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LINEAR STABILITY OF STEADY STATES FOR THIN FILM AND
CAHN–HILLIARD TYPE EQUATIONS

R. S. LAUGESEN AND M. C. PUGH

Abstract. We study the linear stability of smooth steady states of the evolution equation

ht = −(f(h)hxxx)x − (g(h)hx)x − ah
under both periodic and Neumann boundary conditions. If a 6= 0 we assume f ≡ 1. In
particular we consider positive periodic steady states of thin film equations, where a = 0
and f, g might have degeneracies such as f(0) = 0 as well as singularities like g(0) = +∞.

If a ≤ 0, we prove each periodic steady state is linearly unstable with respect to volume
(area) preserving perturbations whose period is an integer multiple of the steady state’s
period. For area preserving perturbations having the same period as the steady state, we
prove linear instability for all a if the ratio g/f is a convex function. Analogous results hold
for Neumann boundary conditions.

The rest of the paper concerns the special case of a = 0 and power law coefficients
f(y) = yn and g(y) = Bym. We characterize the linear stability of each positive periodic
steady state under perturbations of the same period. For steady states that do not have a
linearly unstable direction, we find all neutral directions. Surprisingly, our instability results
imply a nonexistence result: for a large range of exponents m and n there cannot be two
positive periodic steady states with the same period and volume.
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1. Introduction

We study the evolution equation

ht = −(f(h)hxxx)x − (g(h)hx)x − ah.(1)

When a = 0 this is the one dimensional version of ht = −∇·(f(h)∇∆h)−∇·(g(h)∇h), which

has been used to model the dynamics of a thin film of viscous liquid. The air/liquid interface

is at height z = h(x, y, t) and the liquid/solid interface is at z = 0. The one dimensional

equation applies if the liquid film is uniform in the y direction.

The coefficient f(h) of the fourth order term in the equation reflects surface tension effects;

a typical choice is f(h) = h3 + βhp where 0 < p < 3 and β ≥ 0 [9, 11, 16, 20, 29, 35]. The

coefficient of the second order term can reflect additional forces such as gravity g(h) ∼ h3

[10], van der Waals interactions g(h) ∼ hm,m < 0 [8, 23, 35, 45], or thermocapillary effects

Date: July 20, 1999.
1



2

Figure 1. Zero-mean perturbation of a steady state.

g(h) ∼ h2/(1 ± ch)2 [36, 37, 43]. For a thin viscous film of liquid coating the inner wall

of a straight pipe, the curvature of the pipe gives rise to g(h) ∼ h3 [21, 24]. Also, such an

equation with a = 0 is used to model a gravity–driven Hele–Shaw cell, with f(h) ∼ h and

g(h) ∼ h [14, 15]. The aggregation of aphids on a leaf can be modeled with f(h) ∼ h and

g(h) ∼ h− c, where h represents the population density [28].

Positive steady states correspond to the whole surface being wetted. If f > 0 and g > 0

then bounded positive steady states must be periodic or constant, by [26, Theorem B.1].

Periodic steady states certainly do exist for equation (1) with a = 0, by [33, 17],[26, §2.2], for

example. Compactly supported (droplet) steady states exist only if g/f satisfies additional

constraints [26, §2.2], and they can have relatively low regularity at the contact line. We

treat only smooth steady states in this paper.

An example of equation (1) with a > 0 is the Sivashinsky equation that arises in the

modeling of an alloy solidification problem [30, 38, 41], with f ≡ 1 and g linear. An equation

with f ≡ 1 but a = 0 is the extensively studied Cahn–Hilliard equation [5, 44], for which

g is a negative quadratic. We refer the reader to [2, 3, 18] for further references on the

Cahn–Hilliard equation.

Equations like (1) are of mathematical interest as well: Bertozzi and Pugh [4] conjectured

that finite-time blow-up (||h(·, t)||∞ →∞) is possible for certain such equations. In [26] we

related the steady states and some of their properties to this blow-up conjecture.

Our linear stability results are for zero-mean perturbations of steady states. The zero-

mean requirement on the perturbation seems reasonable from a physical standpoint, as it

corresponds to a disturbance of the fluid that alters the profile without adding additional

fluid. When a = 0, zero-mean perturbations are natural from a mathematical standpoint

because given periodic initial data h(x, 0) and periodic boundary conditions, the evolution

equation (1) preserves volume:
∫
h(x, t) dx =

∫
h(x, 0) dx for all time t. The same is true

for Neumann boundary conditions. Thus zero-mean perturbations allow the possibility of

relaxation back to the original steady state, whereas nonzero-mean perturbations do not.

When a 6= 0 the equation does not conserve area in general, although solutions with zero

mean will maintain zero mean. Since steady states automatically have zero mean when a 6= 0,

it again seems natural to perturb with a function having mean zero. Further, if steady states
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are linearly unstable to zero–mean perturbations then they are certainly linearly unstable to

more general perturbations.

In this paper we consider both periodic and Neumann boundary conditions for equation

(1); we explain the relation between the two stability problems in Section 2.5. Note that

nonmonotonic steady states of the Cahn–Hilliard equation are already known to be unstable

under Neumann boundary conditions [6, 31].

The main results of the paper are roughly as follows:

• Theorem 1. If a ≤ 0 then every periodic steady state is linearly unstable to periodic

perturbations with longer period.

• Theorem 3. If (g/f)′′ ≥ 0 then every periodic steady state is linearly unstable to pertur-

bations having the same period.

For example, Theorem 3 applies to a thin liquid film, f(h) = h3, with positive or negative

gravity and with net repulsive van der Waals interactions, g(h) = ±h3 +Bh−1 where B > 0.

• Theorems 4 and 5. Instability results analogous to Theorems 1 and 3 hold under Neumann

boundary conditions.

The rest of the results are for a = 0, f(y) = yn, and g(y) = Bym with B > 0 (‘power law

coefficients’). The perturbations have the same (or shorter) period as the steady state.

• Theorem 7. If m < n or m ≥ n+ 1 then any non-constant positive periodic steady state

is linearly unstable.

• Theorem 9. When m ∈ (n, n+ 1), the stability question reduces to stability of a particular

nonlocal reaction-diffusion equation. We characterize this stability in terms of the time and

area maps of a related nonlinear oscillator.

• Theorem 10. If a positive periodic steady state hss has no linearly unstable direction,

then the linearly neutral directions are spanned either by the x-derivative of the steady

state (which arises naturally out of the translation invariance of the problem), or by the

x-derivative and a known function κ̃.

• Theorem 12. For m < n and m ≥ n + 1 we prove that given a period P and an area A,

there is at most one (up to translation) positive periodic steady state hss with that period

and area. Remarkably, the theorem follows from the linear instability of these steady states.

To prove these results, we first linearize the evolution equation about a steady state

and then transform it into a self-adjoint fourth order eigenvalue problem whose coefficients

depend on the steady state. We use the steady state and its derivatives as trial functions in

the Rayleigh quotient, obtaining the instability results Theorem 1–5. For those power law

coefficients for which the instability result does not apply, we deduce enough properties of
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the steady states to enable us to characterize linear stability. The key role here is played

by a function κ that arises from varying the minimum height of the steady state. Our

arguments are similar to how stability of reaction-diffusion equations in one dimension can

be characterized in terms of the time map, an approach used by Chafee [7, Theorem 6.2]

and later authors, e.g. [39, §4.1],[42, Chapter 24D].

Notation. We write TX for a circle of circumference X > 0. As usual, one identifies

functions on TX with functions onR that areX-periodic and calls them even or odd according

to whether they are even or odd on R.

2. Linear instability results

In this section, we treat instability for periodic boundary conditions first, then turn to

Neumann conditions. At the end, we discuss the relation between the two and also briefly

treat the stability question for constant steady states.

Throughout this section we assume f, g ∈ C1(R), but our results still apply if the coefficient

functions f(y) and g(y) are only defined and C1 for a restricted range of y-values. (For

example, for a thin film equation with coefficients f(y) = y3/2 and g(y) = y−1, the coefficients

are defined and C1 for y > 0.) Indeed we really only need f and g to be C1-smooth on a

neighborhood of the range of the steady state hss under consideration; we can then modify

f and g to make them C1 away from this range. Such a modification does not affect the

linearized problem since whenever f and g appear they are evaluated at hss(x). With this

understood, we assume f, g ∈ C1(R) from now on.

We also assume f > 0, and define the ratio

r =
g

f
.

Fix a ∈ R, X > 0. We assume that

if a 6= 0 then f ≡ 1.

We use this assumption in the linearization (see Appendices A and B).

2.1. Linearizing the equation around a smooth periodic steady state. We first

linearize the evolution equation (1) around a periodic steady state and then define linear

stability for the steady state. We give an expanded treatment of this linearization and

spectral theory in Appendix A.

Readers willing to accept the Rayleigh quotient definition of stability given in (5) below

may skip to Theorems 1–3. They are warned that it is w′ (not w) in the Rayleigh quotient

that corresponds to the zero-mean perturbation in the original problem.
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Assume hss ∈ C4(R) is a steady state of the evolution equation (1):

(f(hss)h
′′′
ss + g(hss)h

′
ss)
′
+ ahss = 0.(2)

[Here and throughout the paper, if a function has only one independent variable we use ′ to

denote derivatives with respect to that variable, e.g. h′ss = (hss)x.] Assume also hss is X-

periodic. Provided hss is non-constant, its smallest period is either X or an integer fraction

of X.

When a = 0 the steady state satisfies a simpler equation than (2). Indeed, (2) implies

f(hss)h
′′′
ss + g(hss)h

′
ss = C for some constant C, and one shows the constant C (the flux) is

zero by dividing the equation by f(hss) and integrating over the interval (0, X). Then since

C = 0,

h′′′ss + r(hss)h
′
ss = 0 when a = 0.(3)

This can be integrated up again to get a nonlinear oscillator formulation for the steady

states. For later use, we note that (3) also holds when a = 0 and the steady state satisfies

Neumann conditions h′ss = h′′′ss = 0 at x = 0, because then C = 0 by evaluating the equation

at x = 0.

Now we linearize the evolution equation about hss. Let h = hss+εφ, where the perturbation

φ(x, t) is X-periodic in x and has mean value zero,
∫ X

0
φ(x, t) dx = 0, at each time t. We

only consider such area preserving perturbations, for reasons explained in the Introduction.

In Appendix A we expand the evolution equation (1) in orders of ε; at lowest order, O(1),

one recovers the steady state condition (2) as expected. At order O(ε), the problem is

linearized: φt = Lφ where the linear operator L is

Lφ := − [f(hss) (φxx + r(hss)φ)x]x − aφ.(4)

We call the steady state hss linearly unstable if L has an eigenvalue σ1 with positive real

part, since if φ1 is the corresponding eigenfunction then φ(x, t) = eσ1tφ1(x) is an exponentially

growing solution of φt = Lφ. But in the absence of a general ‘linearization theorem’ for

the evolution (1), we are not guaranteed that for initial data near hss the solution of the

nonlinear evolution equation will behave like the solution of the linearized evolution. Note

that a linearization theorem is known in the special case f ≡ 1, using semilinear operator

theory; see for example [31, §6]. In any case, even if a linearization theorem is known,

it is still unclear what happens in null directions of L. One null direction arises from an

infinitesimal translation of the steady state in the x direction, corresponding to φ = h′ss.

This is a 0-eigenfunction of L since (2) and (3) imply Lh′ss = 0, using also that f ≡ 1 when

a 6= 0.

To reformulate the linearized equation φt = Lφ as a self-adjoint problem we introduce the

antiderivative ψ(x, t) =
∫ x
φ(ξ, t) dξ, which is X-periodic because φ has mean value zero.
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Appendix A shows ψ satisfies ψt = −f(hss)Iψ where

Iψ := ψxxxx + (r(hss)ψx)x + af(hss)
−1ψ.

The associated eigenvalue problem is Iw = λf(hss)
−1w, and a linearly unstable direction for

the original problem corresponds to a negative eigenvalue λ. The lowest eigenvalue, λ1, has

the Rayleigh quotient

λ1(hss) = min
w

∫ X
0

[(w′′)2 − r(hss)(w
′)2 + af(hss)

−1w2] dx∫ X
0
f(hss)−1w2 dx

,(5)

where the minimum is taken over w ∈ H2(TX) \ {0} normalized by
∫ X

0
wf(hss)

−1 dx = 0.

We discuss all this in detail in Appendix A.

Definition. The steady state hss is linearly unstable at period X if λ1(hss) < 0, and linearly

stable otherwise.

The phrase ‘hss is linearly unstable at period X’ does not mean the most unstable direction

has wavelength X; it means there exists an unstable direction with least period either X

or an integer fraction of X. For example, with X = 2π, f ≡ 1, g ≡ r ≡ 9 and a = 0, the

minimizers for λ1 are w(x) = sin 2x and cos 2x.

The 0-eigenfunction v = h′ss that arose from translational symmetry of the original problem

integrates up to a 0-eigenfunction w = hss−c for I. Hence λ1(hss) ≤ 0 for all periodic steady

states, and so linear stability is equivalent to λ1 = 0 while instability requires λ1 < 0. If

λ1 = 0 one then asks whether there are null directions other than hss − c. We address this

in Theorem 10, for power law coefficients.

2.2. Linear instability of periodic steady states. For the evolution equation (1) with

a ≤ 0, we find periodic steady states are linearly unstable when the perturbations have

longer period than the steady state:

Theorem 1. Let f, g ∈ C1(R) with f > 0, and take a ≤ 0, X > 0. If a < 0 then assume

f ≡ 1. Suppose hss ∈ C4(R) is a non-constant periodic steady state of (1) with least period

X/j for some integer j ≥ 2.

Then λ1(hss) < 0, so that hss is linearly unstable with respect to area preserving perturba-

tions at period X.

In Section 4.1 we prove the theorem by taking a truncation of w = hss−c as a trial function

in the Rayleigh quotient (5). At heart, this is the method of Carr, Gurtin, and Slemrod [6,

Theorem 8.2] for a = 0 and Neumann boundary conditions, adapted to the periodic case.

Our proof breaks down for a > 0, which seems reasonable since the term −ah in (1) is then

stabilizing when one linearizes around the trivial steady state hss ≡ 0. A linearly unstable
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steady state might still exist for a > 0; the following observation determines whether it can

be non-constant.

Lemma 2. Let f, g ∈ C1(R) with f > 0, and take a,X > 0. Suppose hss ∈ C4(R) is

non-constant and X-periodic and satisfies the steady state equation (2). Then

max
x

1

4

g(hss(x))2

f(hss(x))
≥ a.

