(CSC446: Numerical Methods for PDEs

Robert Almgren

March 27, 2002

Throughout this course, we have discussed Fourier modes in the context
of stability. Generally, we assume that a PDE or a discrete scheme has a
solution of the form u(z,t) = U(t) exp(i€x) where £ is a real number. Then
we look for the time dependence of U(t), and if it grows, we conclude that
the method is unstable. An implicit assumption in this approach is that any
initial data uo(z) may be written as a combination of these modes, so these
special solutions are stable.

Now we turn this point of view into a full numerical method. It is
the fourth of our major approaches to constructing a finite dimensional ap-
proxmation to a continuous problem. Spectral methods (or pseudo-spectral,
more correctly) are very well suited for problems with smooth solutions, on
bounded rectangular domains.

Fourier Transforms

Forward transform

Suppose u(z) is a real or complex function defined on a finite interval [0, L]; it
will be convenient to think of u as extended periodically outside this interval.
The Fourier coefficients are the doubly infinite sequence of complex numbers

1t
ap = f/ e~ 2k Ly(1) da, for k=0,£1,£2,...
0

(the “hat” is commonly used to denote the Fourier transform). There are
several different conventions for the prefactor (here 1/L) but this choice has
advantages as I hope I will convince you below.

We use the integer k as the index of the mode. The physical wave number

is £ = 2wk/L, so the wavelength is A\, = 27 /|¢x| = L/|k|. Thus the kth
mode has k waves in the period interval.
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The symmetries of this sequence mirror those of the function. First, if u
is real, then @_j, = 1y, where the overline denotes complex conjugate. Thus
in that case, the values of 4, with £ < 0 duplicate the ones with k£ > 0.

Suppose u is even: u(—z) = u(x). Since we have extended it outside the
interval [0, L] by assuming periodicity, this really means u(L — z) = u(z).
Then it is easy to see that 4_; = 1y (the sequence is even), and again the
negative indices contain duplicate information. If u is real and even, then the
coefficients are real and even. If u is smooth when extended periodicially,
then evenness requires zero derivative at x = 0; this case is relevant for
insulating Neumann boundary conditions on a finite interval.

If u is odd, so u(—z) = —u(x) or u(L — x) = —u(x), then 4_p = —.
In particular, 49 = 0, since it is the average value of u(x). If u is real as
well, then all the Fourier coefficients are pure imaginary. This corresponds
to zero Dirichlet conditions at the end of the interval.

Next, we compute some special “transform pairs,” that follow from the
orthogonality relations

l/L o~ 2mike/L 2mibr/L g, _ l/L 2mi(t—k)T/L g, _ Sy = 1, ifk=/¢
Lo LJo 0, else.

Thus if u(z) is a single complex exponential,

e27rz£:c /L

u(a:) = — ’llk = 5k€-

The infinite sequence {1y} is all zeros, with a single value equal to one at
position £. (We do not consider the case of non-integer values of £.) If u(x)
is a sum of exponentials, then by linearity of the transform, we have

w(z) = are®™h/ L. g, e?mitna/L — U = a10ke, + - ~+anlge,

The sequence is all zeros, with values a1, ..., a, in positions £1,...,£,.
In particular, using the de Moivre relation cosz = (e'* — e **) /2, we see

~ 1 —27ia

2 iy = —e
u(z) = cos(—ﬁ(ﬁx - aL)) = 21 .
L ’lAl,,g — _62771(1

We have introduced « as a phase shift. A pure cosine wave has o = 0,
giving 44y = 1/2. and a sine has a = 1/4, giving 44y = +1/2i; you may
check that the symmetry relationships above are respected. In general, a
shift in position of the wave in physical space corresponds to a rotation of
the Fourier coefficients.
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Figure 1: The very smooth function u(z) = exp(cos(27z)) (left picture) and
its numerically computed Fourier coefficients (right). Since w is analytic in
the entire complex plane, the coefficients decay faster than any exponential
in k. Thus in this log-linear plot, the coefficients go to zero faster than any
line, until they bottom out at machine precision around k = 15.

We now know what the Fourier transform is, when u(z) is any finite sum
of complex exponentials. You may be willing to believe that if u(z) is an
infinite sum of complex exponentials, then the same relationships hold:

oo
uz) = Y ™ — iy =y

{=—00

assuming the numbers {a,}7° _ are such that the infinite sum exists (the
ay decay fast enough as £ — +00). But this is very far from saying that
every function u(z) can be represented as a sum of complex exponentials.

