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Abstract. We consider the fourth order degenerate diffusion equation

ht = −∇ · (f(h)∇∆h)

in one space dimension. This equation, derived from a ‘lubrication approximation’, models
surface tension dominated motion of thin viscous films and spreading droplets [14]. The
equation with f(h) = |h| also models a thin neck of fluid in the Hele-Shaw cell [9, 10, 22].
In such problems h(x, t) is the local thickness of the the film or neck. This paper will
consider the properties of weak solutions which are more relevant to the droplet problem
than to Hele-Shaw.

For simplicity we consider periodic boundary conditions with the interpretation of mod-
eling a periodic array of droplets. We consider two problems: The first has initial data
h0 ≥ 0 and f(h) = |h|n, 0 < n < 3. We show that there exists a weak nonnegative solution
for all time and that this solution becomes a strong positive solution after some finite time
T ∗ and asymptotically approaches its mean as t → ∞. The weak solution is in a classi-
cal sense of distributions for 3

8
< n < 3 and in a weaker sense introduced in [1] for the

remaining 0 < n ≤ 3
8 . Furthermore, the solutions have sufficiently high regularity to just

include the unique ‘source type’ solutions [2] with zero slope at the edge of the support.
They do not include any of the less regular solutions with positive slope at the edge of the
support. Secondly we consider strictly positive initial data h0 ≥ m > 0 and f(h) = |h|n,
0 < n < ∞. For this problem we show that even if a finite time singularity does occur
of the form h → 0, there exists a weak nonnegative solution for all time t and that this
weak solution becomes strong and positive again after some critical time T ∗. As in the first
problem, we show that the solution approaches its mean as t → ∞. The main technical
idea is to introduce new classes of dissipative entropies to prove the existence and higher
regularity. We show that these entropies are related to norms of the difference between the
solution and its mean to prove the relaxation result.

Date: April 1994.
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1. Introduction

We consider weak solutions of the fourth order degenerate diffusion equation

ht = −∇ · (f(h)∇∆h)(1)

in one space dimension. We consider the case where f(h) = |h|p, p > 0; the analysis can
be directly extended to the case where f(h) is a sum of such terms. This equation, derived
from a ‘lubrication approximation’, models surface tension dominated motion of thin viscous
films and spreading droplets [14]. The equation with f(h) = |h| also models a thin neck of
fluid in the Hele-Shaw cell [9, 10, 22]. In such problems h is the thickness of the the film
or neck. This paper considers weak solutions that are zero on a set of non-zero measure,
hence are much more relevant to the droplet problem than to Hele-Shaw.

We briefly compare this fourth order problem to the well known second order degenerate
diffusion equation,

ut = ∆(um),(2)

the ‘porous media’ equation [20]. Some similarities between the fourth and second order
cases are that both equations are parabolic and in divergence form with a ‘sub-diffusive’
nonlinear diffusion coefficient. Furthermore, both equations have ‘weak’ solutions that are
nonnegative. At any deeper level, the similarities between the second and fourth order
problems cease to exist. One striking difference is the lack of a maximum principle for the
fourth order problem. In particular, analytical results for the lubrication approximation
are not due to a maximum principle but due to the dissipation of nonlinear ‘entropies’
present in these problems. Furthermore, the question of whether initially positive solutions
can develop finite time singularities of the form h → 0 has been the subject of recent and
ongoing study [6, 4]. The maximum principle prohibits such behavior in the second order
case.

1.1. Elementary properties and exact solutions. For simplicity, we consider the 1-D
problem with periodic boundary conditions. These boundary conditions have the physical
interpretation of modeling a periodic array of spreading droplets. The equation

ht + (f(h)hxxx)x = 0(3)

is derived from a conservation law. We now state some elementary properties that follow
from integration by parts for strong solutions. We use these and other properties of strong
solutions to prove results for weak solutions. The first property is conservation of mass,∫

S1

h(x, t)dx =

∫
S1

h0(x)dx.

One application of our theorems is a model for the spreading and eventual merging of the droplets to
form a film of uniform thickness. We explore this application in greater detail in a companion paper [5]
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Second, we have dissipation of surface tension energy,

1

2

∫
S1

|hx(x, T )|2 dx+

∫∫
S1×[0,T ]

f(h)h2
xxx dxdt =

∫
S1

|hx(x, 0)|2 dx.(4)

In addition, we have the basic entropy dissipation: consider a function G(y) satisfying
G′′(y) = 1/f(y). The convexity of G and mass conservation allow us to choose G so that∫
S1 G(h(x, t)) dx ≥ 0 for all t. Integration by parts yields∫

S1

G(h(x, T )) dx+

∫∫
QT

h2
xx dxdt =

∫
S1

G(h(x, 0)) dx.(5)

For n = 0, the linear problem, the entropy is merely the L2 norm. Bernis and Friedman
first introduced these entropies in [1].

The equation

ht + (|h|nhxxx)x = 0(6)

possesses a number of interesting exact solutions.
Compactly supported nonnegative ‘source type’ solutions exist for all 0 < n < 3 [2].

They have the scaling form

h(x, t) = t−αH(η), η = xt−α α = 1/(n+ 4).(7)

Where H(η) solves the ODE

HnHηηη = αηH.(8)

For a given n and mass, there is more than one compactly supported symmetric solution to
the ODE. However, if we impose the additional constraint that the solution have Hη = 0
at the edge of the support, we obtain a unique solution. This fact was proven in [2]. They
also proved that these “most regular” solutions have the following behavior at the edge of
their support: Let [−a, a] denote the support of H(η). Then

for 0 < n < 3/2, H(η) ∼ (a− η)2 as η ↑ a,(9)

for n = 3/2 H(η) ∼ (a− η)2 log(1/(a− η))2/3 as η ↑ a,(10)

for 3/2 < n < 3 H(η) ∼ (a− η)3/n as η ↑ a.(11)

The less regular solutions have H(η) ∼ (a− η). We note that the existence result we prove
in Theorem 1 is for solutions in a regularity class that includes the source type solutions
(9–11) and excludes the less regular ones. In a companion paper [5] we present numerical
simulations of the weak solutions which suggests rapid convergence onto the above unique
source type solutions.

Starov [21] first noted that there are no finite mass ‘source-type’ solutions for n = 3.
Brenner and Bertozzi [8] addressed the significance of this fact for the physical problem
of spreading droplets. The n = 3 case arises when there is a no-slip boundary condition
at the liquid solid interface. The lack of such scaling solutions is consistent with the fact
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that a no-slip boundary condition leads to infinite energy dissipation at the contact line for
spreading drops with a finite contact angle [12, 17].

The non-existence of source type solutions for n ≥ 3 is due to the structure of the ODE
(8) and is in sharp contrast to the source type solutions for the porous media equation (2)
which exist for all m > 1.

There are also traveling wave solutions of the form h(x, t) = H(x − ct) as described
in [7]. Again, we see transitions in the allowable behavior at different values of n. We omit
many details but it is noteworthy that there are no advancing front solutions for n ≥ 3 and
that for n < 2 there are compactly supported traveling wave solutions (we believe these are
unphysical). Furthermore, for 3/2 < n < 3 there are advancing front solutions with the
simple form

h(x, t) =

{
A(x− ct)3/n x > ct

0 otherwise,
c = (

3

n
− 2)(

3

n
− 1)

3

n
An.

Finally we remark that there are exact steady solutions for all n

h(x, t) =

{
A−Bx2, |x| < A/

√
B

0 otherwise.
(12)

Bernis and Friedman [1] first addressed the existence theory for ‘weak’ nonnegative
solutions. For simplicity they considered a bounded domain with boundary conditions
hx = hxxx = 0 at both endpoints. In particular, they introduced the basic entropies (5) to
prove positivity of solutions for n ≥ 4 and nonnegativity of weak solutions for all n ≥ 1.
They considered two notions of ‘weak solution’, the first a very weak definition (see (20))
in which the integral of the flux term, f(h)hxxx, is only over the set where the solution h is
positive. For this definition their methods directly prove existence of nonnegative solutions
for n > 0. The only information needed for this very weak definition is the surface tension
dissipation (4). They also proved existence of weak solutions in the sense of distributions
(18) for nonnegative initial data for 1 < n < 2 and for positive (or entropy bounded) data
for n ≥ 1. They construct the weak solutions as the limit of smooth approximate solutions.

The first result of this paper extends the existence results in [1] to prove existence results
in a sense of distributions for 3

8
< n < 3. We use several different formulations of distribution

solution ((18),(19) and modifications of these). For these distribution solutions and weaker
nonnegative solutions in the range 0 < n ≤ 3

8
we obtain greater regularity for the solution

than obtained in [1]. In particular the regularity class includes the unique most regular
source type solutions (9–11) but not the less regular ones or the steady parabola solutions
(12).

The second result of this paper concerns the long time behavior of our weak solutions as
t→∞. In particular, we show that they approach their mean in the limit as t→∞. Since
the convergence is in the L∞ norm, there exists a time T ∗ after which the nonnegative weak
solution becomes a positive strong solution. If we view the solution as describing a periodic
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array of droplets, this implies that the drops will spread and merge to form a uniform layer
in the limit as t→∞.

The third result concerns the case of all n > 0 with positive (or entropy bounded) initial
data. For this case we prove that even if the solution develops a singularity in finite time, it
can be continued past this time as a nonnegative weak solution that approaches its mean in
the infinite time limit. In particular, there exists a critical time T ∗ after which the solution
is guaranteed to be positive and strong again.

The main technical tools are a new class of convex entropies which yield more refined
existence results. Moreover, we show that for 0 < n < 2 the basic entropies (5) are related
to the L2 norm of h − c enabling us to prove a long time relaxation result. For the case
2 ≤ n < 3 we relate the new entropies to L2 norms of nonlinear functions of h which again
allow us to prove the relaxation result. In the case of positive initial data, we obtain this
result for all n > 0.