The lemma, proved in Section 4.2, tells us that if a is very large, say a � g(0)2/4f(0),

then any non-constant steady state must achieve rather extreme values in order to exist at

all. The term −ah might then fail to stabilize the evolution near the steady state. Sarocka,

Bernoff and Rossi [38, §3] find computationally steady states with extreme amplitudes, for

the Sivashinsky equation with large a.

In Section 4.3 we take w = h′ss as a trial function and prove steady states are linearly

unstable when the ratio g/f is convex:

Theorem 3. Let f, g ∈ C2(R) with f > 0, and take a ∈ R, X > 0. If a 6= 0 then assume

f ≡ 1. Let hss ∈ C4(R) be an X-periodic non-constant steady state of (1).

If r = g/f is convex (r′′ ≥ 0) and non-constant on the range of hss then λ1(hss) < 0, so

that hss is linearly unstable with respect to area preserving perturbations at period X.

In view of Theorem 1, this theorem provides new information when the least period of

the steady state is X, rather than a fraction of X, so that the perturbations have period no

longer than that of the steady state.

2.3. Linear instability for Neumann boundary conditions. The instability results

above extend to Neumann boundary conditions with proofs that are slightly simpler. The

main technical point is that we change the space of trial functions for the fourth order

selfadjoint problem from H2(TX) ∩ {
∫
wf(hss)

−1 dx = 0} to H2(0, X) ∩H1
0 (0, X).

Consider the evolution (1) under the Neumann boundary conditions

hx = hxxx = 0 at x = 0, X.

These conditions are equivalent to hx = 0 and the ‘zero flux’ condition f(h)hxxx+g(h)hx = 0.

A steady state hss ∈ C4[0, X] satisfies the steady state equations (2) and (3) and the

Neumann conditions h′ss = h′′′ss = 0 at x = 0, X. We continue to assume that if a 6= 0 then

f ≡ 1. The linearization and spectral theory proceed much like in the periodic case; the few

significant changes are outlined in Appendix B.

The linearized eigenvalue problem is

Lu := −
[
f(hss) (u′′ + r(hss)u)

′]′
= σu,

∫ X

0

u dx = 0,
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with boundary conditions u′ = u′′′ = 0 at x = 0, X. The ‘integrated’ symmetric eigenproblem

is

Iw := w′′′′ + (r(hss)w
′)′ + af(hss)

−1w = νf(hss)
−1w,(6)

with boundary conditions w = w′′ = 0 at x = 0, X. These boundary conditions and the

fact that h′ss = 0 at x = 0, X imply w′′′′ = 0 at the endpoints. The eigenvalues of the two

problems are related by σ = −ν, and the eigenfunctions by u = w′.

The symmetric problem (6) has discrete spectrum, with lowest eigenvalue given by

ν1(hss) = min
w

∫ X
0

[(w′′)2 − r(hss)(w
′)2 + af(hss)

−1w2] dx∫ X
0
f(hss)−1w2 dx

(7)

where the minimum is over w ∈ H2(0, X) ∩ H1
0 (0, X) \ {0}. The weak eigenfunctions are

C4-smooth on the closed interval [0, X] and solve (6) classically. They satisfy w = 0 at the

endpoints by virtue of lying in H1
0 (0, X). They also satisfy the ‘natural boundary condition’

w′′ = 0 at x = 0, X; this follows from the Euler–Lagrange analysis.

As before, we call hss linearly unstable at length X if ν1(hss) < 0.

Theorem 4. Let f, g ∈ C1(R) with f > 0, and take a ≤ 0, X > 0. If a < 0 then assume

f ≡ 1. Assume hss ∈ C4[0, X] is a non-constant Neumann steady state of (1) and suppose

hss(0) = hss(b) and h′ss(b) = h′′′ss(b) = 0 for some b ∈ (0, X].

Then ν1(hss) < 0, so that hss is linearly unstable with respect to area preserving perturba-

tions at length X.

We prove this in Section 4.4. In particular it shows for a ≤ 0 that if a Neumann steady

state is X-periodic with minima at 0 and X, then it is linearly unstable. Lemma 2 still

constrains the existence of steady states when a > 0, as it holds in the Neumann case also.

Novick–Cohen [31, Theorem 6.1] proved Theorem 4 with a = 0, f ≡ 1. In [30, Theorem 2.1]

she further stated the theorem for the Sivashinsky equation, where a > 0, f ≡ 1 and g is a

linear function, but her proof actually holds for a < 0, not a > 0 as stated. Nonetheless,

steady states of the Sivashinsky equation are unstable by Theorem 5 below, no matter what

the value of a: Theorem 5 applies since the linear function g = g/f is convex.

Steady states are linearly unstable when the ratio g/f is convex, even if the steady state

is monotone:

Theorem 5. Let f, g ∈ C2(R) with f > 0, and take a ∈ R, X > 0. If a 6= 0 then assume

f ≡ 1. Suppose hss ∈ C4[0, X] is a non-constant Neumann steady state of (1).

If r = g/f is convex (r′′ ≥ 0) and non-constant on the range of the steady state hss then

ν1(hss) < 0, so that hss is linearly unstable with respect to area preserving perturbations at

length X.



9

We prove this in Section 4.5 by taking w = h′ss as a trial function.

The theorem does not apply to the Cahn–Hilliard equation ht = −hxxxx − ((1− 3h2)hx)x
because r(y) = 1− 3y2 is concave rather than convex. Indeed, Grinfeld and Novick–Cohen

[18, Theorem 6.2] proved linear stability for certain monotonic steady states of this equation.

2.4. Linear stability of the constant steady states, when a = 0. The simplest steady

state of the general evolution equation (1) with a = 0 is the constant function hss ≡ h; when

a 6= 0 the only constant steady state is hss ≡ 0. The linear stability analysis of these constant

steady states is direct. Take the perturbed steady state: h = h+ εφ where φ(x, t) has mean

value zero in x, for each t. Linearizing (1) around h gives

φt = −f(h)φxxxx − g(h)φxx − aφ.

Periodic boundary conditions. Assuming periodic boundary conditions on (0, X) we expand

φ in Fourier modes, φ(x, t) =
∑

j 6=0 aj(t) exp[ij2πx/X], obtaining

a′j(t) =
[
f(h)

(
r(h)− (2π/X)2j2

)
(2π/X)2j2 − a

]
aj(t).

Assume a = 0 for simplicity. Then the constant steady state is linearly asymptotically

stable with respect to area preserving perturbations of period X if r(h)X2 < 4π2; it is

linearly neutrally stable if r(h)X2 = 4π2, and is linearly unstable if r(h)X2 > 4π2. In the

unstable case, the most unstable direction corresponds to the integer jm that maximizes

(2π/X)2j2
(
r(h)− (2π/X)2j2

)
.

If g < 0 (and hence r < 0) then the constant steady states for a = 0 are linearly stable,

but if g > 0 then the constant steady states are linearly unstable for all large X, justifying

the description of the equation as ‘long-wave unstable’ when g > 0, a = 0.

Goldstein, Pesci and Shelley [14, §IIIB] have nonlinear instability results for the constant

steady state in the special case f ≡ g.

Neumann boundary conditions. Under Neumann boundary conditions on (0, X/2), one ex-

pands φ in Fourier cosine modes, obtaining the same stability results as in the periodic

case.

2.5. Relation between the periodic and Neumann stability problems. Suppose hss is

an even X-periodic steady state of the evolution equation (1) with extrema at x = 0, X/2, X,

so that h′ss = h′′′ss = 0 at these points also. When a = 0, linear instability of this steady state

with respect to periodic boundary conditions on (0, X) implies instability with respect to

Neumann conditions but not conversely in general, as we shortly explain.

The Rayleigh quotients of the two problems are the same. For the Neumann eigenvalue ν1,

the minimization is over H2(0, X)∩H1
0 (0, X). For the periodic eigenvalue λ1, trial functions

are in H2(TX) on the circle and have zero mean with respect to the weight 1/f(hss). Assume

a = 0, so that the numerator of the Rayleigh quotient (5) for λ1 is unchanged by addition of
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a constant to w; thus the sign of the minimal Rayleigh quotient is unaffected if we drop the

weighted zero mean requirement on w. Further, we can assume w(0) = w(X) = 0. Thus to

determine the sign of λ1 with a = 0, we may minimize over H2(TX)∩H1
0 (0, X). This space is

a proper subset of H2(0, X)∩H1
0 (0, X). Hence if λ1(hss) < 0 then ν1(hss) < 0, so that linear

instability with respect to periodic boundary conditions on (0, X) implies instability with

respect to Neumann conditions. The converse is clearly false: ifX = 2π, a = 0 and f, g, r ≡ 1,

then λ1 ≥ 0 by the sharp Poincaré inequality, but ν1 < 0 by using w(x) = sin(πx/X) in the

Rayleigh quotient (7).

For arbitrary a, Neumann instability on the half-period does imply periodic instability on

the whole period: functions in H2(0, X/2)∩H1
0(0, X/2) extend by odd reflection to functions

in H2(TX) with weighted mean zero, and so one deduces

‘λ1(hss) over TX ’ ≤ ‘ν1(hss) over (0, X/2)’.

Furthermore when a = 0, if λ1(hss) over TX is negative then so is ν1(hss) over (0, X/2). For

assume λ1(hss) is negative, so that the lowest eigenvalue τ1(hss) of the associated second order

problem (see Section 5) is also negative. The proof of Lemma 21(a) shows the corresponding

zero-mean eigenfunction u1 is even, and so w :=
∫ x

0
u1(ξ) dξ is odd and X-periodic, so that

w(X/2) = 0 and w ∈ H1
0 (0, X/2). The Rayleigh quotient of w for ν1(hss), over (0, X/2), is

negative since τ1(hss) < 0, and so ν1(hss) < 0. Thus for a = 0, Neumann instability on a

half-period is equivalent to periodic instability over the whole period.

3. Linear stability results for power law thin film equations

Our linear instability results have been for fairly general coefficients f and g. We will

prove linear stability results for a restricted class of coefficients: power-law coefficients. Then

we establish some qualitative properties of these steady states that follow from our linear

stability and instability results.

3.1. Power law coefficients: rescaling the problem. The results in this section concern

the case of power-law coefficients:

f(y) = yn, g(y) = Bym, for y > 0,

for some exponents n,m ∈ R and some positive constant B > 0. In this section we take

a = 0 and consider only periodic boundary conditions. The evolution equation (1) becomes

ht = −(hnhxxx)x −B(hmhx)x.

Suppose hss is a non-constant positive periodic steady state with least period X > 0. (If the

least period were a fraction of X then Theorem 1 would imply linear instability at period

X.) Translate hss so that its global minimum is atttained at x = 0.
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Theorem 3 gives linear instability at period X when r(y) = Bym−n is convex and non-

constant, that is, when m − n < 0 or m − n ≥ 1. (Technically, Theorem 3 requires f, g ∈
C2(R), but one can modify f, g off the range of hss to accomplish this.) Thus 0 ≤ m−n < 1

is a necessary condition for linear stability. Is it also sufficient? If not, can we determine

precisely which exponents n and m yield stability and which give instability?

First, we simplify the problem by rescaling. When a = 0, the steady states satisfy the

nonlinear oscillator equation

h′′ss +H ′(hss) = 0 (found by integrating (3)).(8)

Viewing x as a time variable, the steady states have a conserved quantity 1
2
h′ss(x)2+H(hss(x)),

where H ′′ = r = g/f . See [26, §2] for related information on this nonlinear oscillator

formulation.

In the power law case, r(y) = Bym−n and so if m − n 6= −1 then the oscillator equation

for the steady state is

h′′ss +
Bhqss −D

q
= 0(9)

for some constant D, where

q := m− n+ 1.

For m− n = −1, the equation is h′′ss + B log hss −D = 0.

The oscillator equation involves three constants: q, B, and D. We remove B and D by

rescaling hss: let

k(x) =


( B
D

)1/q
hss

((
D
B
)1/2q x

D1/2

)
, q 6= 0,

e−D/Bhss

(
eD/2B x

B1/2

)
, q = 0.

(10)

For q 6= 0 this rescaling uses that D > 0, by [26, §3.1]. This rescaling transforms the steady

state equation (9) into

k′′ +
kq − 1

q
= 0, q 6= 0,(11)

k′′ + log k = 0, q = 0.(12)

For all q we have

k′′′ + kq−1k′ = 0,(13)

and k satisfies the rescaled steady state equation (knk′′′ + kmk′)′ = 0.

Since hss is non-constant, positive and periodic, k′′(x0) > 0 at some point x0. Evaluating

(11–12) at x0 shows the minimum value of k is less than 1. Also k′(0) = 0 since hss has its



12

−7 −5 −3 −1 1 3 5 7
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x

Figure 2. Steady states kα(x), when q = 3.

minimum at x = 0. Introducing the notation kα for the solution k that has minimum value

α ∈ (0, 1), we have

0 < kα(0) = α < 1, k′α(0) = 0.

Every steady state hss can be rescaled to a kα. Conversely, for each q ∈ R and α ∈
(0, 1) there exists a unique smooth positive periodic kα satisfying equation (11–12) with

0 < kα(0) = α < 1, k′α(0) = 0 (see [26, Proposition 3.1]). To illustrate, Figure 2 plots the

steady states kα(x) over two periods, for q = 3 and seven α values between 0.05 and 1; see

[26, §6.1] for details. It is clear from the figure that for q = 3 the period and area change

with the minimum height α.

In order to state our stability results, we need certain properties of the kα. The map

(α, x) 7→ kα(x) is C∞-smooth for (α, x) ∈ (0, 1) × R by an ODE theorem giving smooth

dependence on the initial data [22, Ch. V,§4]. We write

P = P (α) and A = A(α)

for the least period of kα and the area of kα under that period: A =
∫ P

0
kα(x) dx. In

Appendix C we prove P and A are smooth functions of α:

Lemma 6. For each q ∈ R, the functions P = P (α) and A = A(α) are smooth for α ∈ (0, 1),

with P → 2π and A → 2π as α → 1. When q > −1, P (α) and A(α) are continuous at

α = 0.

Next, kα is by definition a linearly unstable periodic steady state of the rescaled evolution

ht = − (hnhxxx)x − (hmhx)x if and only if λ1(kα) < 0, where by (5) with a = 0 we have

λ1(kα) = min
w

∫ P
0

[(w′′)2 − kq−1
α (w′)2] dx∫ P

0
w2k−nα dx

;(14)

the minimum is taken over w ∈ H2(TP ) \ {0} with
∫ P

0
wk−nα dx = 0. The rescaling (10)

implies λ1(hss) = cλ1(kα) for some c > 0, and so

hss is linearly stable if and only if kα is linearly stable.
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Thus it suffices below to determine the sign of λ1(kα).

