
MAT267: 3rd HW assignment. Due by 11:59pm on March 19.

1. (10 pt) Remember the Picard-Lindelöf Theorem? The existence and uniqueness theo-
rem for y′ = f(x, y) where we assumed f is continuous in x and Lipschitz in y? (The
one whose proof involved Picard iterates/the Picard map.) The proof I presented was
for a single ODE. Now that we’re considering systems of ODEs, we need an existence
and uniqueness theorem for ~X = ~F (t, ~X). Write up a modification of the proof for one
ODE so that it’s a proof for a system of ODEs. If you get stuck, see pages 387-394
in Hirsch, Smale, & Devaney — they do it for ~X = ~F ( ~X). Figure out how to modify
their proof for autonomous systems (no t-dependence in the vector field) to make a
proof for nonautonomous systems (the vector field can depend on t).

2. (10 pt) Consider ~X ′ = ~F (t, ~X) with ~X(0) = ~X0. ~F : R× Rn → Rn.

Assume ~F is continuous in t and ~X and that ~F is C1 in ~X. (From class, this implies
that given a compact set K ⊂ Rn there’s a Lipschitz constant LK < ∞ so that
‖~F (t, ~X)− ~F (t, ~Y )‖ ≤ LK‖ ~X − ~Y ‖ for all ~X, ~Y ∈ K.) Further assume that ~F (t, ~X) is

bounded on compact sets in ~X: given a compact set K ⊂ Rn, there exists MK so that
‖~F (t, ~X)‖ ≤MK for all t and all ~X ∈ K.

Assume that ~X(t) solves the initial value problem on some time interval (a, b). Assume

that there’s a compact set K so that ~X(t) ∈ K for all t ∈ (a, b). Show that there exists

some a1 < a and b1 > b so that ~X(t) solves the initial value problem on (a1, b1).

You’ve extended the solution to a slightly larger interval of time. Give a condition
that would allow you to apply the above procedure over and over again, extending the
solution to (a1,∞). Give a condition that would allow you to apply the procedure over
and over again, extending the solution to (−∞, b1). Give a condition that would allow
you to extend the solution to (−∞,∞).

3. (5 pt) Consider ~X ′ = ~F ( ~X) where ~F is C1. Assume there’s a C1 function E : Rn → R
so that

~X ′(t) = ~F ( ~X(t)) =⇒ d

dt
E( ~X(t)) = 0.

It follows that a solution of the initial value problem with ~X(0) = ~X0 will satisfy

E( ~X(t)) = E( ~X0) for all t ∈ (α, β) where (α, β) the interval from the existence and
uniqueness theorem. Give a condition on the level sets of E that will guarantee that
the solution ~X(t) exists for all time.

1



4. (5 pt) Consider ~X ′ = ~F ( ~X) where ~F is C1. Assume there’s a C1 function E : Rn → R
so that

~X ′(t) = ~F ( ~X(t)) =⇒ d

dt
E( ~X(t)) ≤ 0.

It follows that a solution of the initial value problem with ~X(0) = ~X0 will satisfy

E( ~X(t)) ≤ E( ~X0) for all t ∈ [0, β) where (α, β) the interval from the existence and
uniqueness theorem. Give a condition on the level sets of E that will guarantee that
the solution ~X(t) exists on (α,∞).

Assume the smooth dynamical system φ : R × Rn → Rn is a flow for the for the system of
ODEs

~X ′ = ~F ( ~X), ~X(0) = ~X0.

Recall that φt( ~X0) := φ(t, ~X0) and

d

dt
φt( ~X) = ~F (φt( ~X))

for all t ∈ R and all x ∈ Rn.

5. (10 pt) Let v : Rn → R be C1 and assume v vanishes outside some compact set
K ⊂ Rn. We can “flow” this function v by defining

vt( ~X) = v(φt( ~X)).

Assume v is identically one on the square of width .1, centered at the point (1, 0) and v
is identically zero outside the square of width .2 centered at the point (1, 0). Consider

the vector field ~F ( ~X) = A ~X where A is a 2× 2 matrix.

(a) Let A = (0, 1;−1, 0). What is φt( ~X)? The function vt( ~X) will be identically one
on the image (under the flow) of that square of width .1 and will be identically
zero outside the image (under the flow) of that square of width .2. Sketch the
image of the square of width .1 after it has flowed for t = 1. What is its area?
Now consider the same v but shifted so that the square of width .1 has corners
(0, 0), (.1, 0), (.1, .1), and (0, .1).

(b) Repeat the above with A = (2, 0; 0,−1) and with A = (2, 1; 0, 2).

6. (10 pt) Show that
d

dt
vt( ~X) = ~F (φt( ~X)) · ∇v(φt( ~X)).

Show that this implies

d

ds
v(φs( ~X))

∣∣∣∣
s=0

= ~F ( ~X) · ∇v( ~X).

Show that
d

dt
vt( ~X) =

d

ds
vt(φs( ~X))

∣∣∣∣
s=0

and conclude that
d

dt
vt( ~X) = ~F ( ~X) · ∇vt( ~X).
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I don’t think you’ve learnt the divergence theorem yet in MAT257 but when you do you’ll
see that it implies

d

dt

∫
Rn

v(φt( ~X)) d ~X =

∫
Rn

~F ( ~X) · ∇vt( ~X) d ~X = −
∫
Rn

div ~F ( ~X) v(φt( ~X)) d ~X (1)

where div ~F is the divergence of the vector field

div ~F ( ~X) :=
∂F1

∂x1
( ~X) + · · ·+ ∂Fn

∂xn
( ~X)

Given a set B ⊂ Rn we define its characteristic function

χB(x) =

{
1 if x ∈ B
0 if x /∈ B

If B is nonempty then χB is a discontinuous function. However, if B is “nice enough” (for
example, smoothly bounded and closed) there exists a sequence of smooth functions 0 ≤ vε ≤
1 so that vε(x) = 1 for x ∈ B and vε(x) = 0 for x ∈ Rn −Bε were Bε := {x | dist(x,B) ≤ ε}.
Applying (1) to vε and taking ε→ 0 in (1) yields

d

dt
Volume of φt(B) =

∫
φt(B)

div ~F ( ~X) d ~X. (2)

7. (10 pt) Consider ~X ′ = A ~X and take B to be the parallelogram with one corner at ~0

and with adjoining sides ~X1 and ~X2 where ~X1 and ~X2 are linearly independent.

(a) What is the area of B at time t = 0? What is φt(B)? What is the area of φt(B)?

(b) From exercise 7 of the previous homework assignment, what ODE should the area
of φt(B) satisfy?

(c) Assuming that (2) can be generalised to B that have piecewise smooth boundaries,
what is (2) for this B and φt(B)?

8. (10 pt) Consider the pendulum(
x
y

)′

= ~F ( ~X) =

(
y

− g
L

sin(x)− α
m
y

)
(a) What is div ~F ( ~X) if there is no friction (α = 0)? What does this mean about how

the area of a “blob” changes as the blob is carried around by the flow?

(b) What is div ~F ( ~X) if there is friction (α > 0)? What does this mean about how
the area of a “blob” changes as the blob is carried around by the flow?
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