We use a regularization introduced in [1]. In a subsequent paper [5] we use the same
regularization to numerically simulate the weak solutions. The simulations indicate that the
support of the solution has finite speed of propagation and continuous flux, two properties
desirable for a physically correct model. Moreover they show rapid convergence of the
solution onto the similarity solutions (9–11) before the merging of support.

The paper is organized as follows. Section 2 presents the statements of the theorems
for nonnegative initial data. Section 3 reviews the properties of the regularization scheme.
Section 4 proves the existence results for nonnegative initial data for 0 < n < 3. Section 5
proves the long time results for nonnegative data for 0 < n < 3. Section 6 proves the
existence and long time results for strictly positive initial data for all n > 0. Section 7 briefly
discusses unsolved problems and the ramifications of our results. The appendix contains the
proof of an interpolation lemma and the uniform convergence of the regularized diffusion
coefficient and its derivatives used in Section 4.

Before proceeding further, we discuss briefly the physical problem of thin films and contact
lines.

1.2. Thin Films, Contact Lines and the Lubrication Approximation. The lubrica-
tion approximation for a thin film of liquid on a solid surface yields a fourth order degenerate
diffusion equation for the film height [14]. In one space dimension, it is

ht + ((|h|3 + bp|h|p)hxxx)x = 0(13)

where the parameter bp fixes a ‘slip’ length [15] and the specific slip model determines the
power p. The derivation uses the Stokes equation for steady viscous flow combined with a
depth averaging of the fluid velocity in the direction perpendicular to the surface. A slip
boundary condition on the liquid solid interface,

λ(h)
v.
z.

= v, λ(h) ∼ hp−2,(14)

determines the power of p in the equation above [14]. For the purposes of this paper we
consider p in the range 0 < p < 3. We remark that the paper [15] considers p = 0, 1, and
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2. The case p = 1 models a thin film spreading on a slightly porous surface [19]. In this
porous case, the parameter 0 < b � 1 determines a microscopic length scale correlated
with the porosity of the surface. The case p = 2 is also a well known ‘slip model’ (see e.g.
[13]). Dussan [11] suggested that the choice of slip model is far less important that the slip
length for the macroscopic dynamics of the drop. Nonetheless correct use of the various slip
models requires a good understanding of the mathematics.

The boundary of the support of the weak solution physically corresponds to the con-
tact line in the spreading droplet problem. In addition to a ‘slip’ law (14) Greenspan [14]
suggested the need for a ‘constitutive law’ for the motion of the edge of the drop. Recent
studies use such a relation [13, 15, 16]. The constitutive laws are motivated by the order of
the equation (hence a need for an extra boundary condition) and are based on experimen-
tal observation. It is unclear that the problem remains well-posed or even solvable when
constitutive laws are imposed at the edge of the support.

We propose an alternative to constitutive laws in the case of complete wetting. We view
this as a free boundary problem in which the motion of the boundary is determined by
global properties of the solution, as in the porous media equation. Rather than enforcing
a specific constitutive law, we advocate letting a regulatization scheme pick out a solution.
This has the advantage of guaranteeing a true solution to the problem. An obvious concern
is that, since we have no proof of uniqueness, the problem may not be well posed and
other regularization schemes might converge to other solutions. We conjecture that within
a higher regularity class well-posedness results exist for this problem. It is interesting to
note that this regularity implies a zero local contact angle for the weak nonnegative solutions
with 0 < n < 3. We address these issues in more detail in [5].

When h is small, the slip term in (13) dominates the behavior of the solution. Hence the
results for the case f(h) = |h|n apply to the equation (13) with p = n.

2. Evolution From Nonnegative Initial Data

We consider solutions of the equation

ht + (|h|nhxxx)x = 0(15)

on the circle, S1, with periodic boundary conditions. This choice is made for simplicity,
however it has the physical interpretation of modeling a periodic array of droplets.

The case n = 0 is the fourth order linear heat equation. It is elementary to show that
for this problem there are global strong solutions that decay to their average as t → ∞.

However, the case p = 0 is the nondegenerate linear case which does not preserve positivity of the
solution. Hence, we do not consider this a viable model.

We also remark that the 1-D equation with f(h) = |h| is models thin necks in the Hele-Shaw cell
[9, 10, 22] However, our the weak solutions do not make sense physically for that problem. One simple
consequence of the entropy argument here which does apply to Hele-Shaw is that given positive initial data,
if no singularity occurs by the critical time T ∗, then the solution will stay strong for all time and decay
exponentially fast to its mean.

the triple contact point of the air/liquid, air/solid, and solid/liquid interfaces, each of which has its own
local interfacial energy



THE LUBRICATION APPROXIMATION FOR THIN FILMS 7

However, unlike the second order linear heat equation, the linear fourth order equation
does not preserve positivity. For example, with periodic boundary conditions on [−1, 1] the
initial condition

h0(x) = 0.8− cos(πx) + 0.25 cos(2πx)(16)

yields a solution that is initially positive but which is negative at the origin for a finite
interval of time: h(0, t) < 0 for t ∈ (t1, t2). Hence is it quite remarkable that for sufficiently
strong nonlinearity, the equation preserves positivity. This section addresses the case of
nonnegative intial data for 0 < n < 3. In section 6 we prove analogous results for the case
of strictly positive intial data and 0 < n <∞.

Let

QT = S1 × (0, T ), P (h) = {(x, t) ∈ Q̄T | h(x, t) > 0}.(17)

The test functions, φ, are in C∞0 ((0, T );C∞(S1)). We introduce the following definitions
of weak solution:

The strongest formulation uses two integration by parts∫∫
QT

hφt −
∫∫

QT

f(h)hxxφxx −
∫∫

QT

f ′(h)hxhxxφx = 0.(18)

A second formulation uses a third integration by parts∫∫
QT

hφt +
3

2

∫∫
QT

f ′(h)h2
xφxx +

1

2

∫∫
QT

f ′′(h)h3
xφx +

∫∫
QT

f(h)hxφxxx = 0(19)

and a final, weakest, version has only one derivative on the test function, but integrates
the flux over the set P , where h > 0 :∫∫

QT

hφt +

∫∫
P

f(h)hxxxφx = 0.(20)

Versions (18) and (20) were introduced in [1]. We consider all three versions here.
The main result for nonnegative initial data is

Theorem 1. Given any nonnegative initial condition h0 ∈ H1(S1), h0 ≥ 0 we have the
following results

Case 1: Given f(h) = hn, 1 < n < 2, s < min(2− n, 1
2
), and a time interval (0, T ) there

exists h(x, t) ≥ 0 h ∈ L∞
(
0, T ;H1(S1)

)
∩ L2

(
0, T ;H2(S1)

)
and h satisfies the equation in

the following sense:∫∫
QT

hφt −
∫∫

QT

f(h)hxxφxx −
∫∫

QT

f ′(h)hxhxxφx = 0(21)

Numerical results indicate that for the nonlinear lubrication approximation for all n ≤ 0.6 finite time
singularities occur at x = 0 with the initial condition (16) [4]. They have a similar blowup structure as the
solutions described in [6] with different boundary conditions. In particular the fourth derivative blows up
for all n > 0 and the third derivative blows up for all n > 1

2 .
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Moreover,
h(x, 0) = h0(x) ∀x ∈ S1

hx(·, t)→ h0x strongly in L2(S1) as t→ 0.

Furthermore, given α ≥ 1
2
− s/4, h has the additional regularity

h1−s/2 ∈ L2(0, T ;H2(S1))

and
(hα)x ∈ L4(QT ).

Moreover, there exist positive A and c such that for all t ∈ [0, T ],

‖h(·, t)− h‖L∞ ≤ Ae−ct,(22)

Where h is the mean value of h. A depends only on |h0|H1, h, |S1|, n, and c, the rate of
decay, depends only on n, and h. In particular, if h0 is nonzero, there exists a time T ∗ after
which the solution is a positive strong solution.

Case 1A: If f(h) = hn, 3
8
< n ≤ 1 the above is true if we replace the equation (21) with

a solution in the sense∫∫
QT

hφt −
∫∫

QT

f(h)hxxφxx −
∫∫

QT

nhn−α(
hα

α
)xhxxφx = 0(23)

and choose α in the above so that n > α ≥ 1
2
− s

4
.

Case 2: If f(h) = hn, 2 < n < 3, given any 0 < r < 1 satisfying 0 < 2 + r − n < 1
there exists h ≥ 0 such that on any time interval h ∈ L∞

(
0, T ;H1(S1)

)
and h satisfies the

equation in the following sense (19):∫∫
QT

hφt +
3

2

∫∫
QT

f ′(h)h2
xφxx +

1

2

∫∫
QT

f ′′(h)h3
xφx +

∫∫
QT

f(h)hxφxxx = 0.

The initial data is achieved as above. Furthermore, h has the additional regularity

h1+r/2 ∈ L2
(
0, T ;H2(S1)

)
and

(hα)x ∈ L4(QT ) ∀α ≥ r/4 + 1/2.

For all t ∈ [0, T ],

‖h(x, t)− h‖L∞ ≤ Ae−ct(24)

A and c have the same dependence as above. In particular, there exists a time T ∗ after
which the solution is a positive strong solution.

The statement for n = 2 is as in Case 2 with the minor change in the form of the
equation. The details are presented in Section 4. We state and prove theorems for these
cases in section 4.

The basic existence result for 1 < n < 2 is proved in Bernis and Friedman [1] using
a different regularization. The other existence results, the additional regularity, and the
asymptotic behavior (22) and (24) of the solutions is new.
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In addition, we prove the following for 0 < n ≤ 3/8.

Theorem 2. Given any nonnegative initial condition in h0 ∈ H1(S1), h0 ≥ 0, f(h) = hn,
3/8 ≥ n > 0, and any time interval [0, T ], there exists h ≥ 0

h ∈ L∞
(
0, T ;H1(S1)

)
∩ L2

(
0, T ;H2(S1)

)
,

satisfying the equation in the following sense (20):∫∫
QT

hφt +

∫∫
P

f(h)hxxxφx = 0.

where

hnhxxx ∈ L2(P (h)).

