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of some texts. In geometry, physics, and other kinds of applied mathematics, one
seldom encounters naturally any differéntial equation of order higher than two.
Often even the second order equations are studied with more insight after reducing
to a first order system (for example, in Hamilton’s approach to mechanics).

Chapter 5

Linear Systems and Exponentials

of Operators

§1. Review of Topology in R*

The inner product (“dot product’) of vectors z and y in R" is
(fl!, y> = T1Ys + e + xnyr_t-

The Euclidean norm of @ is |z | = (&, #)? = (@’ + -+ + x,2)V2, Basic prop-
erties of the inner product are

Symmelry: (z,y) = {y, ©);

Bilinearity: (z +y,2) = (&, 2) + (y,.2),
- (a2, y) = alr, ¥), ¢ €R;

Positive definiteness: ' {z, ) > 0 and

The object of this chapter is to solve the linear homogeneous system with con-
stant coefficients .
(1) z' = Az,
where A is an operator on R* (or an n X n matrix). This is accomplished with (#, ) = 0if and only if & = 0.
exponentials of operators.
This method of solution is of great importance, although in this chapter we can
compute solutions only for special cases. When combined with the operator theory
of Chapter 6, the exponential method yields explicit solutions for every system (1). To see this, first suppose & = O or y = 0; the inequality is obvious. Next, observe
For every operator 4, another operator e4, called the ezponential of A, is defined that for any
in Section 4. The function 4 — e4 has formal properties similar to those of ordinary . A @+, e+ M) 20

An important inequality is

Cauchy’s inequality: {(z, y) < {z|]yl

exponentials of real numbers; indeed, the latter is a special case of the former. or : ,
Likewise the function t— e*4 (t € R) resembles the familiar e, where a € R. In P (g, 2) + Ny, ¥) + 2\, y) 2 0.
p'articular, it is shown that the solutions of (1) are exactly the maps z: R —>R" , Writing — (z, y)/{y, y) for X yields the inequality.
given by ‘ The basic properties of the norm are:

1) = et4K K € R7). .

2ll) = ( ) ‘ | (1) |z{>0and|z|=0if and only if z = 0;
Thus we establish existence ahd uniqueness of solution of (1); ‘“uniqueness’” means . @2 lz+yl<lz|+lyl;
that there is only one solutlon z(t) satlsfymg a given initial condition of the form v 3) laz|=|allzl;
) = K -

z (k) iy where | « | is the ordinary absolute value of the scalar a. To prove the triangle

Exponentials of operators are defined in Section 3 by means of an infinite series
in the operator space L(R"); the series is formally the same as the usual series for
¢*. Convergence is established by means of a special norm on L(R"), the uniform
norm. Norms in general are discussed in Section 2, while Section 1 briefly reviews : Since
some basic topology in R”. : lz4+yt=G+y,z+w

Sections 5 and 6 are devoted to two less-central types of differential equations. ! e P4yl + 2y
One is a simple inhomogeneous system and the other a higher order equation of one P
variable. We do not, however, follow the heavy emphasis on higher order equations

inequality (2), it suffices to prove
lz+yP<lzP+lyl+2lz]lyl

this follows from Cauchy’s inequality.
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Geometrically, | z | is the length of the vector z and

(x,y)= ley!cosgy

where 8 is the angle between z and .
The distance between two points 2, y € R” is defined to be |z — y | = d(=, ¥).
It is easy to prove: ‘

(4) |z—y|>0and|z—y|=0ifandonlyifz = y;
B lz—zl<lz—yl+|y—zl .

The last inequality follows from the triangle inequality applied to
r—z=(x—y + (y—2).
If € > 0 the e-neighborhood of x € R* is
B(z) = {y e R* ||y —z| < e}

A neighborhood of z is any subset of R» containing an e-neighborhood of .
A s'et XCRn is open if it is a neighborhood of every z € X. Explicitly, X is
open if and only if for every x € X there exists ¢ > 0, depending on z, such that
B.(z) CX. -
A sequence {zp} = z1, 2y, . .. in R" converges to the timit y € R if

hmlxk—yl=0

k->c0

Equivalently, every neighborhood of y contains all but a finite number of the points

of the sequence. We denote this by y = limy., ., zx or 2, — 3. If 2, = (Zhay -+ -+, Thn)
andy = (y1, ..., ¥n), then {zx} converges to y if and only if lims. 2; = 75, 7 =
1, ..., n. A sequence that has a limit is called convergent. . 5

. A sequence {zz} in R” is a Cauchy sequence if for every ¢ > 0 there exists an
integer ko such that

I:z:j—xk|<e ifk>ky and ]Zko
The following basie property of R” is called metric cémpleteness:
A sequence converges to a limil if and only if it 1s a Cauchy sequence.