3.2. Power law coefficients: linear instability and stability. For the steady state kα,

r(y) = g(y)/f(y) = yq−1 and so Theorem 3 implies:

Theorem 7. For q ≥ 2 and q < 1, the steady state kα is linearly unstable at period P for

each α ∈ (0, 1). That is, λ1(kα) < 0.

The remaining cases are q = 1 and 1 < q < 2. For q = 1, Goldstein, Pesci, and Shelley

[14] proved:

Lemma 8. Suppose q = 1. Then for each α ∈ (0, 1), the steady state kα is linearly stable at

period 2π, that is, λ1(kα) = 0.

Their paper is not primarily concerned with the linear theory, but with the formation of

finite-time singularities for the nonlinear evolution with m = n = 1, or q = 1.

One can see the stability in Lemma 8 as follows: for q = 1 the steady state equation (11)

is k′′ + k − 1 = 0, which has exact solutions

kα(x) = 1 + (α− 1) cosx.(15)

The period is P = 2π, and so using the Poincaré inequality
∫ 2π

0
w′′2 dx ≥

∫ 2π

0
w′2 dx in the

Rayleigh quotient (14) implies λ1(kα) ≥ 0. This proves the lemma.

The remaining case is 1 < q < 2. In Section 5 we prove that the quantity

E = E(α) := P (α)3−qA(α)q−1

characterizes linear stability:

Theorem 9. Let 1 < q < 2. For each α ∈ (0, 1), the steady state kα is linearly stable to

P -periodic zero-mean perturbations if and only if E′(α) ≤ 0.

The appearance of E as the stability indicator is perfectly natural, since E1/(3−q) is essen-

tially the period (or time) map for a one parameter family of steady states hss with fixed

area and varying minimum height (see Section 6.3). Time maps are known to determine

stability for reaction-diffusion equations with Neumann boundary conditions, e.g. [7], [39,

§4.1], [42, Chapter 24D]. The same general line of reasoning applies here, as we ultimately

study a nonlocal reaction-diffusion equation.

Our situation differs from the reaction-diffusion equation case in certain important re-

spects. For example, all the eigenfunctions of our stability problem have mean zero and

change sign, since our perturbations are area preserving. For the reaction-diffusion equation

with Neumann boundary conditions, the fact that the first eigenfunction does not change

sign is crucial in the stability analysis. Our stability analysis uses the moral equivalent of
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Figure 3. (a) Plots of E(α) for q = 1, 1.125, 1.250, 1.375. Top curve: q = 1.375.
(b) Plots of E(α) for q = 1.375, 1.500, 1.625, 1.75. Top curve: q = 1.375.

0 0.25 0.5 0.75 1

 39.35

  39.4

 39.45

4π2

  39.5

 39.55

  39.6

Figure 4. Plots of E(α) for q = 1.75, 1.76, 1.768, 1.78, 1.79. Top curve: q = 1.75.
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Figure 5. Plots of E(α) for q = 1.8, 1.85, 1.9, 1.95, 2.0. Top curve: q = 1.8.

this fact for functions with zero mean: in Lemma 21(b) we prove that the first eigenfunction,

v1, changes sign only once.

Returning to Theorem 9, we see that analytically establishing the sign of E′ when 1 < q < 2

would complete the linear stability study. We have not been able to do this, but by the

numerical methods described in [26, §6.1] we have found: that E′(α) < 0 for all α when

1 < q ≤ 1.75, that E′(α) changes sign when 1.75 < q ≤ 1.79, and that E′(α) > 0 when

1.80 ≤ q < 2. (More precisely, our numerics suggest a critical exponent between 1.794 and

1.795.) Figures 3, 4 and 5 summarize these findings.

Section 6.3 explains how to interpret these figures as bifurcation diagrams for one param-

eter families of steady states hss with fixed area and varying minimum height, where E′ > 0

characterizes the unstable branches and E′ ≤ 0 the stable ones.

An unavoidable weakness in our definition of linear stability is that it admits 0-eigenvalues.

In particular, there is a translational null direction: u = h′ss is a 0-eigenfunction of the original
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linearized eigenvalue problem Lu = −σu with zero mean. Normal forms might be used to

investigate whether the evolution in the direction of the 0-eigenfunction is towards the steady

state or one of its translates, or whether it is away from the positive periodic steady states

altogether.

For the linearly stable power-law cases, we can identify all the 0-eigenfunctions of the

original problem. Specifically, in Theorem 10 we will identify all smooth X-periodic solutions

of Lu = 0 with mean value zero. One of the 0-eigenfunctions involves a function κα, defined

as follows. First rescale kα to obtain

Kα(x) :=
P (α)

A(α)
kα (P (α)x) .

By construction, Kα has period 1 and mean value 1. Now define

κα(x) :=
∂

∂α
Kα(x);

κα is well-defined and smooth because P and A depend smoothly on α by Lemma 6 while

kα(x) is jointly smooth in (α, x). We often write κ = κα, suppressing the α-dependence.

Notice κα is even in x, has period 1, and has mean value zero:∫ 1

0

κα(x) dx =
∂

∂α

∫ 1

0

Kα(x) dx =
∂

∂α
(1) = 0.

See Section 5.4 for more properties of κα.

In Section 6.1, we prove the following theorem classifying all null directions.

Theorem 10. Let hss ∈ C4(TX) be a non-constant positive periodic steady state of (1) with

power law coefficients and a = 0. Translate hss to put its minimum at x = 0, so that hss

rescales to kα as in Section 3.1.

(a) If 1 < q < 2 and E′(α) < 0 then the 0-eigenspace of L is spanned by h′ss(x).

(b) If 1 < q < 2 and E′(α) = 0 then the 0-eigenspace of L is spanned by h′ss(x) and κα(x/X).

(c) If q = 1 then the 0-eigenspace of L is spanned by sin(
√
Bx) and cos(

√
Bx).

3.3. Power law coefficients: consequences for properties of steady states. We now

present some properties of the steady states for the power law case that follow from our

linear instability results.

Using the linear instability result for power-law coefficients (Theorem 7), we prove E(α)

is monotonic when q is not in the range 1 ≤ q < 2.

Theorem 11. Let q ≥ 2 or q < 1. Then E′(α) > 0 for all α ∈ (0, 1).

See Section 5 for the proof. Our earlier paper, [26, Theorem 7.5], proved monotonicity

properties for A(α) and P (α) and yielded E′(α) > 0 for −1
2
≤ q < 1 and 3 ≤ q ≤ 4.54.

The above monotonicity of E as a function of α is important in answering the question

of whether one can specify a priori both the period and area of a positive periodic steady
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Figure 6. Plot of E0(q) together with a line at height 4π2, intersecting at 1
and q∗ ≈ 1.768.

state and whether there can be two different positive periodic steady states with the same

period and area. More precisely, fix the physical parameters m and n and the Bond number

B > 0. Given positive numbers Pss and Ass, does a constant D exist such that the steady

state equation h′′ss + Bhqss = D has a positive periodic solution hss with period Pss and area

Ass? If so, is hss unique up to translation?

It turns out that we can answer this question if we understand the closure of the range of

E. Until now, we have only considered 0 < α < 1, corresponding to positive periodic steady

states. We need to extend E(α) to α = 0. If q > −1 then one can take α = 0, k(0) = 0,

and still have a periodic steady state by [26, §3.1.2], and E(0) can be calculated in terms of

a Beta function of q by [26, eq. (3.13)]. For q ≤ −1, however, one cannot take α = 0 and

have a periodic steady state [26, §2.2]. But limα→0E(α) = 0 by Appendix C.2 and so we

define E(0) = 0 when q ≤ −1. Figure 6 shows a plot of E0(q) := E(0) as a function of q.

The following theorem answers these questions of unique specification by period and area,

for most q-values:

Theorem 12. Let q ≥ 2 or q < 1, and take Pss, Ass > 0. Then a non-constant positive

periodic steady state hss with least period Pss and with area Ass exists for (1) with power law

coefficients and a = 0 if and only if

E(0) < BP 3−q
ss Aq−1

ss < E(1) = 4π2.

This steady state is unique up to translation.

We prove this in Section 6.2, using the monotonicity of E(α) from Theorem 11. In our

earlier paper [26, Claim 5.1.3], we proved the theorem for −1
2
≤ q < 1 and 3 ≤ q ≤ 4.54.

If E′ > 0 when 1.795 < q < 2 (as suggested by Figure 5) then Theorem 12 extends to these

q-values also. If E′ < 0 when 1 < q ≤ 1.75 (suggested by Figure 3) then Theorem 12 holds

but with the inequalities reversed. If E is nonmonotonic when 1.75 < q < 1.79 (indicated

by Figure 4) then Theorem 12 fails, for as its proof indicates, there can exist two distinct

steady states with the same period and area. In that case, our results suggest the steady

state with the lower minimum value is linearly stable and the other one is linearly unstable,
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by Figure 4, Theorem 9 and the numerical observation in Section 6.3 that the minimum

value of hss increases with α when the area is fixed.

In Theorem 12 one might also ask if there can be a non-constant positive periodic steady

state hss whose period equals Pss/j for some integer j ≥ 2, and which has correspondingly

reduced area Ass/j per period. For q ≥ 2 or q < 1, the theorem shows this is possible

precisely when j−2BP 3−q
ss Aq−1

ss ∈ (E0(q), 4π2). Referring to Figure 6, we see this condition

holds for all large j when q ≤ −1, since E0(q) = 0. When q > −1, it will hold for at

most finitely many j. (Of course, any such positive periodic steady state would be linearly

unstable at period Pss, by Theorem 1.)

We close this section of results for power-law coefficients with the aesthetically pleasing

result that the mean value A/P of the steady state kα varies monotonically with the minimum

height α.

Theorem 13. For 0 < α < 1,

(
A

P

)′
(α)

 > 0
= 0
< 0

and
A

P

 < 1
= 1
> 1

when

 q > 1,
q = 1,
q < 1,

with A/P → 1 as α→ 1.

The theorem is proved in Section 6.4.

4. Proofs of Theorems 1–5

4.1. Proof of Theorem 1. Translate hss so that it has a global minimum at x = 0 with this

minimum recurring at X/j, 2X/j, . . . , X. Define a trial function by truncating and vertically

translating hss: let

w(x) =

{
hss(x) on [0, X/j]
hss(0) on (X/j,X)

}
− c

where the constant c is chosen to ensure w has weighted mean value
∫ X

0
wf(hss)

−1 dx = 0.

This implies c 6= hss(0). Extend w to be X-periodic on R and notice w ∈ H2(TX) since

h′ss = 0 at x = 0, X/j. With this trial function, the numerator of the Rayleigh quotient in
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(5) is∫ X

0

[
w′′

2 − r(hss)w
′2 + aw2f(hss)

−1
]
dx

=

∫ X/j

0

{
h′′ss

2 − r(hss)h
′
ss
2

+ ah2
ssf(hss)

−1 + a
[
−2chss + c2

]
f(hss)

−1
}
dx

+a

∫ X

X/j

w2f(hss)
−1 dx

=

∫ X/j

0

{[
(h′′′ss + r(hss)h

′
ss)
′
+ af(hss)

−1hss

]
hss + a

[
−2chss + c2

]
f(hss)

−1
}
dx

+a

∫ X

X/j

w2f(hss)
−1 dx by integration by parts

=

∫ X/j

0

a
[
−2chss + c2

]
f(hss)

−1 dx+ a

∫ X

X/j

w2f(hss)
−1 dx,

by the steady state equations (2) and (3)

=

{
0 if a = 0

ac2X/j + a(hss(0)− c)2(X −X/j) if a < 0

}
where in the last step we used that if a < 0 then f ≡ 1 by assumption and

∫ X/j
0

hss dx = 0

by integrating the steady state equation (2). From this, we conclude that λ1(hss) < 0 when

a < 0, and λ1(hss) ≤ 0 when a = 0.

It remains to prove λ1(hss) < 0 when a = 0. Suppose instead λ1(hss) = 0 and a = 0.

Then our trial function w is a minimizer for the Rayleigh quotient and so it is C4-smooth

and satisfies the Euler–Lagrange equation Iw = 0: w′′′′ + (r(hss)w
′)′ = 0. However, w is

constant on the interval (X/j,X), and so by the uniqueness theorem for linear ODEs with

continuous coefficients, w must equal the same constant on (0, X/j) also, contradicting the

hypothesis that hss is non-constant. Hence λ1(hss) < 0, finishing the proof.

This argument breaks down when the steady state has the same period as the perturbations

(i.e. when j = 1) because then we do not know w is constant on an interval. It also breaks

down when a > 0.

4.2. Proof of Lemma 2. Multiplying the equation (f(hss)h
′′′
ss)
′+ (g(hss)h

′
ss)
′ + ahss = 0 by

−h′′ss and integrating by parts gives

0 =

∫ X

0

[
f(hss)h

′′′
ss

2
+ g(hss)h

′
ssh
′′′
ss + ah′ss

2
]
dx

=

∫ X

0

[
f(hss)

(
h′′′ss +

1

2

g(hss)

f(hss)
h′ss

)2

+

(
a− 1

4

g(hss)
2

f(hss)

)
h′ss

2

]
dx,

by completing the square. The lemma follows, since f > 0.
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4.3. Proof of Theorem 3. We take as our trial function w = h′ss 6≡ 0. This belongs to

H2(TX) and has
∫ X

0
wf(hss)

−1 dx = 0 as required, and

numerator of the Rayleigh quotient for λ1(hss) in (5)

=

∫ X

0

[
h′′′ss

2 − r(hss)h
′′
ss

2
+ af(hss)

−1h′ss
2
]
dx

=

∫ X

0

h′′ss
[
−h′′′′ss − r(hss)h

′′
ss − af(hss)

−1hss

]
dx,

where we used that f(hss)
−1 ≡ 1 if a 6= 0

=

∫ X

0

h′′ssr
′(hss)h

′
ss
2
dx by the steady state equation (2)

=
1

3

∫ X

0

r′(hss)
[
h′ss

3
]′
dx = −1

3

∫ X

0

r′′(hss)h
′
ss
4
dx ≤ 0

because r′′ ≥ 0 by assumption. Hence λ1(hss) ≤ 0.