Decay behavior

The decay of the coefficients {4} as k — oo is closely related to the
smoothness of u(x). The best possible behavior, and the reason that spectral
methods work well for smooth problems, comes when u is very smooth. The
smoothest that a function of a real variable can be is real analytic, meaning
that it is the restriction to the real axis of a complex analytic function.
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Figure 2: The real analytic function u(z) = 1/(2 — cos(27x)), together
with its Fourier coefficients. Although this function is real analytic and
looks about the same as the example in Figure 1, it has singularities in
the complex plane at a finite distance from the real axis. Hence the magni-
tude of the Fourier coefficients decays only exponentially, rather than super-
exponentially, and we need k = 30 to get down to machine precision.

Theorem: Suppose that u(z), periodic in z with period L, can be extended
to complex values of = so that it is analytic in a strip —p < Imax < p. Then
the magnitudes of the Fourier coeffients 4y, decay at least exponentially with
parameter controlled by p :

lig] ~ O(C(p)e=* ),  |k| - .

where C(p) and ¢ do not depend on k; C(p) may depend on p but not c.
Proof: If u(z) is analytic in 0 < Imz < p, then the path of integration may
be shifted upwards to Imx = p without changing the value of the integral,
since the contributions along the vertical end segments cancel. Thus

1 L . 1 L .
’lAl,k _ E/ ef2mkw/L,ul($) dr = e27rkp/L . Z/ ef2mkw/L,ul($ + ip) dr.
0 0

Now since u is analytic along the line Imz = p, it is continuous, and is
bounded. Then the value of the integral is bounded independently of k, and
this gives the result for k¥ > 0, with ¢ = 27/L. The case k < 0 follows by
shifting the path down to Imz = —p.
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function specplot( n )

L=1;

x = ((1:n)-1)*L/n;

u = exp(cos(2%pi*x/L));
k=1[0:((n/2)-1) 0 -((n/2)-1):-1 1;

uhat = fft(u)/n;

figure(1)
plot( [ x L1, [uwu(l)]);
xlabel(’x’); ylabel(’u(x)’); grid on;

figure(2);

semilogy( 0:((n/2)-1), abs(uhat(1:(n/2))), ’0’ );
xlabel(’k’); ylabel(’|uhat(k)|’); grid on
axis( [ 0 n/2 1e-20 56 ] );

Figure 3: The Matlab code that produced the plots in Figures 1, 2, and
(with some modifications) 4. £ft is used to compute the DFT, and we plot
only the first half of the resulting sequence; since u is real (and even) the
second half contains redundant information.

Alternatively, you can change variables to z = exp(2miz/L). Then u(z) be-
ing analytic in a strip corresponds to v(z) = u((L/27%) log z) being analytic
in an annulus, and the Fourier series for u is the Laurent series for v, whose
coefficients decay rapidly.

In the theorem we included the edges of the strip, so there cannot be
any singularities right at Imz = Zp. The actual decay of the coefficients
has an algebraic contribution (superimposed on the exponential) that can
be used to extract information about the nature of the closest singularities
of u(z) to the real axis.!

Furthermore, if u(x) is not real analytic, then the coefficients have alge-
braic decay, with an exponent controlled by the differentiability of u. If u
is infinitely differentiable but not real analytic, the coefficients decay faster
than any power of k, but not exponentially (this is a rare case).

The trigonometric polynomials above are analytic in the entire complex
plane, and the Fourier series are exactly zero beyond a finite index; this is

Ye.g., M. J. Shelley, “A study of singularity formation in vortex-sheet motion by a
spectrally accurate vortex method,” J. Fluid Mech. 244 (1992) 493-526.
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certainly rapid decay. For more realistic examples, see Figures 1, 2.

Note that we are referring to the smoothness of u extended to a periodic
function. If, for example, u is defined so u(0) # u(L), then the extension
will be discontinuous and the decay of the coefficients will be slow.

It is the super-algebraic decay of the Fourier coefficients for smooth func-
tions that makes spectral methods so powerful. In the language of finite-
difference methods with errors ~ hP, these have order p = co (when every-
thing works right). This is called spectral accuracy.

Inverse tranform

Now let us consider the opposite of the above operation: Suppose we start
with a function u(z), compute the infinite sequence of coefficients {u;}32 _ ,
and we form the infinite sum

0o
u(x) _ Z ’llk627rikw/L.

k=—00

As described above, if u(z) is smooth, the magnitudes of the 4, decay rapidly
as |k| — £o00, and so this sum exists for each z. Furthermore, we have taken
the liberty of naming the sum u(z) since indeed the infinite sum is equal to
the original function if it is smooth.

