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Chap. 1 Basic Concepts

srhood of £g. ‘
(5) is defined on the whole t-axis, and

sble function satisfying the initial con-
al equation (4) for all ¢. In fact, it was
| (4) that Napier originally introduced

satisfying the condition e(te) =

equation 4),
b where it is defined.

10le interval @ < t <
ollows: Let T be the least upper bound of the

call o, tg < ¢ < 7T By hypothesis, o < T < b.

=
sause of the continuity of ¢. But then it holds in
(5), replacing fo

«epeat the argument leading to
) implies ¢(T) > 0). Thus T'=1b and formula
<t by ls treated similarly.

»ns of (4) with xo > 0.

1.6 on radioactive decay and growth of bacterial
Jblem the amount of matter falls off exponentially

bstance decreases to one half the amount initially

‘he half-life of the given substance. In the'second

4 exponentially with time, and doubles in time

. Formula (5) also contains thy

sity. of the atmosphere one half its value at the

erature is constan

.. Elbrus.

scientific journais (bé’th original a
‘ulchenko, Scientometry (in Russian

e solution of many’

t? (A cubic meter of air weighs

nd review journals).
}, Moscow (1969)-

Sec. 2 Vector Fields on the Line 17

Problem 3. Prove that all the soluti ion . |
ions of equat 4 isfyi iti

w(go) e iven by ot (5)q ion (4) satisfying the initial condition

It shlould be noted that none of the functions (5) with x, 5 0 vanishes for
antil1 value of t. Hence the unique solution of equation (4) such that x 0
is i = N

€ stationary solution x = 0. Thus formula (5) accounts for all the sol to'

the differential equation (4). s
. In i)artlcular, .the uniqueness assertion of Theorem 2.3 is valid for equa
;%r-lﬁ(« ). F;ogi this one can easily infer uniqueness for any equation (1) 3vith

ifferentiable vector field v and for more 1

: general equations as well

. ;ﬂh; reason for the failure of uniqueness in the casé v(x) = x?/3is that this
t}f , ;)es.not fall off fast enough as the pointx = Oisapproached. Therefore

e solution manages to arrive at the si int i :
the soluti ] singular point in a finite tim

| : ; . e. An

1T1ﬁn1teht1rfle 1s req_ulr_ed to reach the singular point in the case v(x) = kx
smtce‘t e integral curves approach each other exponentially. It is char:
i\}(}: (::I‘.lstl‘c of any differential equation with a differentiable vector field v

a 1ts‘1111tegral curves do not approach each other more rapidlry than ex
ponentia ly, ther?by accounting for the uniqueness. In particular the
uniqueness proof in Theorem 2.3 is easily obtained by comparing thc’ en
eral equation (1) with a suitable equation of the form (4) .

2.7. A comparison th v,V
. eorem. i i
: t7 ! P t orem Letv,, v, bereal functions continuous on an
nterval U of the real axis such that v, < v,, and let ¢, ¢, be solutions of
)

the differential equations :
i = vy(x) ' o (6)

X = vl(x):

I ESp ectl 315 sa tle} lllg the same 1l tlal, :Cndl tion (P 1\"0 (P 2 t() = x(;
> (t )
( lg‘ )’ w (P > gDZ ﬁ ( )
I h 20< llel)e are bot}l de Iled on the inter Val a < b < b ( — 00 <

THEOREM. The inequality
NORHC ” - 9
holds for all t = ty in the interval (a, b). |
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54 Chapter 2 First Order Differential Equations

Solving for I, we get

I= / € sin(wr) d =

Of course, the integral in Eq. (44) can also be easily done using a computer algebra system. '

1 ektv [k sin{w?) — @ cos(wt)] . 45)
w?

Substituting the result (45) into Eq. (44) then gives

- H=T0+

K
k2+ 2

[k sin(wt) — w cos(wr)] + ce™™,

in agreement with Eq. (11) of Section 1.2. Some graphs of the solution are shown in Figure

1.2.8.

- In each of Problems 1 through 12:

(a) Draw a direction field for the given differential equation.
(b) Based on an inspection of the direction field, describe
how solutions behave for large 7.

(c) Find the general solution of the given differential equa-
tion, and use it to determine how solutions behave as t — oo.