If λ1(hss) < 0 then we are done, so suppose λ1(hss) = 0. Then w = h′ss is a minimizer for

the Rayleigh quotient (5) and so it satisfies the Euler–Lagrange equation Iw = 0:

0 = Ih′ss = h′′′′′ss + (r(hss)h
′′
ss)
′
+ af(hss)

−1h′ss

= −
(
r′(hss)h

′
ss
2
)′

by the steady state equations (2) and (3), and using that if a 6= 0 then f ≡ 1. Hence

r′(hss)h
′
ss
2 is constant. Evaluating at a minimum point of hss shows this constant is zero and

so r′(hss)h
′
ss ≡ 0. This means r(hss(x)) is constant, contradicting a hypothesis of the theorem

and completing the proof.

In the above we used the fifth derivative of hss, which exists and is continuous by boot-

strapping: the lower-order terms in the steady state equation (2) are all C1-smooth by the

hypotheses in this theorem.

4.4. Proof of Theorem 4. Define a trial function by truncating and vertically translating

the steady state hss so that it equals zero at the endpoints:

w(x) =

{
hss(x)− hss(b) if 0 ≤ x ≤ b,

0 if b < x < X.

Clearly w ∈ H1
0 (0, X), but also w ∈ H2(0, X) since h′ss(b) = 0. For w to be a valid

trial function, we must first argue w 6≡ 0. If w ≡ 0 then hss ≡ hss(b) on (0, b) and so

ahss(b) = 0 by the steady state equation (2). Hence y1 ≡ hss(b) solves the linear ODE

(f(hss)y
′′′ + g(hss)y

′)′ + ay = 0 on (0, X), where f > 0. By (2), y2 = hss is another solution

of this equation, and since y1 ≡ y2 on (0, b), uniqueness for linear ODEs with continuous

coefficients implies y1 ≡ y2 everywhere. This proves hss is constant, a contradiction.
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We now evaluate the numerator of the Rayleigh quotient in (7) as∫ X

0

[
w′′

2 − r(hss)w
′2 + aw2f(hss)

−1
]
dx

=

∫ b

0

{[
h′′ss

2 − r(hss)h
′
ss
2

+ ah2
ssf(hss)

−1
]

+ a
[
−2hss(b)hss + hss(b)

2
]
f(hss)

−1
}
dx

=

∫ b

0

{[
h′′′′ss + (r(hss)h

′
ss)
′
+ ahssf(hss)

−1
]
hss + a

[
−2hss(b)hss + hss(b)

2
]
f(hss)

−1
}
dx

=

∫ b

0

a
[
−2hss(b)hss + hss(b)

2
]
f(hss)

−1 dx, by the steady state equations (2) and (3)

=

{
0 if a = 0

ahss(b)
2b if a < 0

}
≤ 0

where in the second-to-last step we used that if a 6= 0 then f ≡ 1 by assumption and∫ b
0
hss dx = 0 by integrating the steady state equation (2). We conclude ν1(hss) ≤ 0.

If ν1(hss) < 0 then we are done, so suppose ν1(hss) = 0. Then w is a minimizer, and

so it satisfies the natural boundary condition w′′(0) = 0. By construction, w, w′, and w′′′

equal zero at x = 0. Since w and its first three derivatives vanish at x = 0, the uniqueness

theorem for the linear equation (6) satisfied by the minimizer w now implies w ≡ 0. This

contradiction completes the proof.

4.5. Proof of Theorem 5. Follow the proof of Theorem 3 almost verbatim. Observe

that w = h′ss belongs to H2(0, X) ∩H1
0 (0, X), since the Neumann boundary conditions give

w = h′ss = 0 at the endpoints. Thus we can use w as a trial function in the Rayleigh quotient

(7) for ν1(hss).

At the end of the proof, show r′(hss)h
′
ss
2 ≡ 0 by evaluating at x = 0 and using the Neumann

boundary conditions.

5. Proof of Theorems 9 and 11

We start the proof by reducing to a second order eigenvalue problem connected with a

nonlocal reaction-diffusion equation. We then rescale to period 1 and show that stability is

characterized by the sign of E′(α).

Second order problem. Recalling the general set-up of Section 2 and the Rayleigh quotient

(5) for λ1, assume a = 0 and define a new Rayleigh quotient and minimization problem by

τ1(hss) = min
u
R[u] := min

u

∫ X
0

[(u′)2 − r(hss)u
2] dx∫ X

0
u2 dx

,(16)

where the minimum is taken over u ∈ H1(TX) \ {0} with u having mean value zero. In

Appendix A we prove the minimum for τ1(hss) is attained, and that each minimizing function
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u1 is C2-smooth and satisfies the Euler–Lagrange equation

u′′1 + r(hss)u1 + τ1(hss)u1 = γ,

∫ X

0

u1 dx = 0,(17)

for some constant γ. Integrating over a period gives γ =
∫ X

0
r(hss)u dx/X, making this a

nonlocal reaction-diffusion equation. We refer the reader interested in stability of general

nonlocal reaction-diffusion equations to Freitas [12].

Notice λ1(hss) < 0 if and only if τ1(hss) < 0, by comparing the formulas (5) and (16) for λ1

and τ1 and using trial functions w and u related by w′ = u with
∫ X

0
wf(hss)

−1 dx = 0. Thus

linear stability is determined by τ1. But the minimizers for τ1 may be qualitatively different

from those of λ1: for example, with a = 0, f ≡ 1, g ≡ r ≡ 9 and X = 2π we find u(x) = sin x

and cosx are minimizers for τ1, whereas w(x) = sin 2x and cos 2x are minimizers for λ1.

Characterizing stability in terms of the eigenvalue τ1 of the second order problem is very

natural from another perspective as well. In a companion paper [27] we study a Liapunov

function (see the conclusions §7) that is dissipated in time by positive solutions of the

evolution equation. If one perturbs a steady state in some direction u then the first variation

of this Liapunov function at a steady state is 0. The second variation in the direction u

is precisely the numerator of the Rayleigh quotient for τ1, so that if τ1 < 0 then there are

arbitrarily small perturbations of the steady state that decrease the Liapunov function. A

positive solution with such perturbed initial data cannot relax to the steady state: the steady

state is not asymptotically stable. Such a Liapunov function approach to stability for the

Cahn–Hilliard equation goes back at least to Carr, Gurtin, and Slemrod [6].

Notice u = h′ss is an eigenfunction of (17) with zero eigenvalue, τ = 0, by (3). This

eigenfunction corresponds to an infinitesimal translation of the steady state. It follows that

τ1(hss) ≤ 0, and so linear stability is equivalent to τ1 = 0 while instability requires τ1 < 0.

Rescaling to period 1. Let q ∈ R, α ∈ (0, 1), and now consider power law coefficients as in

Theorems 9 and 11. We are studying the rescaled problem, that is, studying the stability of

kα rather than hss, and so X = P = P (α) and r(kα) = kq−1
α . Recall E = P 3−qAq−1 and that

Kα(x) =
P (α)

A(α)
kα(P (α)x), κα(x) =

∂

∂α
Kα(x).

By writing v(x) = u(P (α)x) we see τ1(kα) = P (α)−2µ1(α), where

µ1(α) := min

{∫ 1

0
[(v′)2 −E(α)Kq−1

α v2] dx∫ 1

0
v2 dx

: v ∈ H1(T1) \ {0},
∫ 1

0

v(x) dx = 0

}
.(18)

Since λ1(kα) < 0 if and only if τ1(kα) < 0, if and only if µ1(α) < 0, we see

kα is linearly unstable at period P (α) if and only if µ1(α) < 0, and is linearly

stable otherwise.
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Note that minimizers for µ1(α) satisfy v′′ + E(α)Kq−1
α v + µ1(α)v = γ for some constant γ.

The following propositions relate the sign of µ1 to the sign of E′; these relations prove

Theorems 9 and 11.

Proposition 14. Let q > 1. For each α ∈ (0, 1), if E′(α) > 0 then µ1(α) < 0.

Proposition 15. Let q ∈ R. For each α ∈ (0, 1), if µ1(α) < 0 then E′(α) > 0.

Propositions 14 and 15 imply for q > 1 that k is linearly stable (µ1(α) ≥ 0) if and only

if E′(α) ≤ 0. This proves Theorem 9. When q ≥ 2 or q < 1, k is linearly unstable by

Theorem 7, hence µ1(α) < 0 and so E′(α) > 0 by Proposition 15, proving Theorem 11.

Proposition 14 is proved in Section 5.3 by using κα as a trial function for µ1(α). Propo-

sition 15 is proved in Section 5.4 by adapting the time map method for proving stability of

local reaction-diffusion equations with Neumann boundary conditions.

In the rest of Section 5, we will not use the α-dependence of kα, Kα, and κα. For this

reason we will suppress the α-subscripts.

5.1. Differential equations used in proving Propositions 14 and 15. We first collect

differential equations involving k, K, and κ. We recall that k is positive, periodic and

non-constant, and satisfies k(0) = α, k′(0) = 0, and

k′′ +
kq − 1

q
= 0 when q 6= 0,(19)

with the term (kq−1)/q being replaced by log k when q = 0. Here k′ denotes kx. Integrating

(19), one finds
∫ P

0
kq dx/P = 1 when q 6= 0 and

∫ P
0

log k dx/P = 0 when q = 0. It follows by

Jensen’s inequality that

A

P

 ≤ 1 when q > 1,
= 1 when q = 1,
≥ 1 when q < 1.

(20)

Multiplying (19) by k′ and integrating yields

1

2
(k′)2 +H(k) = H(α)(21)

where for y > 0,

H(y) :=


1
q

[
yq+1

q+1
− y
]
, q 6= 0,−1,

y log y − y, q = 0,
y − log y, q = −1.

(22)

Note H(y) is strictly convex, H ′′ > 0, with its minimum at y = 1. We see from (21) that

the maximum of k = kα is the number β > 1 that solves H(β) = H(α); β will be used later.

For future reference, note that

(q + 1)H(y)→ −1 as q → −1 with y fixed,(23)



23

even though (q + 1)H(y) = 0 for all y when q = −1.

Rescaling equation (19), K satisfies a differential equation:

K ′′ + E
Kq − (P/A)q

q
= 0 when q 6= 0,(24)

with K ′′ + E [logK − log(P/A)] = 0 when q = 0.

Rescaling equation (21), K also satisfies

1

2
(K ′)2 + E

1

q

[
Kq+1

q + 1
−
(
P

A

)q
K

]
= E

(
P

A

)q+1

H(α) when q 6= 0,−1,(25)

with

1

2
(K ′)2 + EK (logK − 1− log(P/A)) = E

(
P

A

)
H(α) when q = 0

and

1

2
(K ′)2 + E

[(
P

A

)−1

K − logK + log(P/A)

]
= EH(α) when q = −1.

Next we find equations for κ. Differentiating (24) with respect to α gives

κ′′ + EKq−1κ− E
(
P

A

)q−1(
P

A

)′
(α) + E′(α)

Kq − (P/A)q

q
= 0 when q 6= 0.(26)

When q = 0, the same formula holds but with [Kq− (P/A)q]/q on the lefthand side replaced

by [logK − log(P/A)]. In (25)–(26) and in the rest of this section, K ′, K ′′, κ′, κ′′ denote

x-derivatives, but otherwise ′ denotes an α-derivative.

Differentiating (25) with respect to α, for q 6= −1, 0 we have

K ′κ′ + E
Kq − (P/A)q

q
κ+ E′(α)

(
P

A

)q+1

H(k)− E
(
P

A

)q−1(
P

A

)′
(α)K

= E′(α)

(
P

A

)q+1

H(α) + E

(
P

A

)q (P
A

)′
(α) [(q + 1)H(α)] + E

(
P

A

)q+1

H ′(α),(27)

where k is evaluated at Px. When q = 0, the same formula holds but with [Kq − (P/A)q]/q

on the lefthand side replaced by [logK − log(P/A)]. When q = −1, the same formula holds

but with (q + 1)H(α) on the righthand side replaced by −1 (which is consistent with the

q → −1 limiting behavior in (23)).

5.2. Derivatives of P,A,E and integrals of K. Next we establish formulas for the α-

derivatives of P = P (α), A =
∫ P

0
k dx, and of

∫ 1

0
Kq+1 dx. These are used in the proofs of

Propositions 14 and 15. We also obtain formulas for the α-derivatives of E = P 3−qAq−1 and

A/P (the mean value of k).
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We first multiply (19) by k and integrate, giving

−
∫ P

0

(k′)2 dx+
1

q

∫ P

0

kq+1 dx− 1

q
A = 0 when q 6= 0,(28)

or −
∫ P

0
(k′)2 dx+

∫ P
0
k log k dx = 0 when q = 0. Further, integrating (21) yields∫ P

0

(k′)2 dx+ 2

∫ P

0

G(k) dx− 2

q
A = 2H(α)P when q 6= 0,(29)

where

G(y) :=


yq+1

q(q+1)
, q 6= 0,−1,

y log y − y, q = 0,
− log y, q = −1.

When q = 0 one omits the term −2
q
A from (29).

Adding (28) and (29), we find∫ P

0

G(k) dx =
1

q + 3

[
3

q
A+ 2H(α)P

]
when q 6= −3,−1, 0.(30)

When q = 0 the same formula holds except the term 3
q
A is replaced by −A. When q = −1

one adds P/2 to the righthand side of (30). When q = −3 we do not get a formula for∫ P
0
G(k) dx, but adding (28) and (29) yields an exact relation between the period and area:

A = 2H(α)P when q = −3,(31)

or A = [α−2 + 2α]P/3.

We use identities (28) and (29) to solve for
∫
k′2:

0 <

∫ P

0

(k′)2 dx =
2

q + 3
[A+ (q + 1)H(α)P ] when q 6= −3,−1.(32)

Notice 0 <
∫ P

0
(k′)2 dx = A−P when q = −1, directly from (28), and 0 = A+ (q+ 1)H(α)P

when q = −3, by (31). Hence

A+ (q + 1)H(α)P

 > 0 when q > −3,
= 0 when q = −3,
< 0 when q < −3,

(33)

where for q = −1 we replace (q + 1)H(α) with −1 on the lefthand side.

By differentiating (32) with respect to α,

d

dα

∫ P

0

(k′)2 dx =
2

q + 3
[A′ + (q + 1)H(α)P ′ + (q + 1)H ′(α)P ] when q 6= −3,−1.(34)
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However we also know directly from the nonlinear oscillator formulation (21) that for all q,

d

dα

∫ P

0

(k′)2 dx = 2
d

dα

∫ P/2

0

(
dk

dx

)2

dx

= 2
d

dα

∫ β

α

dk

dx
dk

= 2
d

dα

∫ β

α

√
2H(α)− 2H(y)dy by (21)

= 2

∫ β

α

H ′(α)√
2H(α)− 2H(y)

dy using that H(β) = H(α)

= 2H ′(α) ·
∫ β

α

dx

dk
dk = H ′(α)P.