Thus we have two representations of the same information. In the “phys-
ical space representation,” we have the function u(z), consisting of its values
(real or complex) at all the points z € [0, L]. In the “Fourier representa-
tion,” we have an infinite sequence of complex numbers. You may think this
is very strange, since the first form contains uncountably many different
numbers, while the second has only countably many. In fact, the assump-
tion of smoothness reduces the amount of information in the function u to
countably many degrees of freedom.

A more formal way to say the above is to form the approximations to u
consisting of only finitely many Fourier modes:

n
’U,n(.’li) — Z fig eQm'kz/L_
k=—n
Certainly, for any finite n, this sum exists, and the question is whether
un () = u(x) in some reasonable sense as n — 00. If u is real analytic, then
this convergence is true in every sense. In general, the exact nature of the
convergence depends on precisely how smooth v is:?

2See Walter A. Strauss, Partial Differential Equations: An Introduction, John Wiley
& Sons 1992.
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e If u has continuous derivatives of order 2, then u, — u uniformly.

e If u is piecewise continuous with piecewise continuous first derivative,
then w, — u at points where u is continuous. At points of discontinu-
ity, the series converges to the average of the left and right values.

e If u is square-integrable, then [ |u, — u|?> — 0. This is often the most
suitable notion, since this guarantees the existence of the associated
inner product. In addition, we have Parseval’s identity

1 [t =
A RCCIRE SRR

k=—o00
The transform is just a rotation in some infinite-dimensional space.

These matters were very controversial throughout the 19th century; Joseph
Fourier is credited with proposing that a series of continuous trigonometric
polynomials could actually converge to a discontinuous function.

The situtation is somewhat reminiscent of finite elements, since there
also, we projected our function into a space spanned by a discrete set of
basis functions, and we reconstructed the original as well as we could. Here,
we can recover the original function ezactly, assuming some smoothness, by
taking more and more basis functions. That was also true for finite elements,
but the geometric complexity increased as the space got larger.

Convergence subtleties appear even for smooth u(z). Consider

o0

— 2, —mL — 29 —mL
u) = Y (tanh%_tanh%) 1

m=—0oQ

This function has steps of thickness € at x = z1 and £ = x; the infinite
sum makes it exactly periodic although the terms with m # 0 contribute
an extremely small amount. Figure 4 shows this function with L = 1,
z1 = 0.3179, 2o = 0.8751 (randomly chosen to break symmetries), and
€ = 0.02. Because ¢ is small, the decay of the Fourier modes is extremely slow
although exponential, and they do not reach roundoff error until & = 200.

If we try to resolve this function with insufficiently many Fourier modes,
we see the results shown in Figure 5, which shows u,(z) for n = 8. As n
increases, the convergence is extremely rapid. The critical value for n is
propotional to L/e, so that the wavelength of the nth mode, L/n matches
the length scale of the function being approximated, e. In practice, if the
spectrum does not drop to roundoff levels, you don’t have enough modes.
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Figure 4: An even more realistic example—see text for explanation.

This example is artificial, but similar thin layers arise naturally in many
physical problems such as fluid turbulence.
Two final comments:

e We shall not consider the extension to functions defined on all R, with
suitable decay assumptions at +o0o; then @ becomes a function of a
continuous variable k. Periodicity in z translates to discreteness in k.

e Everything we have said can be extended to functions of several vari-
ables, defined on a rectangle [0, L1] x - - - X [0, L4] instead of the interval
[0, L]; the wave index k becomes a multi-index (k1,...,kq).

Spectral Methods

We have now argued that we may look at a particular function either in the
original form wu(z), or in the Fourier representation 4. What can we do
with the latter that we couldn’t do with the former?

The thing we do most often in numerical computations is to differentiate.

If v(z) = u/(z), then

1 [F , omik 1 L :
'ﬁk — E/ e_QMkm/LU(x)d.’B — 7; f/ e—2mkw/Lu(m) dr = 27rik'&k
0 0
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u(x)

Figure 5: A reconstruction of the example in Figure 4 using only 8 modes
and showing the Gibbs phenomenon (overshoot at discontinuities) is visible.
Even though the function is smooth on fine scales, on intermediate scales
you see the near-discontinuities.

in which we have integrated by parts, differentiating the exponential and
changing sign (the boundary terms are zero because of periodicity). Equiv-
alently, we can differentiate the inversion formula (we can take the derivative
inside the sum if the 7y decay fast enough) to write

(z) = d i erika/Ly, i 2mik Grika/Ly,
dz L
k=—00 k=—00

The conclusion is the same: the Fourier series of the derivative is 27ik/L
times the Fourier series of the function. Whereas differentiation of a func-
tion involves a subtle limiting relationship between the functional values at
“neighboring” points in space, differentiation of the Fourier represenation is
a “diagonal” operation that acts on one mode at a time.