A'sub.sef, Y CRr .is closed if évery sequence of points in Y that is comﬁ;rgent
‘has its limit in Y. Tt is easy to see that this is equivalent to: ¥ is closed if the com-
plement R» — Y is open. v

Let X C R be any subset. A map f: X — R is continuous if it takes convergent
sequences to convergent sequences. This means: for every sequence {2} in X with

lmay, =y € X,

koo .
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it is true that v
lim f(2x) = f(y).
ko0
A subset X C R is bounded if there exists a > 0 such that X C B. (0).
A subset X is compact if every sequence in X has a subsequence converging to a

': point in X. The basic theorem of Bolzano—W eterstrass says:

A subset of R is compact if and only if 4t 1s both closed and bounded.

Let K C R* be compact and f: K — R™ be a continuous map. Then f(K) is

compact. .
A nonempty compact subset of R has a maximal element and a minimal element.

Combining this with the preceding statement proves the familiar result:

Every contz'nuou‘ﬁfrrnap f: K — R, defined on a compact set K, takes on a mazimum

value and a mmimum value.

One mayle)'(tehd;"‘\the notions of distance, open set, convergent sequence, and other
topological ideas to vector subspaces of R», For example, if E is a subspace of R, the
distance funetion d: R* X R — R restricts to a function dg: £ X E — R that also
satisfies (4) and (5). Then eneighborhoods in £ may be defined via dg and thus
open sets of B become defined. '

§2. New Norms for Old

Tt is often convenient to use functions on R” that are similar to the Euclidean
norm, but not identical to it. We define a norm on R™ to be any function N: R*— R
that satisfies the analogues of (1), (2), and (3) of Section 1:

(1) N(z) > 0and N(z) = 0if and only if = 0;
(2) N(z+y) <N(@) +N@);
(3) N(azx) = |a|N(=).

Here are some other norms on Rn:
lxlmaxzmax{‘xllw--}Ixn”;

lxlsum lel+"'+|x"|'

, fa} be a basis for R* and define the Euclidean @-norm.:

Tet® = {f],...

|z]e = 2+ -+t i 2=t

7=1

In other words, |z |s is the Euclidean norm of z in ®-coordinates (fi, ..., ta). -
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The ® maz-norm of z is i
lx I(B,mnx = max“ tl [, ceay | tn i}.

The basic fact about norms is the equivalence of norms:

Proposition 1 Let N: R* — R be any norm. There exist constants A > 0, B > 0
such that : i

4) - A[2|<N(@) <B|z|
Jor all x, where | z | is the Euclidean norm.

Proof. First, consider the max norm. Clearly,

(max | z;1)? < ¥ 22 < n(max | z;|)?;
7

taking square roots we have
. lemaxslxls\/ﬁlx’mm‘.

Thus for the max norm we can take 4 = 1/¥n, B.= 1, or, equivalently,
1 .
F121 <2l < 2]

Now let N: R* — R be any norm. We show that N is continuous. We have
N(z) = N(Z ;) < 2 |z | Ney),
where ¢, . . ., e, is the standard basis. If

max{N(e),...,N(e)} = M,
then )
N(@) S M X 2| < Mn |2 |mx

< Mn|z|.
By the triangle inequality,
|N(z) = N@) | SNz —y)
<Mnlz—yl -
This shows that N is continuous.; for suppose hm 2 = y in R»:
[N(ze) = N@) | < Mn|z -y,

so lim N (2x) = N(y) in R.
Since N is continuous, it attains a maximum value B and a minimum value 4

(z € Re| |z = 1], r
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Now let z € R». If x = 0, (4) is obvious. If | 2| = a # 0, then
N(z) = oN(ax).