Because H ′(α) < 0 for α ∈ (0, 1), the last equality implies

d

dα

∫ P

0

(k′)2 dx = H ′(α)P < 0.(35)

Equating equations (34) and (35), we solve for A′(α):

Lemma 16. For all q ∈ R \ {−1},

A′ = −(q + 1)H(α)P ′ − q − 1

2
H ′(α)P.

For q = −1, we replace (q + 1)H(α) on the righthand side with −1.

For q = −3, Lemma 16 follows from differentiating (31). For q = −1 it follows from

differentiating
∫ P

0
(k′)2 dx = A− P .

We use Lemma 16 to classify the monotonicity of the mean, A/P :

Lemma 17. For all q ∈ R \ {−1},(
A

P

)′
= −P

′

P 2
[A+ (q + 1)H(α)P ]− q − 1

2
H ′(α).

For q = −1, we replace (q + 1)H(α) on the righthand side with −1.

Therefore (
A

P

)′
(α)

{
> 0 when q > 1,
< 0 when q ≤ −3 or −1

2
≤ q < 1.

Proof. The formula for (A/P )′ follows directly from Lemma 16. The monotonicity claims for

A/P follow in a straightforward manner by combining this formula for (A/P )′ with formula
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(33), the fact that H ′(α) < 0, and the inequalities for P ′(α)

P ′(α)



< 0 when q > 1,

= 0 when q = 1,

> 0 when −1
2
< q < 1,

= 0 when q = −1
2
,

< 0 when q < −1
2
.

(36)

taken from [26, Proposition 7.3].

Lemmas 16 and 17 then yield information on the monotonicity of E:

Lemma 18. For all q ∈ R \ {−1},

E′ = −
(
A

P

)q−2{
P ′ [(q − 3)A+ (q − 1)(q + 1)H(α)P ] +

1

2
(q − 1)2H ′(α)P 2

}
.

For q = −1, we replace (q + 1)H(α) on the righthand side with −1.

Also E′(α) > 0 when −1
2
≤ q < 1.

Proof. The formula for E′ follows from differentiating E = P 3−qAq−1 and using the formula

for A′ in Lemma 16. For −1
2
≤ q < 1 we know P ′ ≥ 0 by (36) and (A/P )′ < 0 by Lemma 17.

Differentiating E = P 2(A/P )q−1 yields E′ > 0.

We now find formulas for
∫ 1

0
Kq+1 dx and its derivative. From (30),∫ 1

0

Kq+1

q(q + 1)
dx =

1

q + 3

(
P

A

)q [
3

q
+ 2H(α)

P

A

]
when q 6= −3,−1, 0.

Differentiating and using Lemma 17, we obtain

d

dα

∫ 1

0

G(K) dx =
1

q + 3

(
P

A

)q−1
{

1

A
[3A+ 2(q + 1)H(α)P ]

(
P

A

)′
+ 2H ′(α)

(
P

A

)2
}

(37)

for q 6= −3,−1, 0. For q = 0 the same formula holds. For q = −1 it holds with (q + 1)H(α)

on the righthand side replaced by −1.

Lemma 19. For all q > 1,

d

dα

∫ 1

0

G(K) dx < 0.

Proof. Since H ′(α) < 0, and (P/A)′ < 0 by Lemma 17, it suffices observe that on the

righthand side of (37), [3A+ 2(q + 1)H(α)P ] > A > 0 by (33).
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5.3. Proof of Proposition 14. Assume E′(α) > 0. For the trial function v = κ, the

numerator of the Rayleigh quotient (18) is∫ 1

0

[
(κ′)

2 − EKq−1κ2
]
dx =

∫ 1

0

κ
[
−κ′′ −EKq−1κ

]
dx

=

∫ 1

0

κ

[
E′(α)

Kq − (P/A)q

q
−E

(
P

A

)q−1(
P

A

)′
(α)

]
dx by (26)

= E′(α)

∫ 1

0

Kq

q
κ dx since

∫ 1

0

κ dx = 0 has mean value zero

= E′(α)
d

dα

∫ 1

0

G(K) dx < 0,

by Lemma 19. Therefore µ1(α) < 0, as desired.

5.4. Proof of Proposition 15. We will use two lemmas, proved later in the section. The

first lemma concerns the monotonicity properties of κ = κα:

Lemma 20. Let q ∈ R. Take 0 < α < 1 and assume E′(α) ≤ 0. Then κ′(x) < 0 for all

0 < x < 1
2
.

The second lemma concerns the functions at which the minimum is achieved for µ1(α),

in (18). If v1 is such a function then it is smooth (see Appendix A) and satisfies the Euler–

Lagrange equation

v′′1 + EKq−1v1 + µ1(α)v1 = γ(38)

for some constant γ. By construction, v1 6≡ 0 has mean value zero and is 1-periodic in x.

We can assume either v1(0) > 0 or else v1(0) = 0 and v′′1(0) ≥ 0, by replacing v1 with −v1 if

need be.

Lemma 21. Let q ∈ R and let v1 be as above.

(a) If µ1(α) < 0 then v1 is even.

(b) If v1 is even then there exists a point xv ∈ (0, 1
2
) such that v1 > 0 on (0, xv) and v1 < 0

on (xv,
1
2
), except perhaps at finitely many points at which v1 = 0.

(c) Suppose v1 is even. If q > 1 then γ < 0, and if q < 1 then γ > 0.

Part (b) says the minimizer v1 changes sign just once per half-period; this rather natural

result may well exist elsewhere in the literature. Also, the ‘exceptional’ points in part (b) do

not actually occur (although we will not use this fact). For example, when q > 1 we know

γ < 0 by part (c), and so equation (38) implies v′′1 < 0 wherever v1 = 0. Hence v1 > 0 on

(0, xv). Also, a decreasing rearrangement of v1 on (xv,
1
2
] (and an increasing rearrangement

on [1
2
, 1− xv)) would lower the Rayleigh quotient in (18) since Kq−1 is increasing on (0, 1

2
).

Hence v1 must be decreasing on (xv,
1
2
), since it minimizes the Rayleigh quotient. Therefore

v1 < 0 on (xv,
1
2
).
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We first use Lemmas 20 and 21 to prove Proposition 15, and then we prove the lemmas.

Proof of Proposition 15. For q 6= 0,

µ1(α)

∫ 1
2

− 1
2

v1κ dx =

∫ 1
2

− 1
2

[
γ − v′′1 − EKq−1v1

]
κ dx by (38)

=

∫ 1
2

− 1
2

[
−κ′′ − EKq−1κ

]
v1 dx

by integration by parts and since

∫ 1/2

−1/2

κ dx = 0

=

∫ 1
2

− 1
2

[
E′(α)

Kq − (P/A)q

q
− E

(
P

A

)q−1(
P

A

)′
(α)

]
v1 dx by (26)

= E′(α)

∫ 1
2

− 1
2

Kq

q
v1 dx since v1 has mean value zero.(39)

For q = 0 the argument is the same, with Kq/q replaced by logK.

Lemma 21(a) applies since µ1(α) < 0 by assumption. Thus v1 is even and the point xv

exists by Lemma 21(b). Hence for q 6= 0,∫ 1
2

− 1
2

Kq

q
v1 dx = 2

∫ 1
2

0

Kq

q
v1 dx = 2

∫ xv

0

Kq

q
v1 dx+ 2

∫ 1
2

xv

Kq

q
v1 dx

< 2
K(xv)

q

q

∫ xv

0

v1 dx+ 2
K(xv)

q

q

∫ 1
2

xv

v1 dx = 0.(40)

Here we used that Kq/q is strictly increasing on (0, 1
2
) and is even, and that v1 has mean

value zero and is even. The same argument holds for q = 0 with Kq/q replaced by logK.

Because µ1(α) and
∫

(Kq/q)v1 dx are both negative, it follows from (39) that

E′(α) and

∫ 1
2

− 1
2

v1κ dx have the same sign.(41)

We now prove E′(α) > 0. Suppose instead E′(α) ≤ 0, so that
∫ 1/2

−1/2
v1κ dx ≤ 0 by (41).

Then Lemma 20 applies and κ′ < 0 on (0, 1
2
), so that

0 ≥
∫ 1

2

− 1
2

κv1 dx = 2

∫ 1
2

0

κv1 dx = 2

∫ xv

0

κv1 dx+ 2

∫ 1
2

xv

κv1 dx

> 2 κ(xv)

∫ xv

0

v1 dx+ 2 κ(xv)

∫ 1
2

xv

v1 dx = 0,

a contradiction. Above, we used that κ and v1 are even, and that v1 has mean value zero.

This proves E′(α) > 0, as desired.

Proof of Lemma 20.
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For −1
2
≤ q < 1 we know E′(α) > 0 by Lemma 18, and so there is nothing to prove since

the hypothesis of Lemma 20 cannot hold. For q = 1 the steady states are known explicitly:

k(x) = 1 + (α − 1) cosx and P = 2π,A = 2π by (15), so that K(x) = 1 + (α − 1) cos(2πx)

and κ(x) = cos(2πx). Hence κ′(x) < 0 for 0 < x < 1
2
.

The cases q < −1
2

and q > 1 remain.

Write x∗ ∈ (0, 1
2
) for the point where K(x∗) = P/A, in other words where k(Px∗) = 1.

Then K < (P/A) on [0, x∗) and K > (P/A) on (x∗, 1
2
]. We will prove that if x0 ∈ [0, 1

2
] and

κ′(x0) = 0, then

κ′′
Kq − (P/A)q

q
> 0 at x0.(42)

This implies κ′(x∗) 6= 0, because the lefthand side of (42) equals zero at x∗. Also, (42) implies

x ∈ [0, x∗), κ′(x) = 0 =⇒ κ′′(x) < 0,

x ∈ (x∗, 1/2], κ′(x) = 0 =⇒ κ′′(x) > 0.

Since κ′(x) = 0 at x = 0 and x = 1
2

(by evenness and periodicity of κ), we conclude κ′ < 0

on (0, 1
2
), proving the lemma. So we have only to prove (42).

Let x0 ∈ [0, 1
2
] be such that κ′(x0) = 0. Evaluating identity (27) at x0, the first term

vanishes. Also, the last term in (27) is negative, since H ′(α) < 0. Therefore at the point x0,

E
Kq − (P/A)q

q
κ < E′(α)

(
P

A

)q+1

[H(α)−H(k)](43)

+E

(
P

A

)q (
P

A

)′
(α) [(q + 1)H(α)] + E

(
P

A

)q−1(
P

A

)′
(α)K.

Multiplying (26) by [Kq − (P/A)q]/q, and evaluating at the point x0,

κ′′
Kq − (P/A)q

q

= −EK
q − (P/A)q

q
κKq−1 + E

(
P

A

)q−1(
P

A

)′
(α)

Kq − (P/A)q

q
− E′(α)

(
Kq − (P/A)q

q

)2

> −E′(α)

(
P

A

)q+1

[H(α)−H(k)]Kq−1 −E
(
P

A

)q (
P

A

)′
[(q + 1)H(α)]Kq−1

−E
(
P

A

)q−1(
P

A

)′
Kq + E

(
P

A

)q−1(
P

A

)′
Kq − (P/A)q

q
−E′(α)

(
Kq − (P/A)q

q

)2

by using (43) to estimate the first term. Hence

κ′′
Kq − (P/A)q

q

> −E′(α)

(
P

A

)2q
(

[H(α)−H(k)] kq−1 +

(
kq − 1

q

)2
)

+ E

(
P

A

)2q−1(P
A

)′
c(k)(44)
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at x0, where we have introduced the function

c(y) = −(q + 1)H(α)yq−1 − yq +
yq − 1

q
for y > 0.

We continue here the convention that (q + 1)H(α) = −1 when q = −1.

Case 1: q > 1. In this case c(y) is a concave function of yq−1, attaining its maximum at

y0 = −(q + 1)H(α). Notice 0 < y0 < 1 since

0 = H(0) > H(α) > H(1) = −1/(q + 1).

Thus c(y0) = (yq0 − 1)/q < 0 and so c(k) < 0 in (44). Now, (P/A)′(α) < 0 by Lemma 17,

E′(α) ≤ 0 by assumption in Lemma 20, and H(α) ≥ H(k) by construction (recall from (22)

and the associated comments that H is convex with H(α) = H(β), where β is the maximum

value of k). Therefore from (44) we deduce (42).

Case 2: q ≤ −1. Since q < 0, c(y) is a convex function of yq−1, attaining its minimum at

y0 = −(q + 1)H(α). Notice y0 > 1 when q < −1 because

H(α) > H(1) = − 1

q + 1
> 0,

and y0 = 1 when q = −1 because then (q + 1)H(α) = −1 by convention. Thus c(y0) =

(yq0 − 1)/q ≥ 0, and so c(k) ≥ 0 in (44). Differentiating the relation (P/A)1−q = EP−2 with

respect to α and recalling P ′ < 0 (by (36), valid for q < −1
2
) we deduce(

P

A

)′
> (1− q)−1

(
P

A

)q
E′(α)P−2.

Using this inequality to estimate (P/A)′ in (44) yields that at x0,

κ′′
Kq − (P/A)q

q
> −E′(α)

(
P

A

)2q
(

[H(α)−H(k)] kq−1 +

(
kq − 1

q

)2

− (1− q)−1c(k)

)
.

Since E′(α) ≤ 0 by assumption, it remains to prove

[H(α)−H(y)] yq−1 +

(
yq − 1

q

)2

− (1− q)−1c(y) ≥ 0 whenever α ≤ y ≤ β,(45)

for this implies inequality (42).

The y-derivative of the lefthand side of (45) equals 2 [H(y)−H(α)] yq−2, which is negative

when α < y < β. So it suffices to check (45) at the endpoint y = β. Evaluating at y = β

and using H(α) = H(β), (45) becomes

1

1− q

(
βq − 1

q

)2

≥ 0,

which is true since q ≤ −1. Thus (45) holds, implying (42) as desired.

Case 3: −1 < q < −1
2
. If c(k(Px0)) ≥ 0 then the argument given for the q ≤ −1 case

applies, yielding (45) and then (42). So we assume c(k(Px0)) < 0. If (P/A)′(α) ≤ 0 then
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(44) implies (42), since E′(α) ≤ 0 and H(α) ≥ H(k). So we assume c(k(Px0)) < 0 and

(P/A)′(α) > 0.

We evaluate (27) at x0, where κ′(x0) = 0. Since H(α) < H(0) = 0,

E
Kq − (P/A)q

q
κ < E

(
P

A

)q−1(
P

A

)′
K + E

(
P

A

)q+1

H ′(α) at x0.