Similarly, convolution of two functions, an integral operator in physi-
cal space, is a mode-by-mode multiplication in Fourier space. And certain
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other integral operators (Hilbert transform, for example, are trivial diagonal
operations in the Fourier representation.

However, nonlinear operations such as multiplication in physical space
generally correspond to infinite sums in Fourier space. Some operations are
easier in one represenation, some in the other.

Discrete Fourier Transform

Suppose ug, - - -, U, are an array of n real or complex numbers. The forward
discrete Fourier transform (FFT) is the transformation

n—1
~ —2mijk
U = EZe ™ /"uj, k=0,...,n—1.
Jj=0
As with the continuous transform, there are several conventions for choice
of the prefactor. You may easily verify that the inverse transformation is

n—1
2mijk/n g -
uj:Ze”J/uk, j=0,...,n—1
k=0

using the orthogonality relation

1 n—1
_Ze—Qﬂ'ijk/neZWiék/n — 5]_[_

n <
J=0

Again, we have the conservation of discrete L? norm
n—1 n—1
1
2 o 12
Sl = 3l
§=0 k=0

This operation is discrete on both sides: it takes a set of n numbers into a
different set of n numbers. Since it is linear, it is equivalent to multiplication
by a unitary matrix Q; inversion is multiplication by Q! = Q*. Probably
the most significant numerical algorithm of all time was the discovery that
these operations could be performed in time n logn rather than n2.3

Let us point out one additional feature of the transform relationships.
Although we have said that j, k vary only from 0 to n — 1, in fact you could
use the formulas to compute u; or 4y, for any integer values. The result will
be a periodic sequence in both physical and Fourier space. Originally we
had periodicity in z, corresponding to discreteness in k; now we have added
discreteness in z which gives periodicity in k.

31f you’re looking for a code, the current fastest one is FFTW; this is what’s in Matlab.
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Figure 6: Aliasing error. The grid has n = 8, and the mode k; = 3 is plotted
with dashed line and circles. The mode k2 = 5 = n — k; looks exactly the
same on this grid. The highest resolvable frequence would be k = n/2 = 4.

Relation between discrete and continuous transforms

The interesting question is what happens if the original numbers u; are
samples of a smooth function u(z): what is the relationship between the
discrete coefficients 11‘,3 and the continuous coefficients 4.

Thus, assume that u; = u(z;), where z; = jL/n are equally spaced grid
points. Then using the representation formula we readily calculate

-1 n—1 [e's}
12 | 1 g L
~d —2mijk/n, (; _ —27ijk/n 2mil(jL/n)/L ~c
uk—gge J/u(jL/n)—EEe / Ee GL/m)/Lge
o8] n—1
1 2i(0—k)j
_ —k)j/n | sc
= — e Up.
> ¢
f=—00 7=0

The sum in parentheses has the value 1 when k — £ is any integer multiple

of n. Thus
o0
~d N
U = Z ’u’i—kmn'
m=—o00
The discrete mode k collects all the energy from all the periodic images of
mode k in the continuous spectrum.
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This is the reason it is so important that the wave amplitudes decay
rapidly, and that we have a large enough value of n: if both of these are
true, then the contribution from the other periodic modes is extremely small.
However, if u(z) is not a smooth enough function, or n is not large enough,
then modes for small values of £ will contain energy from much higher modes.
This is called aliasing error.

The highest wave number that can be represented on a grid of length n
has k = n/2, or £ = wn/L. The wavelength is 2n/{ = 2L/n = 2h; these
modes are +1 at the grid points.

Computation of derivatives

Now, suppose again that we want to compute approximate values v; = u'(z;)
of the derivative at the grid points z;, given only the values u; of the function
at the grid points. This is precisely the problem we considered extensively
in finite differences, where we generally settled on the centered difference
formula v; = (uj4+1 — uj—1)/2h. This expression has a second-order error
O(h?). In special cases, we had reasons to take a one-sided difference that
was only first-order accurate. Conversely, if we wanted higher-order accuracy
we could achieve it by using more neighbors on either side. Now we want to
see if we can come up with a better formula using Fourier transformations.
Here is the algorithm:

1. Take the discrete Fourier transform of the given discrete data. This is
equivalent to interpolating the function by a trigometric polynomial
of degree n that passes exactly through the given points, and is very
smooth in between.