1y +dy=t+e? f
2.y =2y =12 S/

Y+y=te?+1

¥ 4+ (1/Dy = 5cos2t, t>0

Yy —2y=3e

B +2y = sint, t>0

Yy + 2ty = 16t

(L +2) +4ty = (1 + )2

.2y +y=3t

10. & —y = e, t>0

11. y' +y=15sin2t

12. 29/ +y =372

In each of Problems 13 through 20, find the solution of the
given initial value problem.

13,y -y =2te%, ¥y0) =1

14, ¥y +2y = te™¥, y1)=0

15 1y +dy=~~1+1,  yl)=1, >0
16. ¥ +(2/0)y = (cos 1) /£, yx)=0, t>0
17. y =2y = &%, ¥(0) =

18. #' +2y = sint, Wx/2)=3, t>0

19. £y +4fy=e, - y(-=1)=0, ¢<0

200 o/ +(t+ Dy =1, yIn2)=1, >0

R R A

In each of Problems 21 through 23:

(a) Draw a direction field for the given differential equation.

How do solutions appear to behave as ¢ becomes large? Does

the behavior depend on the choice of the initial value a? Let

ag be the value of a for whlch the transition from one type of

G-

behavior to another occurs. Estimate the value of aj,.

(b) Solve the initial value problem and find the critical value
a, exactly. ’

(¢) Describe the behavior of the solution corresponding to
the initial value a;. '

21 y' — %y =3 cost, y0)=a

22. 2y —y=¢€l,  y0)=a

23. 3y —2y=e"?,  y0)=a

In each of Problems 24 through 26:

(a) Draw,a direction field for the given differential equation.
How do solutions appear to behave as ¢ — 0? Does the behav-
ior depend on the choice of the initial value a? Let a, be the
value of a for which the transition from one type of behavior
to another occurs. Estimate the value of aj,.

(b) Sclve the initial value problem and find the critical value
a, exactly.

(c) Describe the behav1or of the solution correspondmg to
the initial value a,.

24, o' + (¢ + )y = 2t YD =a, >0
25. ty' + 2y ={(sinn)/1, y(—z/2)=a, t<0
26. (sinf)y’ + (cost)y = €', y)=a O0<t<z
27. Consider the initial value problem
Y+iy=2cost,  y0)=-
Find the coordinates of the first local maximum point of the
solution for ¢ > 0.
28. Consider the initial value problem

Y+3y=1-56 yO=y.

Find the value of y, for which the solution touches, but does
not cross, the r-axis.

29. Consider the initial value problem

yl+%y=3+2cos2t, 0=

(a) Fir
scribe 3
(b) De
tersect:
30. Fi
value 1

remair
3. C

Find t
tively
the so
have 8
32. 8
text] ¢
Hint:
L'Hg
33. 8
realn
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(a) Find the solution of this initial value problem and de- sl 38. Consider the initial value problem

scribe its behavior for large ¢.
(b) Determine the value of ¢ for which the solution first in-
tersects the I%ne y=12.

30. Find the value of ¥o for which the solution of the initial
value problem .

y —y=1+3sint, ¥0) =y,
remains finite as £ — co.
31. Consider the initial value problem

Y =2ly=3+2¢,  ¥O) =y,
Find the value of y, that separates solutions that grow posi-
tively as ¢ — oo from those that grow negatively. How does
the solution that corresponds to this critical value of y, be-
have as t — o0?
32. Show that all solutions of 2y + ¢ty = 2 [Eq. (36) of the
text] approach a limit as ¢ — oo, and find the limiting value.
Hint: Consider the general solution, Eq. (42), and use
L'Hopital’s rule on the first term.

33. Show that if a and A are positive constants, and b is any
real number, then every solution of the equation

y +ay=be™
has the property that y — 0 as ¢ ~ co. ‘
Hint: Consider the cases a = A and a # A separately.

In each of Problems 34 through 37, construct a first order lin-
ear differential equation whose solutions have the réquired
behavior as ¢ — oo. Then solve your equation and confirm
that the solutions do indeed have the specified property.

34. All solutions have the limit 3 as £ — co.

35, All solutions are asymptotic to the line y = 4 — ¢ as
t— o0,

36. All solutions are asymptotic to the line y = 27 — 5 as

t— 0.

37. All solutions approach the curve y =2 — 2 as t — 0.

Y+ay=g@®,  yt) =7,
Assume that g is a positive constant and that g(f) — g, as

t— 0o. Show that y(r) — g,/a as t = co. Construct an exam-
ple with a nonconstant g(z) that illustrates this result.