The initial data is achieved in the sense described in case 1 above. Furthermore, for any
0 < s < 1

2
and α ≥ 1

2
− s

4
, there exists an h satisfying the above with the additional regularity

h1−s/2 ∈ L2(0, T ;H2(S1))

(hα)x ∈ L4(QT ).

Moreover, there exist positive A and c such that for all t ∈ [0, T ],

‖h(·, t)− h‖L∞ ≤ Ae−ct.(25)

A and c have the same dependence as above. In particular, there exists a time T ∗ after
which the solution is a positive, strong solution.

Significant Remark:
Note that the additional regularity inherited by the weak solutions for 0 < n < 3 is in

exact agreement with the regularity of the ‘zero contact angle’ nonnegative source type solu-
tions (9–11). That is, if we assume that the limiting solution h(x, t) has support compactly
contained in S1 and and h(x) ∼ xβ at the edge of the support for all t on some interval
[0, T ], then the regularity constraints demand that

β ≥ 2 0 < n < 3/2(26)

β ≥ 3/n 3/2 < n < 3.(27)

Hence the similarity solutions (9–11) just fit into our regularity class.
Outline of Proof: First we regularize the initial data and the equation to obtain an

approximate solution that is a strong, smooth solution for all time. The choice of regular-
ization comes from [1]. In section 3 we discuss the regularization and some basic apriori
bounds associated with the solution.

The existence results require passing to limit in the regularization parameter. In section 4
we present the details, including new nonlinear estimates constructed specifically for this
problem.

In section 5 we show that the various weak solutions constructed in the previous section
all have the indicated long time behavior. The key tool is a lemma which shows that certain
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nonlinear entropies are equivalent to the L2 norm of the difference between the solution and
its average. The convexity of the entropy function allows us to prove such an estimate.

In a companion paper [5] we show numerical simulations of the regularized equations for
several different values of the regularization parameter. The numerics indicate the solutions
have very nice properties including finite speed of propagation of the support and, for early
times, rapid convergence onto the similarity solutions described in (9–11).

3. Regularized problem

The regularization involves altering the equation and lifting the intial data. That is, we
bound the initial data for the regularized problem away from zero by

hε0(x) = h0(x) + δ(ε).(28)

In addition, we regularize the equation by considering

hεt + (fε(hε)hεxxx)x = 0

fε(hε) =
h4
εf(hε)

εf(hε) + h4
ε

.

Note that fε is still degenerate however for n < 4, fε ∼ h4/ε as h→ 0. Bernis and Friedman
[1] proved that this approximate problem has global, positive, smooth solutions:

Theorem 3. (Global existence of smooth positive solutions for the regularized problem [1])
Let h0 ∈ H1(S1), h0 ≥ 0. Given an initial condition

hε0(x) = h0(x) + δ(ε)

there exists a unique positive solution to the regularized equation

hεt + (fε(hε)hεxxx)x = 0

fε(hε) =
h4
εf(hε)

εf(hε) + h4
ε

.

We omit many details as they are presented in [1]. The main points are that

• Classical parabolic Schauder estimates guarantee existence of a smooth solution up to
a time σ.
• In this short time of existence, the smooth solution satisfies∫

S1

hε
2
x(x, t)dx+

∫ t

0

∫
S1

fε(hε)hε
2
xxxdx =

∫
S1

hε
2
x(x, 0)dx(29)

guaranteeing an upper bound, independent of t, for
∫
S1 hε

2
x for any time t < σ.

The Sobolev inequality and (29) provide an a priori bound for the Hölder norm
|hε|C1/2(S1).

|hε(x1, t)− hε(x2, t)| ≤ C|x1 − x2|1/2 ∀t < σ,(30)

|hε(·, t)|L∞(S1) ≤ C ∀t < σ.(31)
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One can use these to prove

|hε(x, t1)− hε(x, t2)| ≤ C|t1 − t2|1/8(32)

where C depends only on the H1 norm of the initial data.
• Furthermore, on any interval of existence of a smooth solution, we have the basic

entropy ∫
S1

Gε(hε) =

∫
S1

[ ε

6h2
ε

+G0(hε) + c
]
dx,

where

G′′0(y) = 1/f(y) for y > 0.

Integration by parts yields that∫
S1

Gε(hε(x, t))dx+

∫ t

0

∫
S1

hε
2
xx =

∫
S1

Gε(hε(x, 0))dx(33)

for any t < σ. The constant c is chosen to make
∫
S1 Gε(hε) ≥ 0 implying an apriori

bound for
∫
S1 ε/h

2
ε . This provides an a priori pointwise lower bound for the solution

hε(x, t). Indeed, let δ(t) be the minimum value of hε(x, t), occurring at a point x0(t).
Then Hölder continuity implies hε(x, t) ≤ δ(t) + C|x− x0|1/2 for all x ∈ S1. Hence

C ≥
∫
S1

ε

h2
ε

≥
∫
S1

ε

(δ(t) + C|x− x0(t)|1/2)2

≥ 2ε

∫ 1/δ2

0

1

(1 + C(y)1/2)2
dy

≥ 2C1ε| log δ|.
Therefore

δ(t) ≥ exp−(C2/ε).

This bound is quite crude. The entropy (45) described in the next section provides an
algebraic in ε lower bound for the minimum height.
• Hence we have an a priori bound for the minimum in terms of the H1 norm of the

initial data and ε and for the maximum of the solution depending only on the H1

norm of the initial data. I.e., the solution is uniformly parabolic on [0, σ] and can be
continued to any time T .

Moreover, (30–32) imply that {hε} is a uniformly bounded equicontinuous family of func-
tions on QT . The Arzela-Ascoli theorem guarantees that a subsequence converges pointwise
uniformly to a limit, h.

We summarize the apriori bounds independent of ε:
surface energy dissipation:∫

S1

hε
2
x(x, t) dx+

∫ t

0

∫
S1

fε(hε)hε
2
xxx =

∫
S1

hε
2
x(x, 0) dx,(34)
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conservation of mass, ∫
S1

hε(x, T )dx =

∫
S1

hε(x, 0)dx,(35)

and the basic entropy dissipation

∫
S1

Gε(hε(x, T )) dx+

∫ T

0

∫
S1

hε
2
xx =

∫
S1

Gε(hε0(x)) dx.(36)

Additional constraints on the initial data guarantee an apriori bound for
∫
S1 Gε(hε0). In

particular for 0 < n < 2 we require that δ(ε) ≤ cε1/2 and for n ≥ 2 the initial data cannot
be zero on a set of positive measure. This is the key reason for the upper bound of n < 2
in theorem 1, Case 1.

4. Existence of Weak Solutions

Recall the regularized equation and initial data from the previous section:

hε0(x) = h0(x) + δ(ε)(37)

hεt + (fε(hε)hεxxx)x = 0(38)

fε(hε) =
h4
εf(hε)

εf(hε) + h4
ε

(39)

We now show that with a good choice of δ(ε) we can pass to the limit, proving the
existence part of Theorems 1 and 2.

Recall that surface energy dissipation implies∫
S1

hε
2
x(x, t) dx ≤

∫
S1

hε
2
0x dx ≤ C.

The Sobolev embedding theorem implies there exists an M <∞ such that

|hε(x, t)| ≤M. ∀x, t.
Moreover hε > 0.

Proposition 4. Given 1 < n < 2, h0 ≥ 0, and h0 ∈ H1(S1), let hε be the unique smooth
solution to the regularized problem (37–39) with

δ(ε) = εθ, θ < 2/5.(40)

Then on any time interval [0, T ], a subsequence hε converges pointwise uniformly, weakly in

L2(0, T ;H2(S1)) ∩ L∞(0, T ;H1(S1))

to a solution h in the sense of distributions (18):∫∫
QT

hφt =

∫∫
QT

f(h)hxxφxx +

∫∫
QT

f ′(h)hxhxxφx.
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Furthermore, given any 0 < s < min(2− n, 1
2
) and α ≥ 1

2
− s

4
, there exists a solution with

the additional regularity:

h1−s/2 ∈ L2(0, T ;H2(S1)),(41)

(hα)x ∈ L4(QT ) .(42)

This existence result was proved in [1] using a different regularization. However we use
the regularization (39) in the long time behavior results. For this reason, we only sketch the
proof of existence. The additional regularity (41–42) is new. It follows from the existence
of additional entropies, and its proof is presented in full.

Proof. Since the regularized solution, hε, is smooth it satisfies the following: For any test
function φ ∈ C∞0 ((0, T );C∞(S1))∫∫

QT

hεφt =

∫∫
QT

fε(hε)hεxxφxx +

∫∫
QT

f ′ε(hε)hεxhεxxφx.(43)

We introduce the entropy ∫
S1

Gε(hε0) =

∫
S1

ε

6hε
2
0

+

∫
S1

G0(hε0)(44)

G′′0(y) =
1

f(y)
for y > 0.

The constraint (40) on δ(ε) provides a uniform bound for∫
S1

ε

6hε
2
0

≤ C.

As G0 is only determined up to two constants of integration, Jensen’s inequality allows us
to choose them so that 0 ≤

∫
S1 G0(hε). Moreover, since n < 2, G0 is a bounded function of

h on the interval 0 ≤ h ≤M , providing a uniform bound

0 ≤
∫
S1

G0(hε0) ≤ C.

Combining these yields an a priori bound for the entropy of the initial data. As a result,∫∫
QT
hε

2
xx is bounded a priori since∫

S1

Gε(hε(x, T )) +

∫∫
QT

hε
2
xx =

∫
S1

Gε(hε0) ≤ C.