After multiplying (26) by [Kq − (P/A)q]/q, we therefore obtain that

κ′′
Kq − (P/A)q

q
> E

(
P

A

)2q−1(
P

A

)′ [
−kq +

kq − 1

q

]
− E

(
P

A

)2q

H ′(α)kq−1(46)

at x0. To help with the remaining estimates, we now show(
P

A

)′
< −

(
P

A

)
H ′(α).(47)

Indeed (
P

A

)′
<
q − 1

2

(
P

A

)2

H ′(α),

by the formula for (A/P )′ in Lemma 17 together with the observations that P ′ < 0 by (36)

and [A + (q + 1)H(α)P ] > 0 by (33). Also (P/A) ≤ 1 by (20) while (q − 1)/2 > −1 and

H ′(α) < 0, implying (47).

In (46) we have [−kq + (kq − 1)/q] < c(k) < 0, and so we can apply (47) to the righthand

side of (46), resulting in

κ′′
Kq − (P/A)q

q
> E

(
P

A

)2q

H ′(α)

[
kq − kq − 1

q
− kq−1

]
.

On the righthand side, [kq − (kq − 1)/q − kq−1] ≤ 0 because y 7→ [yq − (yq − 1)/q − yq−1] is

a concave function of yq−1 with maximum value 0, attained at y = 1. Finally, H ′(α) < 0

and so (42) holds, completing the proof.

Proof of Lemma 21.

Proof of Lemma 21(a): We prove a more general statement. Assume u is C2-smooth with

least period X > 0, and that u satisfies u′′+r(hss)u+τu = γ for some real constants τ and γ.

As usual, r = g/f with f, g ∈ C1(R), f > 0, and hss ∈ C4(R) is a non-constant X-periodic

steady state of (1) with a = 0. Assume hss has been translated to have its minimum at

x = 0. We now prove that if u is not even then τ ≥ 0. This will prove part (a) of the lemma,

because (38) implies that u(x) := v1(x/P ) satisfies

u′′ + kq−1
α u+

µ1(α)

P 2
u =

γ

P 2
.

First, note that hss is symmetric about every point at which h′ss = 0, by uniqueness for the

second order oscillator ODE (8). Therefore h′ss > 0 on (0, X/2), since otherwise hss would

have period less than X.
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Assume u is not even, hence the odd function uo(x) = u(x) − u(−x) is not identically

zero. By the evenness of hss, uo satisfies u′′o + r(hss)uo + τuo = 0, which is a homogeneous

linear equation. Since uo(0) = 0, one must have u′o(0) 6= 0 because otherwise uo ≡ 0 by the

uniqueness theorem for ODEs. Also uo(X/2) = 0 by the oddness and periodicity of uo, and

so there is a point b ∈ (0, X/2] with uo(b) = 0 and uo 6= 0 between 0 and b. Suppose uo > 0

between 0 and b (otherwise consider −uo). Then

τ

∫ b

0

uoh
′
ss dx = −

∫ b

0

[u′′o + r(hss)uo]h
′
ss dx since u′′o + r(hss)uo + τuo = 0

= −u′o(b)h′ss(b)−
∫ b

0

[h′′′ss + r(hss)h
′
ss]uo dx

by integration by parts and h′ss(0) = 0

= −u′o(b)h′ss(b) by (3)

≥ 0,

because u′o(b) ≤ 0 and h′ss(b) ≥ 0. Since uo and h′ss are positive on (0, b) it follows that τ ≥ 0.

Proof of Lemma 21(b): Assume v1 is even. Since v1 has mean value zero, it vanishes at some

point in (0, 1
2
). Furthermore, v1 has only finitely many zeros in (0, 1

2
) because otherwise

there would be an accumulation point of zeros of v1, and v1, v
′
1 and v′′1 would all vanish there,

implying γ = 0 in (38) and hence v1 ≡ 0 by the uniqueness theorem for ODEs.

Let x1 be the smallest zero of v1 in (0, 1
2
) and recall that either v1(0) > 0 or else v1(0) = 0

and v′′1(0) ≥ 0, by the construction of v1 before the Lemma. If either v1(0) > 0 or v1(0) = 0

and v′′(0) > 0 then v1 > 0 on (0, x1). If v1(0) = 0, v′′1(0) = 0, then v1 ≡ 0 by the uniqueness

theorem since also v′1(0) = 0 by evenness; thus this case cannot occur. Hence v1 > 0 on

(0, x1).

Let x2 be the largest zero of v1 in (0, 1
2
). Then x1 ≤ x2 <

1
2

and v1 6= 0 on (x2,
1
2
). If

x1 = x2 then v1 < 0 on (x1,
1
2
) (since v1 has mean value 0) and the conclusion of the lemma

holds with xv = x1.

Assume that x1 < x2. We define the sets

P = {x ∈ (x1, x2) : v1(x) > 0},
N = {x ∈ (x1, x2) : v1(x) < 0}.

If N is empty then v1 > 0 on (0, x2) except perhaps at finitely many points, and so v1 < 0 on

(x2,
1
2
) (since v1 has mean value zero): thus the conclusion of the lemma holds with xv = x2.

So assume N 6= ∅. There are three cases to consider.

Case (i): v1 > 0 on (x2,
1
2
). We find a contradiction by constructing a new minimizer v

for µ1(α) that vanishes on an open set. Hence Case (i) cannot occur.
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Define

A = −N , B = −P ∪ (−x1, x1) ∪ P, C = N .

In this case,

−
∫
A∪B∪C

v1 dx = −2

∫ x2

0

v1 dx = 2

∫ 1
2

x2

v1 dx > 0,

where we used that v1 has mean value zero and is even. Defining

IA =

∫
A

|v1| dx, IB =

∫
B

|v1| dx, IC =

∫
C

|v1| dx,

one has:

A,B,C are nonempty and IA, IB, IC > 0, with IA = IC and IA − IB + IC ≥ 0.(48)

To construct the new minimizer, we introduce numbers

a =
√
IB
[√

IB −
√
IA − IB + IC

]/
(IA + IC),

c =
√
IB

[√
IB +

√
IA − IB + IC

]/
(IA + IC),

which have been chosen to solve aIA − IB + cIC = 0 and a2IA − IB + c2IC = 0.

The proposed minimizer v is

v(x) =


av1(x) for x ∈ A
v1(x) for x ∈ B
cv1(x) for x ∈ C

0 for x 6∈ A ∪B ∪ C, |x| ≤ 1
2

with v extended to have period 1. Certainly v ∈ H1(T1), and it has mean value zero since∫ 1
2

− 1
2

v dx = a

∫
A

v1 dx+

∫
B

v1 dx+ c

∫
C

v1 dx = −aIA + IB − cIC = 0.

By construction, v 6≡ 0 because v1 6= 0 on B.

To show v is a minimizer for µ1(α), first multiply (38) by v1 and integrate over A,B,C to

obtain

µ1(α)

∫
A

(av1)2 dx =

∫
A

[
(av′1)2 −EKq−1(av1)2

]
dx− γa2IA,

µ1(α)

∫
B

(v1)2 dx =

∫
B

[
(v′1)2 − EKq−1(v1)2

]
dx+ γIB,(49)

µ1(α)

∫
C

(cv1)2dx =

∫
C

[
(cv′1)2 −EKq−1(cv1)2

]
dx− γc2IC .

Here we have used that v1 = 0 on ∂A, ∂B, ∂C. Adding these three equations,

µ1(α)

∫ 1
2

− 1
2

v2 dx =

∫ 1/2

− 1
2

[
(v′)2 −EKq−1v2

]
dx(50)

because a2IA − IB + c2IC = 0.
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By equation (50), v is a minimizer for µ1(α). This is impossible because all minimizers

for µ1(α) are smooth and have only finitely many zeros, whereas v ≡ 0 on (x2,
1
2
). This

contradiction eliminates Case (i).

Case (ii): v1 < 0 on (x2,
1
2
) and

∫
N |v1| dx ≥

∫
P |v1| dx. We assume P is nonempty, since

otherwise we would have v1 < 0 on (x1,
1
2
) except for finitely many points, and the lemma

would hold with xv = x1. Define

A = −N , B = −P ∪ P, C = N ,

so that IA − IB + IC = 2
∫
N |v1| dx− 2

∫
P |v1| dx ≥ 0 by assumption. Then (48) holds once

more, and we find a contradiction as in Case (i).

Case (iii): v1 < 0 on (x2,
1
2
) and

∫
N |v1| dx <

∫
P |v1| dx. In this case P must be nonempty.

Define

A = −P, B = −N ∪N , C = P,

so that IA − IB + IC = 2
∫
P |v1| dx− 2

∫
N |v1| dx > 0 by assumption. Then (48) holds once

more, and we find a contradiction as in Case (i). (The only difference is that the terms

−γa2IA,+γIB,−γc2IC in the equations (49) all change sign.)

This finishes the proof of Lemma 21(b).

Proof of Lemma 21(c): Suppose v1 is even and q > 1. The point xv exists by part (b).

Integrating the eigenfunction equation (38) and using that v1 has mean value zero gives

γ = E

∫ 1
2

− 1
2

Kq−1v1 dx = 2E

∫ 1
2

0

Kq−1v1 dx

= 2E

∫ xv

0

Kq−1v1 dx+ 2E

∫ 1
2

xv

Kq−1v1 dx

< 2EK(xv)
q−1

∫ xv

0

v1 dx+ 2EK(xv)
q−1

∫ 1
2

xv

v1 dx = 0.

Here we used that Kq−1 is strictly increasing on (0, 1
2
) (since q > 1) and is even, and that v1

has mean value zero and is even.

One argues similarly if q < 1. Since Kq−1 is strictly decreasing, one derives γ > 0.

6. Proofs of Theorems 10, 12 and 13

6.1. Proof of Theorem 10. Let α ∈ (0, 1). We suppress the α-dependence of kα and

κα, writing k = kα and κ = κα. After rescaling as in Section 3.1, we see we can take

hss = k,X = P,B = 1, r(y) = yq−1.

We first show the 0-eigenfunctions solve

u′′ + kq−1u = γ(51)
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for some constant γ. For this, integrate Lu = 0 from the definition (4) to get (u′′ + kq−1u)
′
=

c/kn for some constant c. Integrating over a period from 0 to P shows c = 0, and (51) follows.

Conversely, if (51) holds then clearly u satisfies Lu = 0.

Before completing the proof, we remark that part (c) of the theorem, for q = 1, is really the

same as part (b). Indeed when q = 1, (15) gives P = 2π = A. Thus E(α) = P 3−1A1−1 = 4π2

for all α and E′(α) = 0. Also (15) shows κ(x) = cos(2πx), so that cos(x) = κ(x/P ) while

sin(x) is a multiple of k′(x). Thus part (c) reduces to part (b).

Part (a). Suppose 1 < q < 2 and E′(α) < 0. Certainly k′ solves (51), since k′′′+kq−1k′ = 0

by (13). Let u(x) be another 0-eigenfunction; u 6≡ 0 is smooth, P -periodic, has mean value

zero, and u′′ + kq−1u = γ for some constant γ. We now prove u is a multiple of k′. We do

this by splitting u into its odd and even parts,

uo(x) =
u(x)− u(−x)

2
and ue(x) =

u(x) + u(−x)

2
,

and showing uo is a multiple of k′ and ue ≡ 0.

Because k is even, both y1 = k′ and y2 = uo solve the second order homogeneous linear

ODE y′′ + kq−1y = 0 with y(0) = 0. By construction, y′1(0) = k′′(0) = −(αq − 1)/q 6= 0.

It follows from uniqueness for ODEs that y2 = [y′2(0)/y′1(0)]y1, since the two sides of the

equation solve the same ODE and have the same value and slope at x = 0. That is, uo is a

multiple of k′.

Suppose ue(x) is not identically zero. It has mean value zero and is a zero eigenfunction:

u′′e+k
q−1ue = γ. Rescaling ue to a function v1(x) = ue(Px) of period 1, we see v′′1 +EKq−1v1 =

γ1 where γ1 = γP 2. (Recall that E = P 3−qAq−1 and K(x) = Pk(Px)/A.) Also notice

µ1(α) = 0 by Proposition 15, since E′(α) < 0. Thus v1 6≡ 0 is even and 1-periodic and

satisfies (38); we can suppose either v1(0) > 0 or else v1(0) = 0, v′′1(0) ≥ 0, after multiplying

by −1 if necessary. Because E′(α) < 0 and µ1(α) = 0, from (39) we get
∫ 1/2

−1/2
Kqv1 dx = 0.

However, Lemma 21(b) applies, and so
∫ 1/2

−1/2
Kqv1 dx < 0 by (40). This contradiction shows

ue(x) must be identically zero, completing the proof of (a).

Part (b). Suppose 1 < q < 2 and E′(α) = 0. As before k′ solves (51), but now so does

κ(x/P ), as one sees by putting E′(α) = 0 into (26).

Let u(x) be another 0-eigenfunction with zero mean. We want to show u(x) is a linear

combination of k′(x) and κ(x/P ). By the proof of part (a), uo(x) is a multiple of k′(x), and

so it suffices to show ue(x) is a multiple of κ(x/P ). That is, we want v1 to be a multiple of

κ.

For this, recall from above that v′′1 + EKq−1v1 = γ1. We also know

κ′′ + EKq−1κ = E(P/A)q−1(P/A)′(α) 6= 0
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by (26) with E′(α) = 0, and by Lemma 17. Thus for some constant c the function ṽ1 = v1−cκ
satisfies ṽ′′1 +EKq−1ṽ1 = 0 =: γ2. Here ṽ1 is even and 1-periodic and has mean value zero, by

construction, and we can ensure either ṽ1(0) > 0 or else v1(0) = 0, v′′1(0) ≥ 0 by multiplying

by −1 if necessary.

Suppose ṽ1 6≡ 0. Observe µ1(α) = 0 by Proposition 15, since E′(α) = 0, so that ṽ1 solves

(38). Lemma 21(c) applies to ṽ1 and so γ2 < 0, a contradiction. Hence ṽ1 ≡ 0 and so v1 = cκ

is a multiple of κ, proving (b).

Part (c). If q = 1 then (51) is u′′ + u = γ. Integrating from 0 to P = 2π proves γ = 0,

since u has mean value zero. Hence u′′ + u = 0, and so the 0-eigenspace is spanned by sin x

and cosx.