39. Variation of Parameters. Consider the following
method of solving the general linear equation of first order:

Y +p@y = 8. @
(a) If g(r) = O for all ¢, show that the solution is

y=Aexp [— / p) dt] ; (i)
where A is a constant.

(b) If g(¢) is not everywhere zero, assume that the solution
of Eq. (i) is of the form

=A@ exp [~ / p(t)dt], G

where A is now a function of ¢, By substituting for y in the '
given differential equation, show that A(r) must satisfy the
condition

Al(t) = g(t) exp l / p(t)dt}- ' @v)

(¢) Find A(®) from Eq. (iv). Then substitute for A(¢) in
Eq. (iii) and determine y. Verify that the solution obtained
in this manner agrees with that of Eq. (28) in the text. This
technique is known as the method of variation of parame-
ters; it is discussed in detail in Section 4.7 in connection with
second order linear equations.

In each of Problems 40 through 43 use the method of Prob-
lem 39 to solve the given differential equation.

40. y — 6y = 1% )
41, ¥ +(1/Hy = 3cos 2, t>0

42. 1y’ + 2y = sint, t>0

43. 2y +y =3¢

2.3 Modeling with First Order Equations. |

Differential equations are of interest to nonmathematicians primarily because of the pos-
sibility of using them to investigate a wide variety of problems in engineering and in the
. physical, biological, and social sciences. One reason for this is that mathematical models
and their solutions lead to equations relating the variables and parameters in the problem.
These equations often enable }}oq to make predictions about how the natural process will
behave in various circumstances. For example, all the figures in Section 2.2 show solution
features that can be found by examining the parameter dependence of solution formulas.
These features can be interpreted in terms of the physical behavior of the systems that the
differential equations model. Furthermore, it is often easy to vary paramieters in the mathe-
matical model over wide ranges, whereas this may be very time-consuming or expensive, if
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likely that the singularities will depend on the initial condition as well as the differential

equation.

Existence and Uniqueness of Solutions. In each of Prob-
lems 1 through 6, use Theorem 2.4.1 to determine (without
solving the problem) an interval in which the solution of the
given initial value problem is certain to exist.

1. (¢=3) +0npy =21, y1)y=2
2t -4y +y=0, y2=1 '
3.y + (tant)y = sinz, ¥z)=0

4. (4 =12y + 2ty = 37, y(=3)=1
5. @G-2Ay +2y=32  yD=-3
6. (Inny +y=cott, ¥(2) =3

In each of Problems 7 through 12, state where in the ty-plane
the hypotheses of Theorem 2.4.2 are satisfied.

=y
7.y =
Y 2t + Sy
3 yl=(1_t2_y2)1/2
oy il
1~ 452
10,y = (@ + 2P
i1 dy 1+7
Cdt 3y—y2
12 Qz (cot )y
dd  1+y

13. Consider the initial value problem y = y!/?, y(0) = 0
from Example 3 in the text.

(a) Is there a solution that passes through the point (1, 1)? If
80, find it.

(b) Is there a solution that passes through the point'(2, D2If
s0, find it.
(¢) Consider all possible solutions of the given initial value
problem. Determine the set of values that these solutions at-
tain at ¢t = 2, V .
14. (a) Verify that both y, () = 1 — ¢ and y,(f) = =12 /4 are
solutions of the initial value problem

p_ Tt @A ALz
2 b
Where are these solutions valid?

(b) Explain why the existence of two solutions of the given

problem does not contradict the uniqueness part of Theorem
2.4.2.

y@2) = -1. 1

. (¢) Show that y = ct + ¢?, where ¢ is an arbitrary constant,

satisfies the differential equation in part (a) for ¢ > —2c. If

¢ =~1, the initial condition is also satisfied, and the solution
¥=y,(9) is obtained. Show that there is no choice of ¢ that
. gives the second solution y = ¥, ().

i

Dependence of Solutions on Initial Conditions. In each of
Problems 15 through 18, solve the given initial value problem
and determine how the interval in which the solution exists
depends on the initial value y,,.