Weak compactness implies that a subsequence converges weakly in L2(0, T ;H2(S1)) to
the limit h. Surface tension dissipation (34) implies that h. ε/t. is uniformly bounded in
L2(0, T ;H−1(S1)). The well-known Lions-Aubin lemma [18] then implies that a subsequence
converges strongly in L2

(
0, T ;H1(S1)) to the limit h. We note that this is the only place in

this existence section where we explicitly use this compactness argument. In the remaining
proofs we prove strong convergence by using the regularity properties of the solution on the
set where h > 0 combined with the fact that f(h) or a higher derivative vanishes on the set
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where h = 0. This idea was used in [1] to prove the very weak existence result in the sense
of (20). The additional entropies (45) and (58) allow us to use this idea to prove a weak
existence result in a distribution sense.

We now argue that h is a weak solution in the sense (18). Passing to the limit requires
f ′ε(hε) to converge uniformly on QT to f ′(h). Since hε converges uniformly to h on QT , it
suffices to show that f ′(x) is a continuous function of x and f ′ε(x) converges uniformly on
[0,M ] to f ′(x). This is true for n > 1 and is proved in the appendix. Similarly, fε(hε)
converges uniformly on QT to f(h).

Hence the limit h(x, t) solves the equation in the sense (18). In particular, the nonlinear
terms converge to the desired limits. For example,∫∫

QT

f ′ε(hε)hεxhεxxφx →
∫∫

QT

f ′(h)hxhxxφx

since hεxx converges weakly in L2 to hxx, hεx converges strongly in L2 to hx, and f ′ε(hε)
converges uniformly to f ′(h).

For the additional regularity, we introduce the following entropy:

G−snε (y) =
1

(2 + s)(3 + s)

ε

y2+s
+

1

(2− n− s)(1− n− s)y
2−n−s + c(45)

chosen so that (G−snε )′′(y) = 1
ysfε(y)

. Integration by parts yields

d

dt

∫
S1

G−snε (hε) = −
∫
S1

h−sε hε
2
xx +

s(s+ 1)

3

∫
S1

h−s−2
ε hε

4
x.(46)

Note that for 0 ≤ s

s(s+ 1)

3

∫
S1

h−s−2
ε hε

4
x = s

∫
S1

h−s−1
ε hε

2
x(hε)xx ≤ s

√∫
S1

h−sε hε
2
xx

√∫
S1

h−s−2
ε hε

4
x

so that ∫
S1

h−s−2
ε hε

4
x ≤

9

(s+ 1)2

∫
S1

h−sε hε
2
xx.

If s < 1
2
,

d

dt

∫
S1

G−snε (hε) = −
∫
S1

h−sε hε
2
xx +

s(s+ 1)

3

∫
S1

h−s−2
ε hε

4
x(47)

≤
(
−1 +

3s

s+ 1

)∫
S1

h−sε hε
2
xx = −C(s)

∫
S1

h−sε hε
2
xx < 0.(48)

The constant C(s) decreases to zero as s increases to 1
2
.

As before, Jensen’s inequality implies that the constant c in (45) can be chosen so that
0 ≤

∫
S1 G

−s
nε (hε). Since 0 ≤ s < 1

2
, the constraint (40) on δ(ε), implies∫

S1

ε

hε
2+s
0

≤ C.
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Moreover, y2−n−s is a bounded function of y on [0,M ], implying∫
S1

hε
2−n−s
0 ≤ C.

Therefore we have an a priori bound for the entropy of the initial data,
∫
S1 G

−s
nε (hε0).

Hence (46) implies there is a C, independent of ε so that

0 <

∫∫
QT

h−sε hε
2
xx −

s(s+ 1)

3

∫∫
QT

h−s−2
ε hε

4
x ≤ C.(49)

Moreover, (48) implies

C(s)

∫∫
QT

h−sε hε
2
xx ≤ C.(50)

For smooth h(x) bounded away from zero,∫
S1

(h1−s/2)2
xx = (1− s/2)2

(∫
S1

h−sh2
xx + [(

s2

4
− s

3
(s+ 1)]

∫
S1

h4
xh
−s−2

)
.(51)

Combining (49), (50), and (51), yields the a priori bound∫∫
QT

(h1−s/2
ε )2

xx ≤ C1(s).

Thus there is a subsequence so that

h
1− s

2
ε converges weakly in L2(0, T ;H2(S1)).

Furthermore, the uniform bound in L∞(0, T ;H1(S1)) implies via standard parabolic ar-
guments (see e.g. [1] sec. 2) that {hε} is a uniformly bounded, equicontinuous family of
functions on QT , hence it has a subsequence ε′ converging uniformly to a limit h. Hence

h1−s/2
ε , h

1
2
−s/4

ε converge to h1−s/2 and h
1
2
−s/4. By the definition of distribution derivative,

the weak limits of (h1/2−s/4
ε )x and (h1−s/2

ε )xx are (h1/2−s/4)x and (h1−s/2)xx respectively.
The weak solution, h, inherits the a priori bounds∫∫

QT

(h1− s
2 )2
xx ≤ C

∫∫
QT

(h
1
2
− s

4 )4
x ≤ C

∫∫
QT

h2
xx ≤ C.

Moreover, ||h(·, t)||∞ ≤M , implies∫∫
QT

(hα)4
x ≤ C

∫∫
QT

(h
1
2
− s

4 )4
x ≤ C

for all α ≥ 1
2
− s

4
.

For 3
8
< n ≤ 1, we do not have uniform convergence of f ′ε(x) to f ′(x) on (0,M ]. However,

we prove in the appendix for 0 < n < 1 that given any α < n, h1−αf ′ε(h) converges uniformly
to nhn−α. This, combined with the additional regularity above, yields the following theorem:
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Proposition 5. Given 3
8
< n ≤ 1, h0 ≥ 0, and h0 ∈ H1(S1), let hε be the unique smooth

solution to the regularized problem (37–39) with

δ(ε) = εθ, θ < 2/5.(52)

Then on any time interval [0, T ], given 0 < s < 1
2
, and n > α ≥ 1

2
− s

4
, there exists a

subsequence hε converging pointwise uniformly, and weakly in

L2(0, T ;H2(S1)) ∩ L∞(0, T ;H1(S1))

to a solution h which satisfies the additional regularity conditions,

h1−s/2 ∈ L2(0, T ;H2(S1)),(53)

(hα)x ∈ L4(QT ).(54)

and satisfies the equation in the following sense∫∫
QT

hφt =

∫∫
QT

f(h)hxxφxx +

∫∫
QT

hn−α
(
hα

α

)
x

hxxφx.

Proof. Recall the entropy introduced in the previous proof:

G−s1ε (y) =
1

(2 + s)(3 + s)

ε

y2+s
− 1

s(1− s)y
1−s.

Exactly as before, (52) implies that the entropy of the initial data is uniformly bounded,
yielding a priori bounds for the following:∫∫

QT

h−s−2
ε hε

4
x

∫∫
QT

(
h

1− s
2

ε

)2

xx

Similarly the entropy Gε(y) (44) provides an a priori bound of∫∫
QT

hε
2
xx.

Exactly as before,
hε ⇀ h weakly in L2(0, T ;H2(S2))

and

h
1− s

2
ε ⇀ h1− s

2 weakly in L2(0, T ;H2(S2)).

To prove that h is a weak solution, we need the following lemma to prove convergence of
the nonlinear tems:

Lemma 6. Let 0 < s < 1
2
, 3

8
< n ≤ 1, n > α ≥ 1

2
− s

4
. The limit h satisfies

h1−s/2 ∈ L2(0, T ;H2(S1)), (hαε )x ∈ L4(QT ).

Let Ω ⊂⊂ QT be compactly contained in QT . Then

f ′ε(hε)hεx → hn−α
(
hα

α

)
x

strongly in L2(Ω).
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Proof. Fix µ > 0.∫∫
Ω

(
f ′ε(hε)hεx − hn−α(

hα

α
)x

)2

=

∫∫
Ω∩{h>µ}

(
f ′ε(hε)hεx − hn−α(

hα

α
)x

)2

+

∫∫
Ω∩{h≤µ}

(
f ′ε(hε)hεx − hn−α(

hα

α
)x

)2

By the regularity theory of uniformly parabolic equations, h is smooth in Ω∩{h ≥ µ}, and
hε and its derivatives converge uniformly to h and its derivatives on this set. Hence, by
taking ε to zero, ∫∫

Ω∩{h>µ}

(
f ′ε(hε)hεx − hn−α(

hα

α
)x

)2

→ 0

For the second integral, we expand out the square and bound each term. One such term
is ∫∫

Ω∩{h≤µ}
(f ′ε(hε)hεx)

2 ≤ C
∫∫

h≤µ
(h1−α

ε f ′ε(hε))
2 (hαε )2

x

≤ C
[

sup
{h≤µ}

(h1−α
ε f ′ε(hε))

]2 ∫∫
QT

(hαε )2
x

≤ C
[

sup
{h≤µ}

(h1−α
ε f ′ε(hε))

]2

.

Here we use the fact that since α ≥ 1/2− s/4, (hαε )x is uniformly bounded in L4(QT ). We
also use the fact (proved in the appendix) that y1−αf ′ε(y) converges uniformly on [0,M ] to
nyn−α. As before, this and the uniform convergence of hε to h imply h1−α

ε f ′ε(hε) converges
uniformly on QT to hn−α. Therefore, by taking ε small,[

sup
{h≤µ}

(h1−α
ε f ′ε(hε))

]2

≤ Cµ2(n−α).

The other two terms from the integral over Ω ∩ {h ≤ µ} are bounded in the exact same
manner. By taking µ→ 0, we have the result.