Since | o~z | = 1 we have
A < N(e™z) < B.
Hence
A < oa'N(z) £ B,
which yields (4), since a = |z |.
Let E C Rn be a subspace. We define a norm on E to be any function

N:E—>R

that satisfies (1), (2), and (3). In particular, every norm on R~ restricts to a norm
on E. In fact, every norm on E is obtained from a norm on R” by restriction. To
see this, decompose R* into a direct sum

Rr=FofF.

, e} be a basis for R* such that {e,, ..., e.} is a basis

(For example, let {ey, . ..
, €z}.) Given a norm N on

for E; then F is the subspace whose basis is {ent1, . . .
-E, define a norm N’ on R* by
N'(z) = N(y) + 2|,
where
x=y+znyE:zEF:
and | z | is the Euclidean norm of z. It is easy to verify that N’ is a norm on R” and
N'|E = N.

From this the equivalence of norms on E follows. For let N be a norm on E. Then
we may assume N is restriction to E of a norm on R*, also denoted by N. There
exist 4, B € R such that (4) holds for all z in R", so it holds a fortiori for all z
in E.

We now define a normed vector space (E, N) to be a vector space E (that is, a
subspace of some R*) together( with a particular norm N on E.

We shall frequently use the following corollary of the equivalence of norms:

Proposition 2 Let (E, N) be any normed vector space. A sequence {zx} in E con-
verges to y if and only if

(5) lim N (2 — v) = O.

ko

Proof. Let A > 0, B > 0beasin (4). Suppose (5) holds. Then the inequality
0<|m—y|<A7N(z —y)

shows that limg.. | zx — y | = 0, hence 2 — y. The converse is proved similarly.

Another useful application of the equivalence of norms is:
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Proposition 3 Let (E, N) be a normed vector space. Then the unit ball
D={z € E|[N(z) <1}
18 compact.
- Proof. Let B.beasin (4). Then D is a bounded subset of R?, for it is contained
_in (o € B ] < B} .

It follows from Proposition 2 that D is closed. Thus D is compact.

The Cauchy convergence criterion (of Section 1) can be rephrased in terms of

arbitrary norms:

Proposition 4 Let (E, N) be a normed vector space. Then a sequence {ze} in E
converges to an element in E if and only f:

(8) for every € > 0, there exists an integer ne > 0 such that if p > n > ng, then
Nz, — z,) <e

Proof. Suppose E C R?, and consider {z;} as a sequence in R», The condition
(6) is equivalent to the Cauchy condition by the equivalence of norms. Therefore
(6) is equivalent to convergence of the sequence to some y € R». But y € E because
subspaces are closed sets.

A sequence in R* (or in a subspace of R*) is often denoted by an infinite series
> o o k. This is merely a suggestive notation for the sequence of parital sums {s:},
where
sE.=m1 4+ -0+ T ) B

If limg. o sk = ¥, We write -

=y
=1
and say the series > zx converges to y. If all the z; are in a subspace E C R”, then
also y € E because E is a closed set.

A series D, z; in a normed vector space (E,N) is absolutely convergent if the series
of real numbers > o N(z:) is convergent. This condition implies that 3 zx is
convergent in E. Moreover, it is independent of the norm on E, as follows easily
from. equivalence of norms. Therefore it is meaningful to speak of absolute con-
vergence of a series in a vector space E, without reference to a norm.

A useful ériterion for absolute convergence is the comparison test: a series 3 2
in a normed vector space (£, N) converges absolutely provided there is a conver-
gent series 3 ax of nonnegative real numbers ax such that ¥ ‘

N (zx) < ax; k=1,2,....

‘.
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For

0< i N{z) < f: ax;

k=n+1 k=n-+1

hence Y s N (z:) converges by applying the Cauchy criterion to the partlal sum
sequences of > N (zx) and 2 ax.

PROBLEMS

1. Prove that the norms described in the beginning of Section 2 actually are
norms.

2. |z |sis a norm on R", where
2l = (X |25 [2)Y7;
=1

Sketch the unit balls in R? and R? under the norm | z |, forp = 1, 2, 3.

1<p < .