2. Differentiate that polynomial, which is easily done by multiplying each
mode by its wave number k.

3. Take the inverse transform to get values of the derivative at the grid
points in physical space.

There is one tricky issue: Since each element of the discrete tranform is a
sum of an infinite sequence of wave components of the original function,
what wave number k should we use in step 27

Answer: Use the smallest value of k, meaning closest to zero, since that
is the one corresponding to the largest energy. For k = 0,...,(n/2)—1, this
is simply k itself. But for £k = (n/2) +1,...,n — 1, the image k — n is closer
to zero than k itself. For k = n/2, we don’t know which one is closer. Since
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we hope there is no energy there anyway, it is usually safe to set that mode
to zero. Thus the algorithm sets
2mik | n

— =0,...,——1
L Uk, k 07 "9

o = <0, k=mn/2
—27”(7];7_@% k:g—l—l,...,n—l.
You do a forward transform before, and an inverse transform after. Note that
the multiplier is not the index k, but the physical wave number ¢ = 27k/ L.
This is a global algorithm, since each output value v; depends on each
input value u;. This is the logical limit of taking derivatives using more and
more neighbors. Its accuracy as a function of h is better than any power of
h, as long as the grid is fine enough to resolve all features of the solution. If
the solution is underresolved, it will give dramatically bad answers, like any
high-order method. To summarize, the good things about spectral methods
are

e Spectacular accuracy on smooth periodic problems, and
e Ability to handle some nonlocal integral effects.
The bad things are

e Terrible accuracy if the solution is not smooth, or cannot be smoothly
extended to a periodic functions (if the boundary conditions are not
homogeneous Neumann or Dirichlet).

e The grid must be uniform (equally spaced).

o It is very “finicky:” if the code isn’t completely correct it will not do
anything reasonable, and it will be hard to see what is wrong.

The Nonlinear Schrodinger Equation

This is a paradigm example of a nonlinear wave equation. It arises physically
in a variety of contexts, ranging from nonlinear optics (index of refraction
depends on light intensity) to dynamics of superfluid helium. It illustrates
a lot of interesting behavior,* and is a stellar example of spectral methods.

4See Catherine Sulem and Pierre-Louis Sulem, The Nonlinear Schrédinger Equation:
Self-Focusing and Wave Collapse, Applied Mathematical Sciences Vol. 139, Springer 1999.
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Loosely speaking, the equation comes in two varieties: defocusing or
with a repulsive potential, and focusing, or with an atiractive potential.
The difference in the equation is just a change of sign, but the behavior of
solutions is very different. We start with the defocusing case.

Defocusing The PDE for the complex function u(z,t) is
iUy = Uge — |ultu.

In higher dimensions, the derivative just becomes the Laplacian. We shall
suppose that the equation is to be solved on a periodic domain, [0, L] in one
dimension, or [0, L]% in d dimensions. This called the cubic nonlinearity;
another popular choice is |u|??u with o = 1,2,....

One way to understand this equation (as always) is to look at conserved
quantities, of which two are of special importance. The particle number is

N@) = / lu(z, 1) dz

(you may normalize it however you like). If the domain were unbounded (no
periodicity), then we would impose decay conditions at co so this quantity
would be finite. To calculate the derivative, we recall that |u|? = u, so

dN
L
= / (u (iTigy — ilu*@) + @ (—iugg + ilul®u) ) dz
0

L
= / (’L(—uw’fl;w + uwfaw) + i|u|2(—uﬂ + '&u) ) dz
0

where we have integrated by parts once on the derivative terms. Thus N is
a constant of the motion.
The other conserved quantity is the energy, or Hamiltonian

H() = /(|vu|2 + %|u|4) ds

(for general o the second term is |u|??72/(o + 1)). Similar calculations as
above show that H(t) is also conserved.

Note that this energy is very similar to the one we used in the Allen-
Cahn equation, except that there the time dynamics was gradient descent:
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it decreased the energy as rapidly as possible. Here the dynamics is that of
a Hamiltonian system, that moves “across” the energy.