This lemma implies∫∫
QT

f ′ε(hε)hεxhεxxφx →
1

1− s/2

∫∫
QT

hn−α(
hα

α
)xhxxφx

since any test function φ has support Ω compactly contained in QT . Convergence of the
remaining terms follows in the same way. The additional regularity results (53), (54) follow
as in the proof for 1 < n < 2.
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We now consider the case 2 ≤ n < 3. For n fixed, we take r satisfying

0 < r < 1,(55)

0 < 2 + r − n < 1.(56)

Proposition 7. Let 2 < n < 3 and r be as defined above, h0 ≥ 0, and h0 ∈ H1(S1). Take
hε to be the unique smooth solution to the regularized problem (37–39) with

δ(ε) = εθ, θ <
1

2
.(57)

Then there exists a subsequence hε that converges pointwise uniformly and weakly in
L∞(0, T ;H1(S1)) to a limit h. The limit h is a weak solution in the following sense:∫∫

QT

hφt = −1

2

∫∫
QT

f ′′(h)h3
xφx −

3

2

∫∫
QT

f ′(h)h2
xφxx −

∫∫
QT

f(h)hxφxxx.

Furthermore the solution has the additional regularity

h1+ r
2 ∈ L2(0, T ;H2(S1))

(hα)x ∈ L4(QT ) for all α ≥ r

4
+

1

2
.

Proof. We introduce the entropy Gr
nε(y) chosen so that Gr′′

nε(y) = yr

f(y)
for y > 0.

Gr
nε(y) =

yr−n+2

(2− n+ r)(1− n+ r)
+ c+

εyr−2

(r − 2)(r − 3)
(58)

where c is chosen so that
∫
S1 G

r
nε(hε) ≥ 0.

As before, we can integrate by parts:

d

dt

∫
S1

Gr
nε(hε) = −

∫
S1

hrεhε
2
xx +

1

3
r(r − 1)

∫
S1

hr−2
ε hε

4
x.

Recall that for a smooth function h > 0,∫
S1

(h1+r/2)2
xx = (1 + r/2)2

(∫
S1

hrh2
xx + {r

2

4
− r

3
(r − 1)}

∫
S1

h4
xh

r−2

)
.(59)

Combining these, we find for 0 ≤ r ≤ 1,

d

dt

∫
S1

Gr
nε(hε) ≤ −Cr

∫
S1

(h
1+ r

2
ε )2

xx where Cr = 16(1−r)
(4−r)(r+2)2

hence ∫
S1

Gr
nε(hε(x, T )) dx+ Cr

∫∫
QT

(h
1+ r

2
ε )2

xx dx dt ≤
∫
S1

Gr
nε(hε0(x)) dx.(60)

As before, the constraint (57) on δ(ε), and r−n+ 2 > 0 provide an a priori bound of the
entropy of the initial data

∫
S1 G

r
nε(hε0) ≤ C.
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This in turn, implies that the following are bounded uniformly in ε:∫∫
QT

(h
1+ r

2
ε )2

xx,

∫∫
QT

hr−2
ε (hε)

4
x =

1

( r
4

+ 1
2
)4

∫∫
QT

(
hr/4+1/2
ε

)4

x
.

These bounds imply that for fixed r, there exists a subsequence so that

(h
1+ r

2
ε )xx ⇀ (h1+ r

2 )xx in L2(0, T ;L2(S1)),(61)

(hαε )x ⇀ (hα)x in L4(0, T ;L4(S1)) ∀α ≥ r

4
+

1

2
,(62)

hεx ⇀ hx in L∞(0, T ;L2(S1)).(63)

We need to show convergence of all the nonlinear terms. We present the argument for∫∫
QT
f ′′ε (hε)hε

3
xφx. The others are simpler to show and follow analogously.

Lemma 8. Let Ω ⊂⊂ QT be compactly contained in QT . Then for 2 < n < 3,

f ′′ε (hε)hε
2
x → f ′′(h)h2

x strongly in L2(Ω).

Proof. We use the fact that f ′′ε (y)→ f ′′(y) = n(n− 1)yn−2 uniformly on [0,M ] as ε→ 0 for
n > 2. The details are otherwise identical to proof of Lemma 6. In the appendix, we prove
the uniform convergence of f ′′ε (y).

As before, this lemma implies∫∫
QT

f ′′ε (hε)hε
3
xφx →

∫∫
QT

f ′′(h)h3
xφx.

since φ has support Ω compact in QT and hεx converges weakly in L2(QT ).

Proposition 9. For n = 2, 0 < r < 1, h0 ≥ 0, and h0 ∈ H1(S1), let hε be the unique
smooth solution to the regularized problem (37–39) with

δ(ε) = εθ, θ < 1/2(64)

Then on any time interval [0, T ], for any 1 > α > r
4

+ 1
2
, a subsequence hε converges

pointwise uniformly, and weakly in L∞(0, T ;H1(S1)) to a limit h, and the limit h is a weak
solution in the following sense:∫∫

QT

hφt = − 1

α

∫∫
QT

h1−α(
hα

α
)xh

2
xφx −

3

2

∫∫
QT

f ′(h)h2
xφxx −

∫∫
QT

f(h)hxφxxx.

Furthermore, the solution has the additional regularity

h1+ r
2 ∈ L2(0, T ;H2(S1)).

The proof is idential to that for 3/8 < n ≤ 1 and is left to the reader. The following
lemma is needed:

Lemma 10. Let 1 > α > r
4

+ 1
2
, n=2. Let Ω ⊂⊂ QT . Then

f ′′ε (hε)hε
2
x → 2(h1−α(

hα

α
)x)

2 strongly in L2(Ω).
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Outline of proof: The proof is identical to the proof of Lemma 6, and is left to the reader.
It uses the fact that for n = 2, and β > 0, yβf ′′ε (y) converges uniformly on [0,M ] to 2ys

and the additional a priori bound ∫∫
QT

(hαε )4
x ≤ C.

for α ≥ r
4

+ 1
2
.

Proposition 11. Given 0 < n, h0 ≥ 0, h0 ∈ H1(S1) let hε be the unique smooth solution
to the regularized problem (37–39) with

δ(ε) = εθ, θ < 2/5.(65)

Then a subsequence hε converges pointwise uniformly, weakly in L2(0, T ;H2(S1)) and
L∞(0, T ;H1(S1)) to h where,

h ∈ L2(0, T ;H2(S1)) ∩ L∞(0, T ;H1(S1)).

Moreover, h is a weak solution in the following sense:∫∫
QT

hφt = −
∫∫

P

f(h)hxxxφx

where
f(h)hxxx ∈ L2(P (h)).

The constraint on θ is not used here but is necessary for the long time behavior proved
in the next section. The proof of this proposition is identical to that used in [1] for n > 1
and is left to the reader.

It uses the following lemma:

Lemma 12. Let Ω ⊂⊂ QT . Then fε(hε)hεxxx converges strongly in L2(Ω) to the following
function

fl(x) =

{
f(h)hxxx h > 0,

0 h = 0.

Proof. Recall that the surface energy dissipation for the regularized problem (37–39) yields
the following a priori bound: ∫∫

QT

fε(hε)hε
2
xxx ≤ C.

Let µ > 0. In the appendix, we prove that for 0 < n, fε(x) converges uniformly on [0,M ]
to f(y) = yn.

To show the strong convergence in L2(Ω) we note that

(66)

∫∫
Ω

(f(hε)hεxxx − fl)2 =∫∫
Ω∩{h>µ}

(f(hε)hεxxx − fl)2 +

∫∫
Ω∩{h≤µ}

(f(hε)hεxxx − fl))2.
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Again, on Ω ∩ {h ≥ µ} fε(hε)1/2hεxxx converges uniformly to f(h)1/2hxxx by the uniform
parabolicity of the equation. Therefore the first integral goes to zero.

This also yields the regularity result f(h)1/2hxxx ∈ L2(P ).
To compute the second integral note that∫∫

Ω∩{h≤µ}
(f(hε)

2hε
2
xxx ≤ C sup

h≤µ
|fε(hε)| ≤ Cµn.

Moreover, ∫∫
Ω∩{h≤µ}

fl2 =

∫∫
Ω∩{0<h≤µ}

f(h)2h2
xxx ≤ µn

∫∫
P

f(h)h2
xxx ≤ Cµn.

Taking µ→ 0, we have the desired result.

5. Long Time Behavior of Solutions

We now show that the solutions from the previous section satisfy the long time bounds
(22), (24), (25). Recall the regularized problem

hεt = −(fε(hε)hεxxx)x,(67)

fε(hε) =
h4
εh

n
ε

εhnε + h4
ε

,(68)

h0ε(x) = h0(x) + δ(ε), δ = εθ, θ < 2/5.(69)

In this section we prove

Proposition 13. Given h0 ∈ H1(S1), h0 ≥ 0, let h be a uniform limit of the regularization
scheme (67–69) on [0, T ] with 0 < n < 3. h̄ is the mean of the initial data, h = 1

|S1|
∫
S1 h0

then there exist positive A and c such that

‖h(·, t)− h‖L∞(S1) ≤ Ae−ct.(70)

A is determined by |h0|H1, h, n, and |S1|, and c is determined by n and h. In particular, if
h0 is not identically zero there is a time T ∗ after which h is a positive strong solution.

To prove this proposition, we first prove the exponential convergence in the L2 norm and
then use an interpolation lemma to get L∞ convergence. For technical reasons, we prove it
in two steps, first for 0 < n < 2 and then for 1 < n < 3.

For 0 < n < 2, we show that the basic entropy
∫
S1 G0(h) is equivalent to

∫
S1(h− h)2. A

standard Poincaré inequality and Gronwall argument then proves the result.