6.2. Proof of Theorem 12. Assume by a translation that hss has its minimum at x = 0.

If Pss and Ass are the period and area of the original steady state hss, and P and A are

the period and area of the rescaled steady state kα, then the rescaling (10) implies

P =


( B
D

)1/2q
D1/2Pss, q 6= 0,

e−D/2BB1/2Pss, q = 0,
and A =


( B
D

)3/2q
D1/2Ass, q 6= 0,

e−3D/2BB1/2Ass, q = 0.
(52)

For later reference, notice that the rescaling (10) can be written as

hss(x) =
Ass

A

P

Pss
k

(
P

Pss
x

)
.(53)

From (52) we see E is essentially invariant:

BP 3−q
ss Aq−1

ss = P (α)3−qA(α)q−1 = E(α).(54)

It follows that if there is a steady state hss with period Pss and area Ass then BP 3−q
ss Aq−1

ss

lies in the range of E. The converse follows by choosing α with BP 3−q
ss Aq−1

ss = E(α) and

determining D from (52), then determining hss from (10).

By Theorem 11, E is strictly increasing for q < 1 and q ≥ 2, and so the desired non-

constant positive periodic steady state exists if and only if E(0) < BP 3−q
ss Aq−1

ss < E(1). Here

E(1) = 4π2 since P (1) = A(1) = 2π by Lemma 6.

Uniqueness of this steady state (up to translation) follows from the strict monotonicity of

E(α), which allows only one choice of α in the converse direction above.

6.3. Bifurcation diagram interpretation of E(α). The plots of E(α) in Figures 3, 4

and 5 can be interpreted as bifurcation diagrams for a family of steady states that all have

the same area but have varying minimum heights and hence periods.

To see this, start by fixing the value of Ass, say Ass = 1, and assuming q 6= 3. For each

α ∈ (0, 1), solve for D in the ‘A’ equation of (52), determining D in terms of A = A(α).

Using D, construct hss from the rescaling (10). This gives a family of steady states hss

parametrized by α ∈ (0, 1), each having area 1 and attaining its minimum at x = 0.
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For the bifurcation diagram interpretation of the Figures, we show that E(α) corresponds

in some fashion to the period of hss, and that α corresponds to the minimum height. First,

(54) with Ass = 1 gives

Pss = [E(α)/B]1/(3−q) ,

and so the period is proportional to a power of E(α), giving the desired first correspondence.

Second, the minimum height of hss is (AssP/APss)α by (53), and so

minimum height of hss = B1/(3−q)αA(α)2/(q−3)

by (54). The map α 7→ αA(α)2/(q−3) is strictly increasing when q < 1, since A′ < 0 by [26,

Proposition 7.4]. Numerical evidence suggests it is also strictly increasing when q > 1. So it

appears the minimum height of hss is monotonically related to α.

Turning the graph of E(α) on its side, then, we essentially get a plot of the minimum height

of hss against its period. If E′ > 0 on a branch of this diagram then the corresponding steady

states are linearly unstable, by Theorem 9, while if a branch has E′ ≤ 0 then the steady

states are linearly stable.

Incidentally, the figures can also be viewed as bifurcation diagrams for a family of steady

states with fixed period but with varying minimum heights and areas. For this interpretation,

E corresponds to the area under hss and α to its minimum height .

6.4. Proof of Theorem 13. The q = 1 case is immediate since P ≡ 2π,A ≡ 2π by (15).

For all q, A/P → 1 as α→ 1, by Lemma 6. Thus it suffices to show (A/P )′(α) is positive

when q > 1 and is negative when q < 1.

It is enough to consider q < −1
2
, because for q ≥ −1

2
, Lemma 17 applies. Now, P ′(α) < 0

when q < −1
2

by (36), and E′(α) > 0 by Theorem 11. Writing (A/P )1−q as E−1P 2 and

differentiating, we deduce (A/P )′(α) < 0 as desired.

7. Conclusions and Future Directions

The underlying question motivating this paper is:

If you perturb a periodic (or Neumann) steady state hss of ht = −(f(h)hxxx)x −
(g(h)hx)x−ah without changing its area, might the subsequent solution relax back

to the steady state?

We have not addressed this question directly, but we have considered the linear stability

question in two situations, proving linear instability when the perturbations have longer

period than the steady state, and when the perturbations have the same or shorter period

and g/f is convex. We also have proved more precise linear stability results when the

coefficients are power laws, f(y) = yn and g(y) = Bym with g/f non-convex.
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We considered smooth steady states only. In [26] we described conditions on g/f that

would allow existence of compactly supported ‘droplet’ steady states of thin film equations.

These droplet steady states have equal acute contact angles at the ends of the support,

and generally fail to be smooth at the contact line. Other conditions on g/f can lead to

steady states with non-acute contact angles [32]. It would be interesting to study the linear

stability of these droplet steady states. In this direction, the computations of Goldstein,

Pesci and Shelley [14] with f(y) = y and g(y) = By suggest that droplet steady states are

asymptotically stable with large basins of attraction. Both Grün [19] and Oron and Bankoff

[34] computed a van der Waals model that has net repulsion at long scales and net attraction

at short scales: f(y) = y3 and g(y) = 1/y − ε/y2 with ε � 1. Considering a wide range

of initial data and ε, they found robust long-time convergence to configurations that look

like droplets connected by a thin film. The thin film connecting the ‘droplets’ diminishes as

ε → 0, suggesting that droplet steady states are asymptotically stable with large basins of

attraction when ε = 0. Our preliminary numerical simulations of solutions to the long-wave

evolution equation with other coefficients f and g reveal the same phenomenon.

Nonlinear stability of the steady states remains an open problem in general, though there

are some results when f ≡ 1, e.g. [31, Theorem 6.5]. The thin film evolution equations have

a natural Liapunov function defined by

E(h(·, t)) =

∫ X

0

[
1

2
hx(x, t)

2 −H(h(x, t))

]
dx,

where H is any function such that H ′′(y) = g(y)/f(y). For classical solutions, the evolution

dissipates E(t) in time:

d

dt
E(h(·, t)) ≤ 0, with

d

dt
E(h(·, t)) = 0⇐⇒ h is a steady state.

Goldstein, Pesci and Shelley [14, §IIIB] used this Liapunov function to prove nonlinear

instability of the constant steady state for the case f(y) = yn and g(y) = Bym with m = n

and either 2 ≤ B < 4 or B = j2 for some integer j ≥ 2.

A good understanding of the Liapunov function near a steady state hss would be a powerful

tool for studying nonlinear stability. Specifically, let V ⊂ H1(TX) be the affine subset of

functions with given mean value hss. If one could prove hss were a local minimum of E in V

then this might be used to prove the steady state is asymptotically stable. Similarly, if one

knew there were functions v ∈ V arbitrarily close to the steady state such that E(v) < E(hss)

then this might be used to prove the steady state is nonlinearly unstable. On another note,

there may be more than one steady state with the same period and volume as the initial

data. (There is always a constant steady state and there is often at least one other.) If

one knew the value of E for all such steady states then one could exclude some of them as

possible long-time limits of the solution. Also, if one has two steady states hss and h̃ss such
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that E(hss) < E(h̃ss) then a natural question is whether there is a orbit connecting h̃ss to

hss. Grinfeld and Novick–Cohen [18] have rigorously performed much of this program for

the Cahn–Hilliard equation.
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Appendix A. Linearization and Spectral theory for periodic boundary

conditions

Assume f, g ∈ C1(R), r = g/f , a ∈ R, and let X > 0 be fixed. Suppose f > 0 and that

hss ∈ C4(TX) is an X-periodic steady state of the evolution equation

ht = −(f(h)hxxx)x − (g(h)hx)x − ah.(55)

Assume either a = 0 (thin film equation), or a 6= 0 and f ≡ 1 (Cahn–Hilliard-like equation).

The steady state equation is

0 = (f(hss)hssxxx + g(hss)hssx)x + ahss.

We will use without comment the fact that f(hss(x))−1 is positive, bounded, and bounded

away from zero, and that r(hss(x)) is bounded.

Consider a perturbation φ(x, t) of the steady state, putting h = hss +εφ. Formally expand

the evolution equation in orders of ε; at order O(1) the expansion is the steady state equation.

At the next order O(ε), it is (writing h̃ = hss for notational simplicity)

φt = −
[
f(h̃)φxxx + g(h̃)φx + f ′(h̃)φh̃xxx + g′(h̃)φh̃x

]
x
− aφ

= −
[
f(h̃)

(
φxxx +

g(h̃)

f(h̃)
φx +

g′(h̃)h̃x

f(h̃)
φ− g(h̃)f ′(h̃)h̃x

f(h̃)2
φ

)

+f ′(h̃)φh̃xxx +
f ′(h̃)

f(h̃)
g(h̃)h̃xφ

]
x

− aφ

φt = −
[
f(h̃)

(
φxx + r(h̃)φ

)
x

]
x
−
[
f ′(h̃)

(
h̃xxx + r(h̃)h̃x

)
φ
]
x
− aφ.

This final equation for φt has two terms in divergence form, but the second term is zero: if

a = 0 then h̃xxx + r(h̃)h̃x ≡ 0 by (3), while if a 6= 0 then f ≡ 1 hence f ′ ≡ 0. Hence the

linearized equation is φt = Lφ where

Lφ := − [f(hss) (φxx + r(hss)φ)x]x − aφ.
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We reformulate the linearized problem in terms of a symmetric operator, an idea used

in various ways by several authors for equations of this type, see e.g. [3, 14, 18] and the

references therein. To start, we assume that at each time φ(x, t) has mean value zero over

TX : φ(·, t) = 0. We introduce an anti-derivative by ψ(x, t) =
∫ x

0
φ(ξ, t) dξ + c(t) where the

constant of integration c(t) is chosen to ensure∫ X

0

ψ(x, t)f(hss(x))−1 dx = 0 for all t.(56)

Notice ψ is X-periodic in x since φ has mean value zero on (0, X). Substitute φ = ψx into the

linearized problem φt = Lφ to obtain ψxt = − [f(hss) (ψxxx + r(hss)ψx)x]x− aψx. Integrating

from 0 to x yields

ψt = −f(hss) (ψxxx + r(hss)ψx)x − aψ + T (t)(57)

for some function T . In fact T ≡ 0, as we see by dividing (57) by f(hss), integrating from

0 to X, and using the normalization (56). Thus ψt = −f(hss)Iψ where I is the symmetric

linear operator

Iψ := ψxxxx + (r(hss)ψx)x + af(hss)
−1ψ.

For our purposes, the linear evolution ψt = −f(hss)Iψ will be a satisfactory reformulation

of the linear evolution φt = Lφ if the corresponding eigenproblems have the same eigenvalues

λ. The problems are:

Lu = −λu,
∫ X

0

u dx = 0,(58)

Iw = λf(hss)
−1w,

∫ X

0

wf(hss)
−1 dx = 0,(59)

where u(x) and w(x) are X-periodic and depend only on x.

This equivalence is easy to see if the eigenfunction equations hold classically and u ∈
C4(TX), w ∈ C5(TX), as follows. Given an eigenfunction w 6≡ 0 of (59) with eigenvalue λ,

we know w 6≡ (const) since
∫ X

0
wf(hss)

−1 dx = 0. Thus if u = w′ then u ∈ C4, u 6≡ 0, u = 0

and Lu = −λu. That is, λ is an eigenvalue of (58). In the other direction, given an

eigenfunction u 6≡ 0 of (58) with eigenvalue λ, take the antiderivative w of u and normalize

it to satisfy
∫ X

0
wf(hss)

−1 dx = 0. Obviously w 6≡ 0. Integrating Lu = −λu from 0 to x

gives f(hss)Iw = λw + c for some constant c. In fact c = 0, as we see by dividing through

by f(hss), integrating from 0 to X and using the normalization
∫ X

0
wf(hss)

−1 dx = 0. That

is, λ is an eigenvalue of (59). These procedures preserve the multiplicity of eigenvalues in

both directions.

In view of this equivalence (for smooth eigenfunctions) of the problems (58) and (59),

we call hss linearly unstable if the symmetric weighted eigenproblem (59) has a negative

eigenvalue λ < 0, since then L has a positive eigenvalue −λ.
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The following theorem shows the spectrum of the reformulated eigenvalue problem is

discrete and real. It also proves that if f and g are C2-smooth then the eigenfunctions are

C5-smooth and hence the reformulated linearized problem (59) is equivalent to the original

linearized problem (58).

Theorem 22. Assume f, g ∈ C1(R), r = g/f , and a ∈ R. Let hss ∈ C4(TX) be a steady

state of the evolution (55). Consider the eigenproblem

w′′′′ + (r(hss)w
′)′ + af(hss)

−1w = λf(hss)
−1w(60)

on the Hilbert space W := {w ∈ H2(TX) :
∫ X

0
wf(hss)

−1 dx = 0} with the H2 inner product.

There is a sequence wj ∈ W of weak eigenfunctions for this problem, with corresponding

eigenvalues λ1 ≤ λ2 ≤ λ3 ≤ · · · → ∞. The first eigenvalue is given by

λ1 = min
w∈W\{0}

∫ X
0

[(w′′)2 − r(hss)(w
′)2 + af(hss)

−1w2] dx∫ X
0
w2f(hss)−1 dx

.(61)

The wj form an orthonormal basis of the Hilbert space {w ∈ L2(TX) :
∫ X

0
wf(hss)

−1 dx = 0}
with respect to the weighted inner product B(w, w̃) :=

∫ X
0
ww̃f(hss)

−1 dx.

The weak eigenfunctions are C4-smooth and solve equation (60) classically. If f, g ∈ C2(R)

then the eigenfunctions are C5-smooth.

Proof. We formally obtain the Rayleigh quotient for the eigenproblem by multiplying equa-

tion (60) by w and integrating by parts, getting R[w] := A(w,w)/B(w,w) where

A(w, w̃) :=

∫ X

0

[
w′′w̃′′ − r(hss)w

′w̃′ + a
ww̃

f(hss)

]
dx for w, w̃ ∈ H2(TX).

Note B is equivalent to the usual inner product on L2(TX), in that it generates an equivalent

norm. Similarly, C(w, w̃) := B(w, w̃) +
∫ X

0
w′′w̃′′ dx is equivalent to the usual inner product

on H2(TX).

First, we observe that for some number δ, A + δB is elliptic: A(w,w) + δB(w,w) ≥
3
4
C(w,w) for all w ∈ H2(TX). This holds for δ = ‖r(hss)‖2

∞‖f(hss)‖∞+ |a|+ 3
4
, by standard

L∞ bounding and by extracting
∫ X

0

[
1
2
w′′ + w‖r(hss)‖∞

]2
dx from A+ δB. A Hilbert space

spectral result [40, Corollary III.7.D] now proves the theorem, except for its last paragraph

and the variational characterization (61) of λ1.