For the 1-D NLS with cubic nonlinearity, there is in fact an infinite family
of conserved quantities, which leads to the study of “integrable systems.”
In general, though (multi-dimensions or o > 1), these are the only two and
so we will focus on them.

Existence of the conserved energy H is of immense importance for un-
derstanding the behavior of solutions. Since it is the sum of two positive
terms, neither of them can become larger than the initial value of H. This
provides a bound on u and on its first derivative, which guarantees that the
solution remains well-behaved for all time.

Focusing The focusing or attractive form of the equation is
iU = Ugg + |ul’u,

in which only the sign of the nonlinear term (relative to the derivative) has
been changed. The particle number N is conserved as above. But now the
conserved Hamiltonian is

H{t) = /(\w? _ %\u|4>d:1:

with a sign change. Now the conserved energy is the difference of two posi-
tive terms. Nothing prevents both of them from becoming infinite together:
the solution can and does develop very interesting singularities.

Splitting

A standard way to handle equations like NLS, in which w; is the sum of two
terms, is to look at the PDEs in which only one term appears at a time. Here
the structure is particular simple, because each one is a type of rotatation,
one in physical and one in Fourier space.

Rotation in Fourier space First, let us consider the linear wave equation
TU = Ugy.

Since this is a linear equation with constant coeffiecients, its solutions are de-
scribed by looking at individual Fourier modes. With u(z,t) = U(t) exp(i€z),
we immediately see that iU’(t) = —£2U(t), so we can write the solution as

u(z,t) = Upe'€'teiér = [yetéatét)
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Of course, in a periodic box of length L, £ is restricted to the discrete values
27k /L for k an integer.

The phase speed ¢ = —¢ of the mode depends on &. Thus this wave equa-
tion is dispersive: different wavelengths propagate at different speeds. This
is in contrast to hyperbolic systems like uy = ¢>uyy, in which each different
wavelength propagates at the same speed ¢ (except for errors introduced
by the discretization). Only for hyperbolic systems can an initial distur-
bance move while preserving shape. For a dispersive system any solution
inevitably breaks up into a combination of many waves.

It is trivial to compute this solution in the Fourier representation. If

u(z,0) = ) ax(0) L,
k

(whether the sum is finite or not), then the solution at later times is

w(m,t) = Y ag(t) 2T, ay(t) = D 0),
k

Each mode just sits there and spins independently of all the others. Note
that the rotation rate increases quadratically with k. On a discrete grid of
size n, the highest mode is n/2, so the fastest rotation rate is (7n/L)%. The
rotation period of the kth mode is Ty = 27/(2wk/L)? = L?/27k?, so the
shortest period is Ty, /5 = 212 /7n?.

If you wanted to do an explicit method, without using the special rotation
structure, then you would need to take the time step 7 smaller than this
intrinsic time. It is just as for the diffusion equation, where we needed
to resolve the decay time of the smallest modes. We could have avoided
the problem there by doing a Fourier transform and evolving each mode
separately, as we are doing here (but the FFTs would have been much slower
than the finite differencing).

Rotation in physical space The other half of the problem is
iuy = —|ul’u.

Since this equation has no space derivatives, it is just an ODE at each point,
and the solution is immediately seen to be

u(z,t) = ellul’t u(z,0).

Again, this is just a rotation, that keeps constant the value of |u(z,t)|2.
Each separate spatial point just sits and spins independently.
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Pseudo-spectral algorithm

Now we can put all this together into a numerical algorithm. The idea is that
we do each effect in alternation. But since one is easiest to do in physical
space, the other in Fourier, we have to keep transforming back and forth.
That is why it is called “pseudo-spectral:” a fully spectral algorithm would
do all operations in Fourier space, but that works for very few problems since
almost everything has nonlinearity. Such algorithms only became possible
with the invention of the fast Fourier transform.

Here is the outline. We start with a list (ug’,...,u]" ; representing the
solution at time level m (keeping n for the number of space grid points).
Here’s how we get to level m + 1 with time step 7.

1. Forward transform. Do an FFT on u™ to compute the amplitudes 4}
in the Fourier-space representation.

2. Fourier rotation. Spin each mode as follows:

2
i = exp(igfr)ap, & = — min{k,n -k}

(it should be k — n rather than n — k, but we square it anyway).

3. Backward transform. Do an inverse FFT on @™"/2 to compute the
m+1/2

elements u; in the physical-space representation.

4. Physical rotation. Rotate each grid point in place:

2
. 1/2 1/2
u;n-I—l = exp (z ‘u;rH“ / ‘ 7_) u;ﬂ+ /