Lemma 14. Given 0 < n < 2 and any 0 < y0 < M , there exists positive constants Cn,y0

and Cn,M,y0 so that the basic entropy,

G0,y0(y) =

{
1

(1−n)(2−n)
y2−n − y1−n

0

(1−n)
y +

y2−n
0

2−n n 6= 1

y log y − (1 + log y0)y + y0 n = 1
(71)
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satisfies

G0,y0(y) ≤ Cn,y0(y − y0)
2 ∀ 0 < y,(72)

Cn,M,y0(y − y0)2 ≤ G0,y0(y) ∀ 0 < y < M.(73)

In the above, the integration constants were chosen so that both G0,y0 and its first de-
rivative vanish at y0. The geometric interpretation of this lemma is that for any fixed
0 < y0 < M , the graph of G0,y0(y) can be “sandwiched” between two parabolas with the
vertex (y0, 0). The proof follows from the convexity of G0(y) and the boundedness of G0(y)
as y decreases to zero. Since ||h||∞ ≤M , the lemma proves that

∫
G0,h(h) is equivalent to∫

S1(h− h)2.
To apply this lemma to the entropy dissipation, we recall
Poincaré’s inequality. Let h ∈ C2(S1) and consider x0 ∈ S1. Then∫

S1

(h(x)− h(x0))
2dx ≤ |S1|4

∫
S1

h2
xxdx.

The regularized entropy

Gε,h+δ(y) = G0,h+δ(y) +
ε

6y2

satisfies
d

dt

∫
S1

Gε,h+δ(hε(x, t)) dx = −
∫
S1

hε(x, t)
2
xx dx.

Applying Poincaré’s inequality and (72),∫
S1

Gε,h+δ(hε(·, T ))−
∫
S1

Gε,h+δ(hε(·, 0)) ≤ −c
∫∫

QT

(hε − (h+ δ))2

≤ −c
∫∫

QT

G0,h+δ(hε).

Define

Bε = sup
t∈[0,T ]

∣∣∣∣∫
S1

ε

6hε(·, t)2

∣∣∣∣ .
Gronwall’s lemma, (73), and the a priori bound on the entropy of the initial data imply

Cn,M,y0||hε(·, t)− (h+ δ)||2L2 ≤
∫
S1

Gε,h+δ(hε(·, t)) ≤ Bε +Ae−ct.(74)

Furthermore, Bε → 0 as ε → 0. Indeed, taking 0 < s < min(1
2
, 2− n), the entropy (45)

guarantees an a priori bound independent of ε for∫
S1

ε

hε(x, t)2+s
dx ≤ C.

Hence, by Hölder’s inequality∫
S1

ε

hε(x, t)2
dx ≤ C

(∫
S1

ε

hε(x, t)2+s
dx

)2/(2+s)

εs/(2+s) ≤ Cεs/(2+s).
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Taking ε→ 0 in (74),

||h(·, t)− h||L2 ≤ Ae−ct.(75)

We prove the following in the appendix

Lemma 15. (interpolation inequality)
Let w ∈ L1(S1) ∩ Cα(S1), 0 < α < 1. Let | · |α denote the Hölder−α seminorm. Then

|w|L∞ ≤ (
1 + α

α
)α/(1+α)|w|1/(1+α)

α |w|α/(1+α)

L1 + (
1 + α

α
)|w|L1/|S1|.(76)

The limit h is uniformly bounded in C1/8,1/2(QT ). Applying the interpolation inequality
with α = 1

2
,

|w|L∞ ≤ C|w|1/3
L1 ≤ C1|w|1/3L2 .(77)

This finishes the proof for 0 < n < 2, since (75) and (77) imply

||h(·, t)− h||L∞ ≤ Ae−ct.

The rate of decay, c, has bad dependence on n as n increases to 2 since Cn,s0 from (72)
blows up, forcing c to zero. This is artificial, as a better rate of decay follows from the
1 < n < 3 result, which we now prove.

The argument is similar to the 0 < n < 2 case so we leave some of the details to the
reader. Recall from the previous argument that on [0,M ], the graph of the basic entropy,
G0,y0 , was bounded above and below by the graphs of parabolas (73). In the following,
we use a similar idea, bounding the entropy Gr

0,y0
(y) above and below with the graphs of

“nonlinear parabolas” C(y1+ r
2 − y1+ r

2
0 )2.

Lemma 16. Given 1 < n < 3, 0 < r < 1, 0 < 2− n+ r < 1, 0 < y0 < M1+r/2 there exists
constants Cn,y0 and Cn,M,y0 so that the entropy,

Gr
0,y0

(y) =
y2−n+r

(1− n+ r)(2− n+ r)
− y1−n+r

0

(1− n+ r)
y +

y2−n+r
0

2− n+ r
(78)

satisfies

Gr
0,y0

(y) ≤ Cn,y0(y1+r/2 − y1+r/2
0 )2 ∀ 0 < y(79)

Cn,M,y0(y
1+r/2 − y1+r/2

0 )2 ≤ Gr
0,y0

(y) ∀ 0 < y < M.(80)

Again, the integration constants were chosen so that both Gr
0,y0

(y) and its first derivative
vanish at y0. As in the case of lemma 14, the lemma has the geometric interpretation of
sandwiching the graph of the convex function Gr

0,y0
(y) between two ‘nonlinear’ parabolas.

We apply Lemma 16 and the Poincaré inequality to the regularized entropy

Gr
ε,y0

(y) = Gr
0,y0

(y) +
ε

6y2−r .(81)
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From section 4 we have (60)

d

dt

∫
S1

Gr
ε,y0

(hε(x, t)) dx ≤ −Cr
∫

(h1+r/2
ε (x, t))2

xx dx,(82)

where Cr tends to zero as r tends to 1.
We apply Poincaré’s inequality to the function h1+r/2

ε at a point x0 where h1+r/2
ε equals

(h+ δ(ε))1+r/2. This and (79) imply∫
S1

Gr
ε,h+δ

(h(x, T )) dx−
∫
S1

Gr
ε,h+δ

(hε(x, 0)) dx ≤ −c
∫ T

0

∫
S1

Gr
0,(h+δ)1+r/2(hε(x, t)) dxdt.

Again, define

Bε = sup
t∈[0,T ]

∣∣∣∣∫
S1

ε

6hε(x, t)2−r dx

∣∣∣∣ .
Gronwall’s lemma, (80), and the a priori boundedness of the entropy of the initial data
imply

Cn,M,(h+δ)1+r/2 ||h(·, t)1+r/2− (h+ δ)1+r/2||2L2 ≤
∫
S1

Gr
0,h+δ

(hε(x, t)) dx ≤ Bε +Ae−ct.

Furthermore, Bε → 0 as ε→ 0. Indeed, for any r̃ satisfying the conditions of the lemma,
0 < r̃ < 1, 0 < 2− n− r̃ < 1, we have the uniform bound∫

S1

ε

hε(x, t)2−r̃dx < C

from the Gr̃
ε,h+δ

entropy dissipation. In particular, we choose r̃ < r satisfying these condi-

tions. Hölder’s inequality then implies that∫
S1

ε

h2−r
ε

≤ C

(∫
S1

ε

h2−r̃
ε

) 2−r
2−r̃

ε
r−r̃
2−r ≤ Cε

r−r̃
2−r .

Taking ε→ 0,

||h(·, t)1+r/2 − h1+r/2||L2 ≤ Ae−ct.

The interpolation inequality then gives an L∞ bound for h(·, t)1+r/2− h1+r/2
which implies

an L∞ bound for h(·, t)− h.
The rate of decay, c, decays to zero as r increases to 1. We note that as n increases to

3, the condition 0 < 2 − n + r forces r to 1, resulting in a slower rate of decay. This is
consistent with the fact that for the n = 3 case, there are no nonnegative source-type or
advancing front exact solutions.
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6. Evolution from Positive Initial Data

The preceding parts of this paper consider general nonnegative initial data. For such
data, we prove the existence of a weak solution for 0 < n < 3 that becomes strong in finite
time and approaches its mean in the L∞ norm as t→∞.

In this section we show that for all n > 0, if the initial data strictly positive there exists
a nonnegative (possibly weak) solution to the equation that approaches its mean in the
infinite time limit.

With strictly positive initial data, there are two possible scenarios. In the first, h remains
positive for all time and we have a global strong solution. Bertozzi et al showed in [6]
that this is precisely what happens for n ≥ 3.5. The second possibility is that the solution
is initially positive but “touches down” somewhere in finite time. Indeed, for sufficiently
small n (e.g. 0 < n < 1) numerical evidence shows that there is initial data that yields
such behavior [4]. For such solutions, the following theorem proves the existence of a
nonnegative weak continuation of the solution past the singularity time tc, moreover, after
a second critical time, T ∗, the solution becomes positive again and converges to its mean.

We have the following result

Theorem 17. Let 0 < m ≤ h0 ≤M , h0 ∈ H1(S1), n > 0 and T > 0. Given 0 ≤ s < 1
2

and
n > α ≥ 1

2
− s

4
then there exists a weak nonnegative solution to the lubrication approximation

in the following sense of distributions

for n > 1,

∫∫
QT

hφtdxdt−
∫∫

QT

nhn−1hxhxxφxdxdt−
∫∫

QT

hnhxxφxxdxdt = 0,

for
3

8
< n ≤ 1,

∫∫
QT

hφtdxdt−
∫∫

QT

hnhxxφxxdxdt−
∫∫

QT

hn−α
(
hα

α

)
x

hxxφxdxdt = 0

for 0 < n <
3

8
,

∫∫
QT

hφtdxdt+

∫∫
P

hnhxxxφxdxdt = 0

for all φ ∈ C∞0 (QT ). In all cases the solution has the additional regularity

h1−s/2 ∈ L2(0, T ;H2(S1)),(83)

(hα)x ∈ L4(QT ).(84)

Moreover, in all cases there exist positive A and c so that

‖h(·, t)− h̄‖L∞ ≤ Ae−ct.(85)

A depends on M , m, h, and n, and c depends on n and h. In particular, there exists a
critical time T ∗ after which the solution is strong and positive.

Remarks: Since the initial data is strictly positive the solution will at least exist as a
positive smooth solution on a finite time interval [0, tc). For the case n = 0, there exists
a unique strong solution for all time that approaches its mean in the infinite time limit.

the proof in [6] is an extension of the basic entropy argument used in [1]
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However, for this linear equation, as the example in Section 2 shows, the solution does
not necessarily preserve positivity. We remind the reader that for n > 0 uniqueness is not
known, even for nonnegative solutions. For this reason, we cannot exclude the possibility
that at the singularity time tc, there might be more than one way to continue the solution.