The existence of a minimizing function for the Rayleigh quotient in (61) follows from

the ellipticity estimate and the usual compactness and quadratic form argument (like [13,

pp. 213] for the second order case). A minimizer is a weak eigenfunction by the Euler–

Lagrange equation, and its eigenvalue must be λ1 since the Rayleigh quotient is minimal,

proving (61).

Now suppose w is a weak eigenfunction with eigenvalue λ, i.e. A(w, w̃) = λB(w, w̃) for all

w̃ ∈W . Let w ∈ H2(TX) and choose c ∈ R with w̃−c ∈W . Then A(w, w̃−c) = λB(w, w̃−c)
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and so A(w, w̃) = λB(w, w̃), where we have used that B(w, 1) = 0 for w ∈ W . Hence the

weak eigenfunction w satisfies (60) weakly in H2(TX), not just in W .

Finally, we prove the regularity of the weak eigenfunctions. A weak eigenfunction w ∈W
satisfies

∫ X
0

[w′′w̃′′ − r(hss)w
′w̃′ − (λ− a)f(hss)

−1ww̃] dx = 0 for all w̃ ∈ H2(TX), and hence∫ X

0

[
w′′η′ +

(
−r(hss)w

′ +

∫ x

0

λ− a
f(hss)

w dξ

)
η

]
dx = 0 for all zero-mean η = w̃′ ∈ H1(TX).

Hence the weak derivative of w′′ is c− r(hss)w
′ +
∫ x

0
(λ− a)f(hss)

−1w dξ for some constant

c. Since w ∈ H2(TX) ⊂ C1(TX), this weak derivative of w′′ is continuous, hence w is C3

with w′′′ = c − r(hss)w
′ +
∫ x

0
(λ− a)f(hss)

−1w dξ classically. Since r ∈ C1(R), w is C4 and

so equation (60) holds classically. If r is C2 then w is C5, since also f is C1.

In the a = 0 case, we can further reduce the fourth order eigenvalue problem to a second

order problem whose lowest eigenvalue has the same sign as the lowest eigenvalue λ1 of

I. This idea goes back at least to Langer [25, §IV]. Define a new Rayleigh quotient and

minimization problem by τ1 = minuRτ [u] where Rτ [u] :=
∫ X

0
[(u′)2 − r(hss)u

2] dx
/∫ X

0
u2 dx

and the minimum is taken over u ∈ H1(TX)\{0} with zero mean. Existence of a minimizing

function u follows as above, using the bilinear form D(u, ũ) =
∫ X

0
[u′ũ′ − r(hss)uũ] dx. Each

minimizer u1 of the Rayleigh quotient is a weak solution of the Euler–Lagrange equation

u′′1 + r(hss)u1 + τ1u1 = 0 with respect to H1(TX)∩{u = 0}: it solves u′′1 + r(hss)u1 + τ1u1 = γ

weakly with respect to H1(TX), for some constant γ. (In fact, γ =
∫ X

0
r(hss)u1 dx.) This

means u′′1 equals a continuous function weakly, hence classically, and so u is C2-smooth.

Thus u1 solves the equation classically.

Next we show the number of negative eigenvalues λj for the fourth order problem when

a = 0 is the same as the number of negative eigenvalues τj for the second order problem,

so that the unstable eigenspaces of the two problems have the same dimension. To prove

this equality, suppose w1, . . . , wj ∈ H2(TX) are linearly independent eigenfunctions of (60)

that are pairwise orthogonal with respect to the bilinear form A above and have eigenvalues

λ1 ≤ · · · ≤ λj < 0. Then w′1, . . . , w
′
j ∈ H1(TX) are linearly independent functions with

mean value zero and Rτ [u] < 0 for all u ∈ Span{w′1, . . . , w′j} \ {0}. Poincaré’s minimax

characterization [1, p. 97] of the higher eigenvalues implies τj < 0. The converse argument

works similarly to show that if τj < 0 then λj < 0.

Appendix B. Linearization and Spectral theory for Neumann boundary

conditions

Now consider steady states and perturbations on the interval (0, X) subject to Neumann

boundary conditions: the first and third derivatives are required to vanish at x = 0, X. The

linearization in Appendix A is unchanged up to the choice of the integration constant in

ψ(x, t), which we choose here to be zero: c(t) = 0. Then ψ(0, t) = 0, and ψ(X, t) = 0 since φ
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has zero mean. Also, ψxx and ψxxxx are zero at x = 0, X because φx and φxxx are zero there.

Since h′ss(0) = 0, evaluating (57) at x = 0 or X yields T (t) = 0: the reformulated linearized

problem is ψt = −f(hss)Iψ.

As before, we regard this as a satisfactory reformulation of the original linearized equation

φt = Lφ if the corresponding eigenproblems have the same eigenvalues ν:

Lu = −νu, u′(0) = u′(X) = u′′′(0) = u′′′(X) =

∫ X

0

u dx = 0,(62)

Iw = νf(hss)
−1w, w(0) = w(X) = w′′(0) = w′′(X) = 0,(63)

where u(x) and w(x) are functions of x only.

The two problems are equivalent for smooth eigenfunctions, as follows. Let (u,−ν) be an

eigenpair for the original problem (62). Then w :=
∫ x

0
u dξ satisfies the reformulated problem

(63): w′′ and w′′′′ vanish at x = 0, X since u′ and u′′′ vanish there, w(0) = 0 by construction,

w(X) = 0 since u has zero mean, w is not identically zero since u is not identically zero, and

f(hss)Iw = νw + c by direct differentiation with c = 0 by evaluating at x = 0. Similarly,

let (w, ν) be an eigenpair for the reformulated problem (63). Then w cannot be constant

since if it were constant, w(0) = 0 would force it to be identically zero. Then u := w′

satisfies the original problem (62): u is not identically zero, Lu = −νu by direct calculation,

u′(0) = u′(X) = 0 from the boundary conditions on w′′,
∫ X

0
u dx = w(X) − w(0) = 0,

and it remains to prove u′′′(0) = u′′′(X) = 0. This follows from evaluating the equation

Iw = νf(hss)
−1w at the endpoints to find that w′′′′ = u′′′ vanishes there.

As in Appendix A, this equivalence for smooth eigenfunctions makes it natural to study

the reformulated (symmetric) eigenproblem.

Theorem 23. Assume f, g ∈ C1(R), r = g/f , and a ∈ R. Let hss ∈ C4[0, X] be a Neumann

steady state of (55). Consider the eigenproblem

w′′′′ + (r(hss)w
′)′ + af(hss)

−1w = νf(hss)
−1w(64)

on the Hilbert space H2(0, X) ∩H1
0 (0, X) with the H2 inner product.

There is a sequence wj ∈ H2(0, X) ∩ H1
0 (0, X) of weak eigenfunctions for this problem,

with corresponding eigenvalues ν1 ≤ ν2 ≤ ν3 ≤ · · · → ∞. The first eigenvalue is given by

ν1 = min
w∈H2(0,X)∩H1

0 (0,X)\{0}

∫ X
0

[(w′′)2 − r(hss)(w
′)2 + af(hss)

−1w2] dx∫ X
0
w2f(hss)−1 dx

.

The wj form an orthonormal basis of L2(0, X) with respect to the weighted inner product

B(w, w̃) :=
∫ X

0
ww̃f(hss)

−1 dx.

The weak eigenfunctions are C4-smooth on [0, X] and solve equation (64) classically, and

they satisfy the ‘natural boundary conditions’: w′′(0) = w′′(X) = 0. If f, g ∈ C2(R) then the

eigenfunctions are C5-smooth on [0, X].
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The eigenfunctions satisfy w = 0 at the endpoints by virtue of belonging to H1
0 (0, X).

They satisfy the natural boundary condition w′′ = 0 also, by the theorem. Evaluating (64)

at the endpoints further gives w′′′′ = 0, since h′ss(0) = h′ss(X) = 0.

Proof. Following the proof of Theorem 22 gives everything except the natural boundary

conditions and the regularity at the endpoints of the closed interval [0, X].

For regularity at the endpoints, first we observe w′ is continuous on [0, X] since w′(x) =

w′(X/2) +
∫ x
X/2

w′′(ξ) dξ and w′′ ∈ L2(0, X). Next, repeating the arguments in the proof of

Theorem 22, w′′ has weak derivative equal to c − r(hss(x))w′(x) +
∫ x
X/2

(ν − a)f(hss)
−1w dξ

for some constant c. This weak derivative is continuous on [0, X], hence w′′ is C1 on [0, X].

This proves w ∈ C3[0, X] with w′′′ = c−r(hss(x))w′(x) +
∫ x
X/2

(ν−a)f(hss)
−1w dξ classically.

Hence since r is C1-smooth, w ∈ C4[0, X]. If r is C2-smooth then w ∈ C5[0, X].

We now show the natural boundary conditions are satisfied: w′′(0) = w′′(X) = 0. Let

η ∈ H2(0, X)∩H1
0 (0, X) be a smooth test function such that η(0) = η(X) = η′(X) = 0 and

η′(0) = 1. Since w is a weak eigenfunction, 0 =
∫ X

0
[w′′η′′ − r(hss)w

′η′ + (a− ν)f(hss)
−1wη] dx.

Integrating by parts and using that w solves the eigenproblem (64) classically,

0 =

∫ X

0

[
w′′′′ + (r(hss)w

′)′ +
a− ν
f(hss)

w

]
η dx− w′′(0)η′(0) = −w′′(0).

A similar argument proves w′′(X) = 0.

Like in Appendix A, if a = 0 then the stability question can be reduced to a second

order eigenproblem for zero-mean functions in H1(0, X), with a natural Neumann boundary

condition on the first derivative.

Appendix C. Smoothness and asymptotics of P and A

C.1. Proof of Lemma 6. Recall the formulas [26, §§3.1.1,3.1.2] for the period P (α) and

area A(α) of kα(x):

P (α) =
√

2

∫ β

α

dy√
H(α)−H(y)

and A(α) =
√

2

∫ β

α

y√
H(α)−H(y)

dy,

where β > 1 is the maximum value of kα: the unique solution greater than 1 of H(β) = H(α).

This solution exists and is unique because H(y) is strictly convex and H ′(1) = 0. The

formulas for P and A are valid for α ∈ [0, 1) when q > −1, and for α ∈ (0, 1) when q ≤ −1.

We first show P (α) and A(α) are smooth. Consider α ∈ (0, 1) and observe β is a smooth

function of α, by the implicit function theorem. We change variables in P (α) with z =
√
y − α for y ∈ (α, 1) and with z =

√
β − y for y ∈ (1, β), yielding

P (α) = 2
√

2

∫ √1−α

0

√
z2

H(α)−H(α+ z2)
dz + 2

√
2

∫ √β−1

0

√
z2

H(β)−H(β − z2)
dz.(65)
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Then P (α) is smooth for α ∈ (0, 1), because the difference quotients [H(α)−H(α+ z2)]/z2

and [H(β) − H(β − z2)]/z2 are positive and smooth for α ∈ (0, 1), |z| <
√
β − α, by the

convexity of H and definition of β. Similarly A(α) is smooth for α ∈ (0, 1).

To prove P → 2π and A → 2π as α → 1, simply change variables in (65) with w =

z2/(1− α) and w = z2/(β − 1) respectively, in the two integrals, and then let α, β → 1.

Next consider q > −1. We show P and A are continuous at α = 0. Since H(0) = 0, when

α→ 0 we obtain

P (α)→ 2
√

2

∫ 1

0

√
z2

−H(z2)
dz + 2

√
2

∫ √β0−1

0

√
z2

−H(β0 − z2)
dz = P (0),

where β0 is defined by H(β0) = H(0) = 0. This used that the difference quotient [H(α) −
H(α + z2)]/z2 is uniformly bounded below for α ∈ (0, 1

2
), z ∈ (0,

√
1− α) because H is

convex with H ′(1) = 0. Similarly, [H(β) − H(β − z2)]/z2 is uniformly bounded below for

α ∈ (0, 1
2
), z ∈ (0,

√
β − 1). This proves P (α) is continuous at α = 0. Similar arguments

prove A(α) is continuous at α = 0.

C.2. Asymptotics of P and A. As remarked after Theorem 12, E = P 3−qAq−1 approaches

0 as α→ 0, when q ≤ −1. This follows from the following asymptotic formulas.

Lemma 24. Let q ≤ −1. As α→ 0,

P (α) ∼ 2
√

2|q|
{

log(1/α) if q = −1
αq+1/|q + 1| if q < −1

}1/2

,

A(α) ∼ 4

3

√
2|q|

{
log(1/α) if q = −1

αq+1/|q + 1| if q < −1

}3/2

.

Proof. The analogue of (65) for A(α) is

A(α) = 2
√

2

∫ √1−α

0

(α+ z2)

√
z2

H(α)−H(α+ z2)
dz

+ 2
√

2

∫ √β−1

0

(β − z2)

√
z2

H(β)−H(β − z2)
dz(66)

= I + II.

From definition (22), H is strictly convex with H ′(1) = 0. The convexity implies

|I| ≤ 2
√

2

∫ √1−α

0

1

√
1− α

H(α)−H(1)
dz.

Since H(α)→∞ as α→ 0 (using that q ≤ −1), we see I → 0.

Next, by convexity of H we have an upper bound on II:

II ≤ 2
√

2

∫ √β−1

0

(β − z2)

√
β − 1

H(β)−H(1)
dz =

2

3

√
2(2β + 1)(β − 1)1/2

√
β − 1

H(β)−H(1)
.
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Recalling that H(β) = H(α)→∞ as α→ 0, we conclude that β →∞ and so H(β) ∼ β/|q|.
This upper bound is asymptotic to (4/3)

√
2|q|β3/2. As α→ 0 we have{

log(1/α) if q = −1
αq+1/q(q + 1) if q < −1

}
∼ H(α) = H(β) ∼ β

|q| ,

and so the upper bound is asymptotic to (4/3)
√

2|q|(log 1/α)3/2 for q = −1, and asymptotic

to (4/3)
√

2|q|(αq+1/|q + 1|)3/2 for q < −1.

Convexity of H also implies a lower bound on II:

II ≥ 2
√

2

∫ √β−1

0

(β − z2)

√
1

H ′(β)
dz =

2

3

√
2(2β + 1)(β − 1)1/2

√
q

βq − 1
.

The lower bound is asymptotic to (4/3)
√

2|q|(log 1/α)3/2 when q = −1 and asymptotic to

(4/3)
√

2|q|(αq+1/|q + 1|)3/2 when q < −1. This proves the desired asymptotic formula for

A(α). The formula for P (α) is proved similarly, using (65) instead of (66).
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