardo-Nirenberg inequality. We apply
Young’s inequality as follows: on the third term, p = 3

2 , on the fourth term, p = 3
2 , and on the fifth

term, p = 3. We find a bound of the form:

||(∂Hv)(∂E(v))||L2 ≤ C||v||
1
3
α||v||4.

Hence:
−〈(∂Hv)(E(v)), (∂H)5v〉 ≤ C(||v||α + ||v||

1
3
α)||v||24.

Repeating these arguments for each term ofN(v) with quadratic behavior, we arrive at the following:

1
2
d

ds
||v||25/2 ≤ −||v||24 + C(||v||

1
3
α + ||v||α + . . . )||v||24

C multiplies more terms than shown above, but they are all of the sort that become small when ||v||α
is small. We take ||v||α small enough to make

1− C(||v||
1
3
α + ||v||α) > 0.

This proves
1
2
d

ds
||v||25/2 ≤ −A||v||24.

Taking 1
2 < α ≤ 5

2 ensures that the decay of ||v||5/2 keeps ||v||α small enough to keep ||v||5/2 decaying.
We have therefore proven the following:
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Theorem 4.1. There exists δ > 0 and A > 0 such that a solution v to equation (9) with initial data
v(0) such that

||v0||5/2 < δ

implies
||v||5/2(s) ≤ ||v(0)||5/2e−As.

Therefore the solution to the reparametrized equation decays. We now argue that if we had a global
solution to the original equation, it would also decay.

The original equation is of the form

∂v

∂t
= e−3u0(t)N(v).

Given a solution to this equation, we again take the inner product with (∂H)5v to find:

1
2
d

dt
||v||25/2 =〈e−3u0(t)N(v), (∂H)5v〉

=e−3u0(t)〈N(v), (∂H)5v〉 ≤ −e−3u0(t)A||v||24.
Recall the length of the interface,

L(t) =
1

2π

∫ 2π

0

eu dα.

Jensen’s inequality implies that

u0(t) ≤ log(L(t)) ≤ log(L(0)) = u0(0).

Hence
1
2
d

dt
||v||25/2 ≤ −e−3u0(t)A||v||24 ≤ −e−3u0(0)A||v||24 ≤ −e−3u0(0)A||v||25/2.

Therefore decay for the original equation follows from decay for the reparametrized equation. Now we
prove that global existence for the reparametrized equation implies global existence for the original
equation.

5. Existence for the Original Equations

We have already proven global existence for small initial data for the equation

∂ṽ

∂s
= N(ṽ) where ṽ(α, 0) = v0(α).

We use the solution to this equation to define a solution for

du0

dt
= e−3u0(t)P0(E(v))

∂v

∂t
= e−3u0(t)N(v) where v(α, 0) = v0(α).

Note that we have the same initial conditions, from the time reparametrization. We suppress the
dependence on α in what follows.

Define the function v(t) as follows
ṽ(s) = v(t(s)).

v(t) is to satisfy the original equation, so we must have

N(ṽ(s)) =
∂ṽ

∂s
=
∂v

∂t
(t(s))

dt

ds
(s) = e−3u0(t(s))N(v(t(s)))

dt

ds
(s).
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Hence the reparametrization t(s) satisfies

1 = e−3u0(t(s)) dt

ds
(s) for all s.

and dt
ds never vanishes.

We also know
du0

dt
= e−3u0(t)P0(E(v(t)))

d

dt
e3u0(t) = 3P0(E(v(t)))

e3u0(t) = e3u0(0) + 3
∫ t

0

P0(E(v(τ))) dτ.

We now change coodinates, viewing each t and τ as t(s) and t(σ) for appropriate s and σ. Set t(0) = 0.

e3u0(t(s)) = e3u0(0) + 3
∫ t(s)

0

P0(E(v(t(σ))))
dt

ds
(σ) dσ

e3u0(t(s)) = e3u0(0) + 3
∫ s

0

P0(E(ṽ(σ)))
dt

ds
(σ) dσ.