We note that the lower bound m on h0 implies that for any n, the initial entropy
∫
S1 G0(h0)

is finite. As was proved in [1], if
∫
S1 G0(h0) < ∞ and n ≥ 2, then at any time t, h(·, t)

can only vanish on a set of measure zero. This result can be refined to n ≥ 3/2 by using
the entropy (45). Also, as in [1] the theorem is true with the slightly milder condition of
entropy bounded initial data.

To prove theorem 17 we consider the regularization

ht = −(fε(h)hxxx)x,(86)

fε(h) =
hn+4

εhn + h4
.(87)

Since 0 < m ≤ h0, we do not lift the initial data. The bound
∫
S1 G0(h0) <∞ allows us to

apply the arguments from section 4 to prove the existence result. Indeed, for the case n ≥ 1,
we apply the argument used to prove Proposition 4 for nonnegative data with (1 < n < 2).
Furthermore, the solutions inherit the higher regularity proved for the solutions in section 4,
and the long time behavior has already been proven for 1≤ n < 2. For the case 0 < n < 1
both the existence and long time behavior follow as in the proof of Theorem 2.

We need to prove the longtime behavior for 2 ≤ n < 3.5. The proof of the longtime
behavior (24) in Theorem 1 would suffice for 2 ≤ n < 3, but the rate of decay decreases
to zero as n approaches 3. We show in this section that if there is an a priori bound for∫
S1 G0(h0), this is an artificial effect.
Recall that the basic entropy

Gε,y0 (y) =
ε

6y2
+G0,y0(y)(88)

satisfies
d

dt

∫
S1

Gε,h(hε(x, t)) dx = −
∫
S1

hε
2
xx(x, t) dx.

We now prove a variant of Lemma 14.

Lemma 18. Given n ≥ 2 and 0 < y0 < M , there exists positive constants Cn,y0 and Cn,M,y0

so that the basic entropy

G0,y0(y) =

{
1

(1−n)(2−n)
y2−n − y1−n

0

(1−n)
y +

y2−n
0

2−n n 6= 1

y log y − (1 + log y0)y + y0 n = 1
(89)

satisfies

Cn,M,y0(y − y0)
2 ≤ G0,y0(y) ∀ 0 < y ≤M(90)

G0,y0(y) ≤ Cn,y0(y − y0)2 ∀ y0/2 < y.(91)
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The geometric interpretation of this lemma is that for any fixed 0 < y0 < M , the graph
of G0,y0(y) can be bounded above by a parabola on y0/2 < y and below by a parabola
on 0 < y < M , where both parabolas have the vertex (y0, 0). The bound from above
does not hold on the full interval 0 < y since for n ≥ 2, G0,y0(y) blows up at y = 0.
However in the next lemma we show that an a priori bound on

∫
S1 G0,h(h0) allows us to

prove
∫
S1 G0,h(h) ∼

∫
S1(h(x)−h)2 dx, which is all that is needed for the long time behavior.

Lemma 19. Given 0 < y0 < M and 0 ≤ h < M h ∈ C1/2(S1) with finite entropy∫
G0,y0(h) ≤ CG(y0),

there exist c1 and c2 depending only on y0, M , the C1/2 norm of h, and CG(y0) so that

c1‖h(·)− y0‖2
L2(S1) ≤

∫
G0,y0(h) ≤ c2‖h(·)− y0‖2

L2(S1).

Proof: The lower bound follows directly from the previous lemma. To compute the upper
bound note that the interpolation Lemma 15 implies

‖h(·)− y0‖L∞ ≤ C‖h(·)− y0‖1/3

L1 ,

where C depends only on |h|C1/2 , M , y0, and |S1|. Hölder’s inequality implies then

‖h(·)− y0‖L∞ ≤ C1‖h(·)− y0‖1/3

L2 .

case 1: ‖h(·)− y0‖1/3

L2 ≤ y0/2C1

For this case, lemma 15 implies directly that |h(·)−y0|L∞(S1) ≤ y0/2 and hence y0/2 ≤ h(x)
for all x ∈ S1. Lemma 18 then applies, implying∫

G0,y0(h) ≤ Cn,y0‖h(·)− y0‖2
L2(S1).

case 2: ‖h− s0‖1/3

L2 > s0/2C1

For this case we have trivially∫
G0,y0(h) ≤ 64CG(y0)C

6
1

y6
0

‖h(·)− y0‖2
L2.

The rest of the proof of long time behavior follows exactly as in section 5.

7. Conclusions

This paper presents new results for several classes of weak nonnegative solutions for
different values of n for the degenerate diffusion problem ht + (|h|nhxxx)x = 0. We consider
the problem on a bounded domain with periodic boundary conditions.

The main features of these nonnegative weak solutions is that with nonnegative initial
data, for 0 < n < 3 they approach their mean in the limit as t → ∞. For n > 0, with
positive initial data this result also holds true. Moreover, the solutions have a greater
regularity than the exact solutions with ‘finite contact angle’ discussed in section 1. It is
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significant that this regularity just includes the known ‘source type’ similarity solutions with
‘zero contact angle’. To prove these results we introduce new families of diffusive entropies.
Using the convexity of the entropy functions, we relate entropy dissipation to relaxation of
the solution to its mean. We conjecture that well-posedness results exist within this more
restricted regularity class.

There are many unsolved problems for such higher order degenerate diffusion equations.
For example, what stronger results can one obtain for nonnegative weak solutions when
n ≥ 3? There are no nonnegative source type solutions in this range. There are, however,
the steady parabola solutions. We conjecture that there there is a regularity class for n ≥ 3
for which distribution solutions exist but do not have increasing support. Another unsolved
problem is the question of uniqueness for the weak solutions for n > 0. This is a difficult
problem due to the lack of a comparison principle.

We address some of these issues as well as a comparison of these solutions to the physical
problem of droplet spreading in a companion paper [5]. In that work we exhibit numerical
computation of the weak solutions via the regularization scheme used here. In particular the
numerics show that the approximate solutions are converging to a solution with support
that has finite speed of propagation. Even more interesting is that, before the support
covers the entire domain, the solution converges rapidly onto the similarity solution (9-11).

There are also a number of questions associated with finite time singularities. For a
detailed discussion we refer the reader to [6, 4]. There are very few rigorous results for the
singularity problem. However, numerics show that for n sufficiently small, even without
forcing, finite time singularities occur. Section 6 of this paper proves that one can continue
the solution after the singularity time as a nonnegative weak solution and that moreover
there exists a time after which the solution becomes a positive strong solution.
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8. appendix

8.1. Interpolation Lemma.

Lemma 20. (interpolation inequality)

A review article addressing some of these issues is [3].
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Let w ∈ L1(S1) ∩ Cα(S1), 0 < α < 1. Let | · |α denote the Hölder−α seminorm. Then

|w|L∞ ≤ (
1 + α

α
)α/(1+α)|w|1/(1+α)

α |w|α/(1+α)

L1 + (
1 + α

α
)|w|L1/|S1|.(92)

Proof. Since S1 is compact, there exists x0 so that |w(x0)| = |w|L∞ . For such a point

|w|L∞ − w(x) = |w(x0)− w(x)| ≤ |w|α|x− x0|α.
Hence

w(x) ≥ |w|L∞ − |w|α|x− x0|α.
Note that

|w|L∞ − |w|α|x− x0|α ≥ 0 for |x− x0| < (
|w|L∞
|w|α

)1/α.

Let

b = min
[
(
|w|L∞
|w|α

)1/α, |S1|
]
.

Without loss of generality x0 = 0. Hence

|w|L1 ≥
∫

0<x<b

(|w|L∞ − |w|α|x|α)dx(93)

= b(|w|L∞ −
|w|αbα
1 + α

).(94)

Since b ≤
(
|w|L∞
|w|α

)1/α

|w|L∞ −
|w|αbα
1 + α

≥ |w|L∞(
α

1 + α
).

Plugging this into (94) gives

|w|L∞ ≤ (
1 + α

α
)
|w|L1

b
.

The definition of b then gives the desired result.

8.2. Convergence of fε and its Derivatives.

Lemma 21. (Uniform convergence of fε for n > 0) Let

fε(y) =
yn+4

εyn + y4
.

Then for n > 0, fε converges uniformly on [0,M ] to yn as ε→ 0.

Proof. In the following, we assume ε < 1.

fε(y)− yn = − εy2n

εyn + y4
.

Fix ε and y 6= 0. Take b with y = εb. Therefore

|fε(y)− yn| = ε2nb+1

εnb+1 + ε4b
.
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Assume n < 4.
case 1: b ≥ 1

4−n

|fε(y)− yn| ≤ ε2nb+1−nb−1 = ε
n

4−n εnb−
n

4−n ≤ ε
n

4−n .

In the above, we used that nb− n
4−n ≥ 0 for b ≥ 1

4−n .

case 2: b < 1
4−n

|fε(y)− yn| ≤ ε2nb+1−4b = ε
n

4−n ε2nb+1−4b− n
4−n ≤ ε

n
4−n .

In the above we used that 2nb+ 1− 4b − n
4−n > 0 for b < 1

4−n .

This proves that for 0 < n < 4, fε(y)− yn ≤ ε
n

4−n .
For n ≥ 4, we observe that since 2n − 4 > 0,

|fε(y)− yn| ≤ εy2n−4 ≤ Cε
proving uniform convergence on [0,M ].

Lemma 22. (Uniform convergence of f ′ε for n > 1) Let

fε(y) =
yn+4

εyn + y4
.

Then for n > 1, f ′ε converges uniformly on [0,M ] to nyn−1 as ε→ 0.

Proof. In the following, we assume ε < 1.

f ′ε(h) =
nyn+7

(εyn + y4)2
+

4εy2n+3

(εyn + y4)2
= T1 + T2.

