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We Recommend a Singular Value Decomposition
In this article, we will offer a geometric explanation of singular value decompositions and look at
some of the applications of them. ...
 

Introduction
The topic of this article, the singular value decomposition, is

one that should be a part of the standard mathematics undergraduate curriculum but all too
often slips between the cracks. Besides being rather intuitive, these decompositions are
incredibly useful. For instance, Netflix, the online movie rental company, is currently
offering a $1 million prize for anyone who can improve the accuracy of its movie
recommendation system by 10%. Surprisingly, this seemingly modest problem turns out to
be quite challenging, and the groups involved are now using rather sophisticated
techniques. At the heart of all of them is the singular value decomposition.

A singular value decomposition provides a convenient way for breaking a matrix, which
perhaps contains some data we are interested in, into simpler, meaningful pieces. In this
article, we will offer a geometric explanation of singular value decompositions and look at
some of the applications of them.

The geometry of linear transformations
Let us begin by looking at some simple matrices, namely those with two rows and two
columns. Our first example is the diagonal matrix

 

Geometrically, we may think of a matrix like this as taking a point (x, y) in the plane and
transforming it into another point using matrix multiplication:

 

The effect of this transformation is shown below: the plane is horizontally stretched by a
factor of 3, while there is no vertical change.
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Now let's look at

 

which produces this effect

 

It is not so clear how to describe simply the geometric effect of the transformation.
However, let's rotate our grid through a 45 degree angle and see what happens.

 

Ah ha. We see now that this new grid is transformed in the same way that the original grid
was transformed by the diagonal matrix: the grid is stretched by a factor of 3 in one
direction.

This is a very special situation that results from the fact that the matrix M is symmetric; that
is, the transpose of M, the matrix obtained by flipping the entries about the diagonal, is
equal to M. If we have a symmetric 2  2 matrix, it turns out that we may always rotate the
grid in the domain so that the matrix acts by stretching and perhaps reflecting in the two



directions. In other words, symmetric matrices behave like diagonal matrices.

Said with more mathematical precision, given a symmetric matrix M, we may find a set of
orthogonal vectors v  so that Mv  is a scalar multiple of v ; that is

 

Mv  = λ v
where λ  is a scalar. Geometrically, this means that the vectors v  are simply stretched
and/or reflected when multiplied by M. Because of this property, we call the vectors v
eigenvectors of M; the scalars λ  are called eigenvalues. An important fact, which is easily
verified, is that eigenvectors of a symmetric matrix corresponding to different eigenvalues
are orthogonal.

If we use the eigenvectors of a symmetric matrix to align the grid, the matrix stretches and
reflects the grid in the same way that it does the eigenvectors.

The geometric description we gave for this linear transformation is a simple one: the grid is
simply stretched in one direction. For more general matrices, we will ask if we can find an
orthogonal grid that is transformed into another orthogonal grid. Let's consider a final
example using a matrix that is not symmetric:

 

This matrix produces the geometric effect known as a shear.

 

It's easy to find one family of eigenvectors along the horizontal axis. However, our figure
above shows that these eigenvectors cannot be used to create an orthogonal grid that is
transformed into another orthogonal grid. Nonetheless, let's see what happens when we
rotate the grid first by 30 degrees,
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Notice that the angle at the origin formed by the red parallelogram on the right has
increased. Let's next rotate the grid by 60 degrees.

 

Hmm. It appears that the grid on the right is now almost orthogonal. In fact, by rotating the
grid in the domain by an angle of roughly 58.28 degrees, both grids are now orthogonal.

 

 

The singular value decomposition
This is the geometric essence of the singular value decomposition for 2  2 matrices: for
any 2  2 matrix, we may find an orthogonal grid that is transformed into another
orthogonal grid.

We will express this fact using vectors: with an appropriate choice of orthogonal unit vectors
v  and v , the vectors Mv  and Mv  are orthogonal.

 

1 2 1 2



We will use u  and u  to denote unit vectors in the direction of Mv  and Mv . The lengths of
Mv  and Mv --denoted by σ  and σ --describe the amount that the grid is stretched in those
particular directions. These numbers are called the singular values of M. (In this case, the
singular values are the golden ratio and its reciprocal, but that is not so important here.)

 

We therefore have

 

Mv  = σ u
Mv  = σ u

We may now give a simple description for how the matrix M treats a general vector x. Since
the vectors v  and v  are orthogonal unit vectors, we have

 

x = (v x) v  + (v x) v
This means that

 

Mx = (v x) Mv  + (v x) Mv
Mx = (v x) σ u  + (v x) σ u

Remember that the dot product may be computed using the vector transpose

 

v x = v x
which leads to

 

Mx = u σ v x + u σ v x
M = u σ v  + u σ v
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This is usually expressed by writing

 

M = UΣV
where U is a matrix whose columns are the vectors u  and u , Σ is a diagonal matrix whose
entries are σ  and σ , and V is a matrix whose columns are v  and v . The superscript T on
the matrix V denotes the matrix transpose of V.

This shows how to decompose the matrix M into the product of three matrices: V describes
an orthonormal basis in the domain, and U describes an orthonormal basis in the co-
domain, and Σ describes how much the vectors in V are stretched to give the vectors in U.

How do we find the singular decomposition?
The power of the singular value decomposition lies in the fact that we may find it for any
matrix. How do we do it? Let's look at our earlier example and add the unit circle in the
domain. Its image will be an ellipse whose major and minor axes define the orthogonal grid
in the co-domain.

 

Notice that the major and minor axes are defined by Mv  and Mv . These vectors therefore
are the longest and shortest vectors among all the images of vectors on the unit circle.