For the reparametrization to be consistent with the equations for du0
dt and ∂v

∂t , it must satisfy

dt

ds
(s) = e3u0(0) + 3

∫ s

0

P0(E(ṽ(σ)))
dt

ds
(σ) dσ.

Differentiating with respect to s, we find

d

ds

dt

ds
(s) = 3P0(E(ṽ(s)))

dt

ds
(s)

dt

ds
(s) =

dt

ds
(0)e3

R s
0 P0(E(ṽ(σ))) dσ.

To prove global existence for the original equations, we show that as s goes to infinity, t(s) goes to
infinity. It suffices to show

dt

ds
(s) =

dt

ds
(0)e3

R s
0 P0(E(ṽ(σ))) dσ ≥ C > 0 for all s > 0.

This requires that ∫ s

0

P0(E(ṽ(σ))) dσ > C for all s > 0.

It suffices to find a C such that∣∣∣∣∫ s

0

P0(E(ṽ(σ))) dσ
∣∣∣∣ < C for all s > 0.∣∣∣∣∫ s

0

P0(E(ṽ(σ))) dσ
∣∣∣∣ ≤ ∫ ∞

0

|P0(E(ṽ(σ)))| dσ

=
∫ ∞

0

1
2π
|
∫ 2π

0

E(ṽ(α, σ)) dα| dσ

≤ C
∫ ∞

0

√∫ 2π

0

|E(ṽ(α, σ))|2 dαdσ.
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Here the L2 norm of E(ṽ) is viewed as a function of σ. It is bounded by the H2 norm of ṽ.∫ 2π

0

|E(ṽ(α, σ))|2 dα =
∫ 2π

0

|e−2ṽ∂H(e−ṽ − e−ṽ∂Hṽ)|2 dα

≤ ||e−2ṽ(·, σ)||2∞
∫ 2π

0

|H∂(e−ṽ − e−ṽ∂Hṽ)|2 dα

≤ C||e−2ṽ(·, σ)||2∞
∫ 2π

0

|∂(e−ṽ − e−ṽ∂Hṽ)|2 dα

≤ C||e−2ṽ(·, σ)||2∞||e−ṽ(·, σ)||2∞(
∫ 2π

0

|∂ṽ|2 + |(∂ṽ)(∂Hṽ)|2 + |∂2Hṽ|2)

≤ C||e−2ṽ(·, σ)||2∞||e−ṽ(·, σ)||2∞(||ṽ||22 + ||ṽ||2∞||ṽ||22 + ||ṽ||22).

From our previous work we know

||e−2ṽ(·, σ)||2∞ ≤ C||e−2ṽ(·, σ)||25/2 ≤ C||e−2ṽ||25/2(0)e−Aσ ≤ C||e−2ṽ||25/2(0).

We bound all the terms except for the ||ṽ(·, σ)||2 term in this way:∫ 2π

0

|E(ṽ(α, σ))|2 dα ≤ C||ṽ(·, σ)||22.

In this way the problem is reduced to∫ ∞
0

√∫ 2π

0

|E(ṽ(α, σ))|2 dαdσ ≤ C
∫ ∞

0

||ṽ(·, σ)||2 dσ.

Since
||ṽ||2(σ) ≤ ||ṽ||5/2(σ) ≤ Ce−A2 σ,∫ ∞

0

√∫ 2π

0

|E(ṽ(α, σ))|2 dαdσ ≤ C
∫ ∞

0

e−Aσ dσ ≤ C.

This is the desired bound
dt

ds
(s) =

∫ s

0

P0(E(ṽ(σ))) dσ ≥ C for all s > 0.