3. Find the largest A > 0 and smallest B > 0°such that
Al <|2|wm < Bz
for all z € R~

4. Compute the norm of the vector (1, 1) € R? under each of the following
norms:
(a) the Euclidean norm;
(b) the Euclidean ®-norm, where & is the basis {(1, 2), (2,2)};
(¢) the max norm;.
(d) the ®-max norm;
(e) the norm |z |, of Problem 2, for all p.

5. An inner ;broduct on a vector space E is any map R* X R* — R, denoted
by (z, ¥) — {(z, y), that is symmetric, bilinear, and positive definite (see

Section 1)
(a) Given any inner product show that the function (z, z)!/ is a norm.

(b) Prove that a norm N on I comes from an inner product as in (a) if and
only if it satisfies the “parallelogram law’:

Nz +9)* + N — y)* = 20N @) + N(@)?).

(¢) Letay, ..., e be positive numbers. Find an inner product on R* whose
corresponding norm is

N(z) = (X amd)'™



‘‘‘‘‘‘‘

82 5. LINEAR SYSTEMS AND EXPONENTIALS OF OPERATORS

(d) Let {e, ..., ex} be a basis for E. Show that there is a unique inner
product on E such tha,t

<€i, €j> = 5.;]' for all ’i, ]

6. Which of the following formulas define norms on R2? (Let (z, y) be the co-
- ordinates in R2) ,
(@) @ tay+ )i (b)) (2 — Bwy + )y
e (=zl+1lyhy (@ 3Uzl+y]) + 3@+ )

7. Let U C R*be a bounded open set containing 0. Suppose U is convex:ifx € U7

and y € U, then the line segment {tz + (1 — £)y [0 <t<1}isin U. For
each z € R~ define

o(z) = least upper bound of {A > 0| X\z ¢ U}.

Then the function

- 1
N@ =75

is a norm on R~,

8. Let M. be the vector space of n X n matrices. Denote the transposeof A € M,
by A*. Show that an inner product (see Problem 5) on M, is defined by the

formula
(4, B) = Tr(AB).

Express this inner product in terms of the entries in the matrices 4 and B.

9. Find the orthogonal complement in M, (see Problem 8) of the subspace of
diagonal matrices.

10. Find a basis for the subspace of M, of matrices of trace 0. What is the ortho-
gonal complement of this subspace?

©

§3. Exponmentials of Operators

The set L(R") of operators on R* is identified with the set M »of n X n matrices:
This in turn is the same as R* since a matrix is nothing but a list of »* numbers.
(One chooses an ordering for these numbers.) Therefore L(R") is a vector space
_ under the usual addition and scalar multiplication of operators (or matrices). We
may thus speak of norms on L(R"), convergence of series of operators, and so on.

A frequently used norm on L(R") is the uniform norm. This norm is defined in
terms of a given norm on R* = E, which we shall write as |z]. f T: E—Eis an
operator, the uniform norm of 7 is defined to be

71| = max(| Tz || = | < 1).
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In other words, || T || is the maximum value of | Tz | on thg unit ball
D={zcE||lz|<1}.
The existence of this maximum value follows from the compactness of D (Section

1, Proposition 3) and the continuity of 7: R*» — R». (This continuity follows im-

mediately from a matrix representation of 7.) .
The uniform norm on L(R"*) depends on the norm chosen for R*, If no norm on

R" is specified, the standard Euclidean norm is intended.

Lemma 1 Let R be given a norm | z |. The corresponding uniform norm on L(R")
has the following properties: :

(a) IF||TH =k then|Tx| <k|z]|foralzinRr

M) ST < WS- TI.

() ||T=]|<||Tllmforallm =0,1,2,

Proof. (a) Ifz =0, then |Tz|=0=1F|x| If 2 0, then |z | # 0. Let
y = |z |-z, then : )

1
‘Iy|=m|»xl—v L

Hence

k=HTl|2|Tyl=i71llTx|

from which (a) follows.
(b) Let|x| < 1. Then from (a) we have
| S(T) | < [ 8] T= |
SHBINT =]
<USI-T I

Since || ST || is the maximum value of | 8Tz |, (b) follows.
- Finally, (¢) is an immediate consequence of (b).

We now define an important series generalizing the usual exponential series. For

any operator T': R* — R» define
k

exp(T) = e = i-—

; k!
(Here k! is k& factorial, the product of the first k positive integers if ¥ > 0, and
0! = 1 by definition.) This is a series in the vector space L(R").