 

In other words, the function |Mx| on the unit circle has a maximum at v  and a minimum at
v . This reduces the problem to a rather standard calculus problem in which we wish to
optimize a function over the unit circle. It turns out that the critical points of this function
occur at the eigenvectors of the matrix M M. Since this matrix is symmetric, eigenvectors
corresponding to different eigenvalues will be orthogonal. This gives the family of vectors v .
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The singular values are then given by σ  = |Mv |, and the vectors u  are obtained as unit
vectors in the direction of Mv . But why are the vectors u  orthogonal?

To explain this, we will assume that σ  and σ  are distinct singular values. We have

 

Mv  = σ u
Mv  = σ u .

Let's begin by looking at the expression Mv Mv  and assuming, for convenience, that the
singular values are non-zero. On one hand, this expression is zero since the vectors v , which
are eigenvectors of the symmetric matrix M M are orthogonal to one another:

 

Mv Mv  = v M Mv  = v M Mv  = λ v v  = 0.
On the other hand, we have

 

Mv Mv  = σ σ u u  = 0
Therefore, u  and u  are othogonal so we have found an orthogonal set of vectors v  that is
transformed into another orthogonal set u . The singular values describe the amount of
stretching in the different directions.

In practice, this is not the procedure used to find the singular value decomposition of a
matrix since it is not particularly efficient or well-behaved numerically.

Another example
Let's now look at the singular matrix

 

The geometric effect of this matrix is the following:

 

In this case, the second singular value is zero so that we may write:

 

M = u σ v .
In other words, if some of the singular values are zero, the corresponding terms do not
appear in the decomposition for M. In this way, we see that the rank of M, which is the

i i i

i i

i j

i i i
j j j

i j

i
T

i j i
T T

j i
T

j j i j

i j i j i j

i j i

i

1 1 1
T



dimension of the image of the linear transformation, is equal to the number of non-zero
singular values.

Data compression
Singular value decompositions can be used to represent data efficiently. Suppose, for
instance, that we wish to transmit the following image, which consists of an array of 15  25
black or white pixels.

 

Since there are only three types of columns in this image, as shown below, it should be
possible to represent the data in a more compact form.

 

We will represent the image as a 15  25 matrix in which each entry is either a 0,
representing a black pixel, or 1, representing white. As such, there are 375 entries in the
matrix.

 



If we perform a singular value decomposition on M, we find there are only three non-zero
singular values.

 

σ  = 14.72
σ  = 5.22
σ  = 3.31

Therefore, the matrix may be represented as

 

M=u σ v  + u σ v  + u σ v
This means that we have three vectors v , each of which has 15 entries, three vectors u , each
of which has 25 entries, and three singular values σ . This implies that we may represent the
matrix using only 123 numbers rather than the 375 that appear in the matrix. In this way,
the singular value decomposition discovers the redundancy in the matrix and provides a
format for eliminating it.

Why are there only three non-zero singular values? Remember that the number of non-zero
singular values equals the rank of the matrix. In this case, we see that there are three
linearly independent columns in the matrix, which means that the rank will be three.

Noise reduction
The previous example showed how we can exploit a situation where many singular values
are zero. Typically speaking, the large singular values point to where the interesting
information is. For example, imagine we have used a scanner to enter this image into our
computer. However, our scanner introduces some imperfections (usually called "noise") in
the image.
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We may proceed in the same way: represent the data using a 15  25 matrix and perform a
singular value decomposition. We find the following singular values:

 

σ  = 14.15
σ  = 4.67
σ  = 3.00
σ  = 0.21
σ  = 0.19

...
σ  = 0.05

Clearly, the first three singular values are the most important so we will assume that the
others are due to the noise in the image and make the approximation

 

M u σ v  + u σ v  + u σ v
This leads to the following improved image.

 

Noisy image Improved image

 

Data analysis
Noise also arises anytime we collect data: no matter how good the instruments are,
measurements will always have some error in them. If we remember the theme that large
singular values point to important features in a matrix, it seems natural to use a singular
value decomposition to study data once it is collected.

As an example, suppose that we collect some data as shown below:
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We may take the data and put it into a matrix:

 

-1.030.74-0.020.51 -1.31 0.990.69-0.12-0.721.11
-2.231.61 -0.020.88-2.392.021.62 -0.35-1.67 2.46

and perform a singular value decomposition. We find the singular values

 

σ  = 6.04
σ  = 0.22

With one singular value so much larger than the other, it may be safe to assume that the
small value of σ  is due to noise in the data and that this singular value would ideally be
zero. In that case, the matrix would have rank one meaning that all the data lies on the line
defined by u .

 

This brief example points to the beginnings of a field known as principal component
analysis, a set of techniques that uses singular values to detect dependencies and
redundancies in data.

In a similar way, singular value decompositions can be used to detect groupings in data,
which explains why singular value decompositions are being used in attempts to improve
Netflix's movie recommendation system. Ratings of movies you have watched allow a
program to sort you into a group of others whose ratings are similar to yours.
Recommendations may be made by choosing movies that others in your group have rated
highly.

Summary
As mentioned at the beginning of this article, the singular value decomposition should be a
central part of an undergraduate mathematics major's linear algebra curriculum. Besides
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having a rather simple geometric explanation, the singular value decomposition offers
extremely effective techniques for putting linear algebraic ideas into practice. All too often,
however, a proper treatment in an undergraduate linear algebra course seems to be missing.

This article has been somewhat impressionistic: I have aimed to provide some intuitive
insights into the central idea behind singular value decompositions and then illustrate how
this idea can be put to good use. More rigorous accounts may be readily found.
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