Therefore
Cs ≤ t(s) for all s > 0,

and global existence for ṽ(s) implies global existence for v(t).
A simple argument using length contraction shows there is another constant K such that

t(s) ≤Ks,
so the reparametrization is controlled as follows:

Cs ≤ t(s) ≤ Ks.
We use the lower bound Cs ≤ t(s) to prove the following:

Theorem 5.1. There exist two numbers ε and C such that, if initial datum v0 satisfies

||v0|| ≤ ε
for some ρ > 0, then there is a solution v(α, t) to the original equations which belongs to Bρ,T for all
T > 0 and satisfies

||v||ρ,T ≤ C||v0||ρ.
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6. Conclusions

We found a framework for the proof of existence of solutions of Hele-Shaw problems based on a real
dependent variable. We identified the structure of the equations, the role played by the surface tension
and showed by example that there exist equations of Hele-Shaw type with artificial surface tension
which display length contraction, area preservation and neutral linear stability of circular puddles but
for which, nevertheless, these puddles are nonlinearly catastrophically unstable. For the original Hele-
Shaw problem we proved that small analytic perturbations of circular puddles lead to global analytic
solutions which become circular in infinite time. The rate of decay in time is exponential. Local (in
time) existence of analytic solutions for arbitrary initial data, in the presence of pumping, can be
obtained easily by the same technique. Although there is a simple Lyapunov function for this problem
- the length of the interface - there is no argument based solely on it. In particular, we were unable
to prove that large perturbations of the circle decay to a single circle. If large perturbations actually
do not do this, another possible behavior is pinching off and decaying to several circles - which, in our
language, means passing through singularities.
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8. Appendix

We now discuss how the choice of M in (4) affects the problem. The equation is:

∂u

∂t
= (I − ∂H)E(u) − (∂Hu)(E(u)) − (∂u)(HE(u))(11)

where
E(u) = e−2u(−Mκ(u)).

The linearization about the steady solution u = 0 is of interest:

∂v

∂t
= −(I − ∂H)Mκ′(0)v.

Assume that M acts on κ by convolution, hence by multiplication on the Fourier modes. In this case,
M commutes with differentiation and the Hilbert transform. If we take κ(h) to be the curvature of
the interface,

κ(h) = e−u(1− ∂Hu),

the linearization is of the form
∂v

∂t
= (I − (∂H)2)Mv and

dvk
dt

= (1 − |k|2)Mkvk.

Since Mk ≥ 0 for length contraction, this implies that no matter what the choice of M , the circular
solution is linearly neutrally stable.

In the following, we show that length contraction and area conservation are not sufficient for as-
ymptotic decay to the cicular solution by showing the quadratic approximation of (11) to be ill-posed
for a certain choice of M that provides length contraction and area conservation.

If we assume κ(u) = e−u(1− ∂Hu), the quadratic approximation of (11) is

∂u

∂t
= (1− (∂H)2)Mu− 2(1− ∂H)(uM(1 + ∂H)u)− (1− ∂H)M(u∂Hu +

u2

2
)

− (∂Hu)(M(1 + ∂H)u)− (∂u)(HM(1 + ∂H)u).
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I.e.

duj
dt

= (1− |j|2)Mjuj −Mj(1− |j|)
∞∑

l=−∞
(|l|+ 1

2
)uluj−l

−
∞∑

l=−∞
Ml(1 + |l|)[2(1− |j|) + |j − l|+ (j − l)sgn(l)]uluj−l.

It is clear that if Mj decay fast at infinity the equation is ill posed. As an extreme example let M to
be the operator determined by the folowing multipliers:

M±2 = 1 Mj = 0 otherwise.

For this choice of M , the quadratic approximation is

u̇2 = −3u2 +
∑

(
1
2

+ |l|)u2−lul + 6u4u−2

u̇−2 = −3u−2 +
∑

(
1
2

+ |l|)ul−2ul + 6u−4u2

u̇j = 6uj−2u2 + 6(|j| − 1)uj+2u−2 for j > 2

u̇j = 6(|j| − 1)uj−2u2 + 6uj+2u−2 for j < −2.

The equation for u̇j makes it clear that this system is ill-posed. The lack of a stable linear part allows
arbitrarily small perturbations to travel arbitrarily fast.
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