Theorem The exponential series Y io T%/k! is absoluiely convergent for every

operator. T.
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Proof. Let || T [| = « > 0 be the uniform norm (for some norm on Rn).
Tllen [| T¥/k!|] < o*/k!, by Lemma 1, proved earlier. Now the real series
2 k=0 &*/k! converges to e* (where ¢ is the base of natural logarithms). Therefore
tl)le exponential series for T' converges absolutely by the comparison test (Section
2).

We have also proved that

e[| < ett,

We shall need the following result.

Lemma 2 Let 357 A, = A and 32 By = B be absolutely convergent series of
operators on R*.-Then AB = C = 337, C), where C; = 3 juiey A;B..

Proof. Let the nth partial sum of the series 3 A 5 2, Br, X C; be denoted
respectively by an, 85, v». Then .

AB = lim a8,

n-»00
while
C = ]iIn Yon.
e .

If v20 — B is computed, it is found that it equﬁls
2 ABi+ X AB,,

where 3’ denotes the sum over terms with indices satisfying

J+k<2n, 0<j<n n+4+1<k<2n
while 3° is the sum corresponding to
J+ k< 2n, n+1<j<2n, 0<k<n.. ’
Therefore .
lven — @ Il < 01| A5 111 Be |l + =7 || A4 {|-]] Bx ).
Now :

S UANNE < E 1451 > B

ke=n+1

‘This tends to 0 as n — <« since 37, || 4;]] < . Similarly, > || 4;]|-]| Bx || —

0 as n — «. Therefore limp.(¥2n — anBn) = 0, proving the lemma.

The next result is useful in computing with exponentials.

Proposition Let P, S, T denote operdtors on R™, Then:
(8) if @ = PTP, then @ = PeTP—1;

-
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(b) if ST = TS, then 57T = ¢%¢7;
() e =1{(e5
(@ n=2and T = [¢ 7] then

[cos b —sin b]
eT = e8| | .
sin b cos b

The proof of (a) follows from the identities P(4A + B)P-! = PAP-! + PBP-1
and (PTP-Y)* = PT*P-! Therefore

n T" L n (PTP-—I)I:
P(Em)r -2

)

and (a) follows by taking limits. To prove {(b), observe that because ST = T'S we
have by the binomial theorem

SiT*
n o ! —_——
(S+T)m=n! T ar
Therefore
eSHT = i ( > -Sjg>
() H‘k-ﬂ]! k!

© G (uo»Tk
-(EE)ED)
(E’O FAVAY 3
by Lemma 2, which proves (b). Putting T’ = —~ S in (b) gives (c).
'The proof of (d) follows from the correspondence

[" _b] + b
>
b a a 1

of Chapter 3, Which preserves sums, products, and real multiples. It is easy to see
that it also preserves limits. Therefore :

eT < ¢fe?,

where e® is the complex number 3 5 (ib)*/k!. Using ©* = —1, we find the real
part of e® to be the sum of the Taylor series (at 0) for cos b; similarly, the imaginary
part is sin b. This proves (d).

Observe that (¢) implies that ¢ is invertible for every operator S. This is anal-
ogous to the fact that ¢ > 0 for every real number s.

As an example we compute the exponential of T = [ 2]. We write

T I+ B B [0 O]
__a,-i—,,A --bO
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Note that al commutes with B. Hence

eT = ¢olgB — gagB,
Now B? = 0; hence B* = 0 for all k > 1, and

o=y Llp

ko !

=TI+ B

e = ¢(I + B) = e“[l OJ.

b 1
5 2]
eb e ]
We can now compute e4 for any 2 X 2 matrix 4. W
. : e will see in Cha t 6th
can find an invertible matrix P such that the matrix P .

B = PAP-
—b A0
a]’ @) [1 x]'
-2
0 e

o = g [cos b —sin b]
sin b cos b

Thus

I

has one of the following forms:

w [ 3] @ [¢

We then compute e8, For (1),
For (2)

as was shown in the proposition above. For (3)

o [1 0]
_ 11
as we have just seen. Therefore e4 can be computed from the formula

—1
¢4 = ¢PT'BP — p-1,Bp

There i . . . .
- ere 1s a very simple relationship between the eigenvectors of 7' and those of

If x € R is an eigenvector of T belonging to the real etgenvalue o of T then x 1s also
an eigenvector of er belonging to e,
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For, from Tz = az, we obtain

roTeyg
ety = lim (Z.:o k'>

n->oo

k
-hm Z Ex)

=0

Ei)-

= e%x.