For n < 5/2, T2 has a maximum determined by

0 = T ′2(y) = 4
3ε2y3n+2 + ε(2n− 5)y2n+6

(εyn + y4)3

which occurs at y =
(

3ε
5−2n

) 1
4−n . Hence for n < 5/2

|T2(y)| ≤ Cε
n−1
4−n .

For n ≥ 5/2, 2n + 3 ≥ 8. Recalling that 0 ≤ y ≤ M , |T2(y)| ≤ Cεy2n+3−8 ≤ Cε. This
proves that for n > 1, T2 converges uniformly to zero.

We now prove that T1 − nyn−1 converges unformly to zero.

T1 − nyn−1 = nyn−1
[−2εy4+n − ε2y2n

(εyn + y4)2

]
.

Note that the term inside [·] is bounded independently of y and ε. Hence for y < ε1/4

|T1 − nyn−1| ≤ Cε(n−1)/4.
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For y ≥ ε1/4 and n < 4,∣∣∣∣nyn−1

(
−2εy4+n

(εyn + y4)2

)∣∣∣∣ ≤ Cyn−1 εy
4+n

y8

Recalling y8 = y4+ny4−n ≥ yn+4ε
4−n

4 ,

≤ Cyn−1εε
n−4

4 ≤ Cε
n
4 .

Similarly, ∣∣∣∣nyn−1

(
−ε2y2n

(εyn + y4)2

)∣∣∣∣ ≤ Cε
2n
4 .

Assuming ε < 1, for n < 4 and y ≥ ε1/4,
|T1(y)− nyn−1| ≤ Cε

n
4 .

If n ≥ 4,
|T1(y)− nyn−1| ≤ Cε.

Therefore, for 1 < n < 4,

|f ′ε(y)− nyn−1| ≤ Cε
n−1

4 .

For n ≥ 4, |f ′ε(y) − nyn−1| ≤ Cε, proving that for n > 1, f ′ε converges uniformly on [0,M ]
to nyn−1.

Lemma 23. (Uniform convergence of f ′′ε for n > 2) Let

fε(y) =
yn+4

εyn + y4
.

Then for n > 2, f ′′ε converges uniformly on [0,M ] to n(n− 1)yn−2 as ε→ 0.

Proof. In the following, we assume ε < 1.

f ′′ε (h) =
n(n− 1)yn+10

(εyn + y4)3
+
ε(−20 + 15n − n2)y2n+6

(εyn + y4)3
+

12y2y3n+2

(εyn + y4)3

= T1 + T2 + T3.

For n < 3, T2 has a maximum determined by

0 = T ′2(y) =
ε(20− 15n + n2)y5+2n((6− 2n)y4 + (εn− 6ε)yn)

(εyn + y4)4

which occurs at y =
(
ε(6−n)
6−2n

) 1
4−n

. Hence for n < 3

T2(y) ≤ Cε
n−2
4−n .

For n ≥ 3, 2n+ 6 ≥ 12. Recalling that 0 ≤ y ≤M , we find T2(y) ≤ Cεy2n+6−12 ≤ Cε.
This shows that for n > 1 T2 converges uniformly to zero.
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For n < 10
3

, T3 has a maximum determined by

0 = T ′3(y) = 12ε2
(3n− 10)y3n+5 + 2εy1+4n

(εyn + e4)4

which occurs at y =
(

2ε
10−3n

) 1
4−n . Hence for n < 10

3

T3(y) ≤ Cε
n−2
4−n .

For n ≥ 10
3

, 3n+ 2 ≥ 12. Recalling that 0 ≤ y ≤M , we find T3(y) ≤ Cεy3n+2−12 ≤ Cε.
This shows that for n > 1 T3 converges uniformly to zero.
We now show that T1 − n(n− 1)yn−2 converges unformly to zero.

T1 − n(n− 1)yn−2 = n(n− 1)yn−2

(
− 3εyn+8

(εyn + y4)3
− ε3y3n

(εyn + y4)3
− 3ε2y2n+4

(εyn + y4)3

)
= n(n− 1)yn−2(T11 + T12 + T13).

Note that T11 + T12 + T13 is bounded independently of y and ε. Hence

|T1(y)− n(n − 1)yn−2| ≤ Cεn−2
4 for y ≤ ε 1

4 .

Now assume n < 4 and y > ε
1
4

T11(y) ≤ n(n− 1)yn−2 3εyn+8

y12
.

Recalling y12 = yn+8y4−n > yn+8ε(4−n)/4,

< n(n− 1)yn−2εε
n−4

4

= n(n− 1)yn−2ε
n
4 ≤ C1ε

n
4 .

Similarly,

T12(y) ≤ C2ε
3n
4 and T13(y) ≤ C3ε

2n
4 .

For n < 4 and y > ε1/4, this proves

|T1(y)− n(n − 1)yn−2| ≤ Cεn4 .
If n ≥ 4,

|T11| ≤ Cεy(n+8)−12 ≤ Cε
|T12| ≤ Cε3y3n−12 ≤ Cε3 ≤ Cε
|T13| ≤ Cε2y(2n+4)−12 ≤ Cε2 ≤ Cε.

Therefore, for 2 < n < 4,

|f ′′ε (y)− n(n− 1)yn−2| ≤ |T1(y)− n(n− 1)yn−2|+ |T2(y)|+ |T3(y)| ≤ Cεn−2
4 .

For 4 ≤ n, |f ′′ε (y)− n(n − 1)yn−2| ≤ Cε proving that for n > 2 f ′′ε (y) converges uniformly
on [0,M ] to n(n− 1)yn−2.



THE LUBRICATION APPROXIMATION FOR THIN FILMS 33

Lemma 24. (Uniform convergence of yaf ′n(y)) Let

fn(y) =
yn+4

εyn + y4
.

Then for 1− n < a, yaf ′n(y) converges uniformly on [0,M ] to nya+n−1 as ε→ 0.

Proof. Without loss of generality a < min(4, 5− 2n). In the following, we assume ε < 1

f ′n(y) =
nyn+7 + 4εy2n+3

(εyn + y4)2
.

Hence ya(f ′n(y)− nyn−1) =
ε(4− 2n)y2n+a+3 − ε2y3n+a−1

(εyn + y4)2
.

Fiy ε and y 6= 0. Take b with y = εb. Therefore∣∣ya(f ′n(y)− nyn−1)
∣∣ =

∣∣∣∣(4− 2n)ε1+2nb+ab+3b − nε3nb+ab−b+2

(εnb+1 + ε4b)2

∣∣∣∣ .
We start by noting that since 1 − n < a, we can take λ > 0 so that we also have

1− n < (1− λ)a.
case 1: b ≥ 1

4−n

∣∣ya(f ′1(y)− nyn−1)
∣∣ ≤ (4 + 3n)

ε3nb+ab−b+2

(εnb+1 + ε4b)2

≤ (4 + 3n)
ε3nb+ab−b+2

ε2nb+2
= (4 + 3n)εnb+ab−b

= (4 + 3n)ε
λa

4−n εnb+ab−b−
λa

4−n ≤ (4 + 3n)ε
λa

4−n .

In the above, we used that nb+ ab− b− λa
4−n ≥ 0 for b ≥ λa

n+a−1
1

4−n , and that λ was chosen

so that λa
n+a−1

< 1, hence εnb+ab−b−
λa

4−n ≤ 1 for all b ≥ 1
4−n .

case 2: b < 1
4−n∣∣ya(f ′n(y)− nyn−1

∣∣ ≤ (4 + 3n)
ε2nb+3b+ab+1

(εnb+1 + ε4b)2

≤ (4 + 3n)
ε2nb+3b+ab+1

ε8b
= (4 + 3n)ε2nb+ab−5b+1

≤ (4 + 3n)ε
λa

4−n ε2nb+ab+1−5b− λa
4−n

< (4 + 3n)ε
λa

4−n .

In the above we used that 2nb + ab+ 1− 5b− λa
4−n ≥ 0 for b ≤ λa−4+n

2n+a−5
1

4−n , and that λ was

chosen so that λa−4+n
2n+a−5

≥ 1, hence ε2nb+ab+1−5b− λa
4−n ≤ 1 for all b ≤ 1

4−n .
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Lemma 25. (Uniform convergence of yaf ′′2 (y)) Let

f2(y) =
y6

εy2 + y4

Then for 0 < a < 4, yaf ′′2 converges uniformly to 2ya as ε→ 0.

Proof. Again, the upper bound a < 4 is simply to provide a shorter proof. In the following,
we assume ε < 1.

f ′′2 (y) =
2y2(6ε2 + 3εy2 + y4)

(ε+ y2)3

Hence yaf ′′2 (y)− 2ya =
2ε2ya(−ε+ 3y2)

(ε+ y2)3
.

Fix ε and y 6= 0. Take b with y = εb. Therefore

|yaf ′′2 (y)− 2ya| =
∣∣∣∣−2εab+3 + 6εab+2b+2

(ε+ ε2b)3

∣∣∣∣ .
case 1: b ≥ 1

2

|yaf ′′2 (y)− 2ya| ≤ 8
εab+3

(ε+ ε2b)3

≤ 8
εab+3

ε3
= εab

= 8ε
a
2 εab−

a
2 ≤ 8ε

a
2 .

In the above, we used that ab− a
2
≥ 0 for b ≥ 1

2
, hence eab−

a
2 ≤ 1.

case 2: b < 1
2

|yaf ′′2 (y)− 2ya| ≤ 8
εab+2b+2

(ε+ ε2b)3

≤ 8
εab+2b+2

ε6b
= 8εab−4b+2

= 8ε
a
2 εab−4b−a

2
+2 ≤ 8ε

a
2 .

In the above, we used that ab− 4b− a
2

+ 2 > 0 for b < 1
2
, hence eab−4b−a

2
+2 < 1.

This proves that for all y, |yaf ′′2 (y)− 2ya| ≤ Cε a2 , implying uniform convergence.
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