We conclude this section with the observation that all that has been said for
exponentials of operators on R” also holds for cperators on the complex vector space
Cn. This is because C» can be considered as the real vector space R by simply
ignoring nonreal scalars; every complex operator is a fortiori a real operator. In
addition, the preceding statement about eigenvectors is equally valid when complex
eigenvalues of an operator on Cn are considered ;. the proof is the same.

PROBLEMS

1. Let N be any norm on L(R"). Prove that there is a constant K such that
N(8T)y < KN(S)N(T)
for all operators S, T. Why must K > 1?

2, Let T: R*— R™ be a linear transformation. Show that T is uniformly con-
tinuous: for all e > O there exists § > 0 such that if |z — y | < & then

| Tz — Ty| < e
3. Let T:R" — R" be an operator. Show that

[l T || = least upper bound {l—l—q;ill[:c b O}.
4. Find the uniform norm of each of the following operators on R?:

@ [y ] w[oy] @[5l

5. Let

N

il
 ——
N
(=]
e O
| S——
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- 10.
11.
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(a) Show that .
lim || T» |un = 3. -

n->ro0

(b) Show that for every ¢ > 0 there is a basis & of R? for which
IT]le <3+

vxhere 7 llgis the uniform norm of T' corresponding to the Euclidean
®-norm on R2,
(e) TFor any basis ® of R?,

1T lle> 3%
(a) Show that
T > 1

for every invertible operator 7.
(b) If T has two distinct real eigenvalues, then

FTN- T > 1
(Hint: .First consider operators on R2 )

Prove that if T is an operator on R* such that T —~1] <1, then T is
invertible and the series Y5 (I — T)’c _converges absolutely to 71, Find
an upper bound for || 71|/,

Let 4 € L(R") be invertible. Find ¢ > 0 such that if | B — 4 I| < ¢ then
B is invertible. (Hint: First show A—B is invertible by applying Problem 7
to T = A-'B))

Compute the exponentials of the following matrices (¢ = +/—1 ):

oL ol o] o[

[0 1 2 -T2 0 0 X0 0
(e) [0 0 3 ) (0 3 0 (g) 1 20
000 013 o1
w | 0] Q) [“ 0‘] ol
[0 —; 2 144 1000
1000
1000

For each matrix T in Problem 9 find the eigenvalues of e,
Find an example of two operators 4, B on R? such that

4B 5 gdgB,

89
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12. If AB = BA, then e4e? = eP¢# and ¢B = BeA.
13. Let an operator 4: R*» — R* leave invariant a subspace EC R" (that is,

Az € E for all € E). Show that e also leaves E invariant.

14. Show that if || T — I} is sufficiently small, then there is an operator S such
that ¢f = T. (Hint: Expand log(1 + 2) in a Taylor series.) To what extent
is S unique? .

15. Show that there is no real 2 X 2 matrix S such that e§ = [5 _97.

§4. Homeogeneous Linear Systems

Let A be an operator on R* In this section we shall express solutions to the
equation:

(1) = Ax
in terms of exponentials of operators. ‘

Consider the map R —)L(R") which to ¢ € R assigns the opera.tor et4, Since
L(R") is identified with R, it makes sense to speak of the derivative of this map.

Proposition

d_ otd = Agtd == gtd 4

dt
In other words, the derivative of the operator-valued function e’4 is another
operator-valued function Aet4. This means the composition of e*4 with A4 ; the order
of composition does not matter. One can think of A and e'4 as matrices, in which
case Aet4 is their produet.
Proof of the proposition.
. d . eltthd o ptd
—etd = lim ———
L0 h

otdghd _ gtd

= lim
0 h
= ¢4 lim (eM — )
Tk
= ¢t44;

that the last limit equals A follows from the series definition of e*4, Note that 4
commutes with each term of the series for e'4, hence with e*4. This proves

the propesition.