15, ¥y = —dtfy,  y0) =y
16. Y =202  y0) =y,
17. Yy +y* =0,  y0) =y,

8.y =2/y1+7),  y0) =y

In each of Problems 19 through 22, draw a direction field -
and plot (or sketch) several solutions of the given differen-
tial equation. Describe how solutions appear to behave as ¢
increases and how their behavior depends on the initial value
Yo when t = 0.

19. Y =153 -y)

20. Yy =y(B -1)

21 Y ==y - 1y)

22. YV =t—1-92

Linearity Properties

23. (a) Show that ¢(¢) = ¥ isa solution of ¥ - 2y =0and

that y = cg(r) is also a solution of this equation for any value
of the constant c.

(b) ‘Show that ¢(¢) = 1/¢is asolution of y/ + y* = 0 for >0
but that y = c¢p(z) is not a solution of this equation unless
¢ =0 or ¢ = 1. Note that the equation of part (b) is nonlinear,
whereas that of part (a) is linear.

—Sf*’ 24. Show that if y = ¢(z) is a solution of y’ + p(¥)y = 0, then

g

y = c@(2) is also a solution for any value of the constant c.

: 25. Lety = y,() be a solution of

_ Y +p®)y=0, @
and lety = y,(t) be a solution of .
Y +p)y = 8.
Show that y = y,(£) 4 y,(¥) is also a solution of Eq. (ii)..

26. (a) Show that the solution (7) of the general linear equa-
tion (1) can be written in the form

(if)

y = ey () + ¥, (0, @

where c is an arbitrary constant. Identify the functions y,
and y,.
(b) Show that y, is a solution of the differential equation

¥ +p@y =0, (if)

corresponding to g(#) = 0. -
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(c) Show that y, is a solution of the full linear equation (1). )@ 28. Solve the initial value problem
We s.ee later (e. g., in-Section 4.5) tha.tt s'olutlong of @gher or- Y +pt)y =0, y0) =1,
der linear equations have a pattern similar to Eq. (1).

Discontinucus Coeflicients. Linear differential equations where

sometimes occur in which one or both of the functions p and 2, 0<t<1
g have jump discontinuities. If ¢, is such a point of disconti- . . i) = -
nuity, then it is necessary to solve the equation separately for 1, t>1.

t <ty and t > t,. Afterward, the two solutions are matched so
that y is continuous at #,. This is accomplished by a proper =4 29. Consider the initial value problem
choice of the arbitrary constants. Problems 27 and 28 illus- - Y+ pQ)y = g(8), () = Yo- G)

trate this situation. Note in each case that it is impossible to
make y' continuous at f,: explain why, just from exarmmng (a) Show that the solution of the initial value problem (1) can
be written in the form

the differential equations.
27. Solve the initial value problem ’ y =y, exXp ( - / (s ds)
fo
t t -
Y +2y= g_(t), ¥0) =0, + / exp ( - / p(r) dr)g(s) ds.
. fo s

where o (b) Assume that p() > p, > 0 for all t > £, and that g(r)
is bounded for ¢ > #, (i.e., there is a constant M such that
L o0<i<1 » |g(®)| < M forall ¢ > 1;). Show that the solution of the initial

O value problem (i) is bounded for ¢ > f,.
0, - t>1. (¢) Construct an example with nonconstant p(f) and g(¥) that

illustrates this result.

2.5 Autonomous Equations
and Population Dynamics

In Section 1.2 we first encountered the following important class of first order equations in
which the independent variable does not appear explicitly.

‘DEFINITION Autonomous Equatlon. A differential equat1on that ‘can be written as.

We will now discuss these equations in the context of the growth or decline of the population
of a given species, an important issue in fields ranging from medicine to ecology to global
economics. A number of other applications are mentioned in some of the problems, Recall
that in Section 2.1 we considered the special case of Eq. (1) in which the form of the right
sideis f(y) =ay+b.

 Equation (1) is separable, and it can be solved using the approach discussed in Section
2.1. However, the main purpose of this section is to show how geometrical methods can be
used to obtain important qualitative information about sclutions directly from the differen-
tial equation, without solving the equation. Of fundamental importance in this effort are the
concepts of stability and instability of solutions of differential equations. These ideas were

‘Expoﬂ
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possible to show that the curve of minimum time is given by (c) Letting 8 = 2¢, show that thé solution of Eq. (iii) for .

. afunction y = ¢(x) that satisfies the differential equation which x = 0 when y = 0 is given by
(1+y"y =2, @ © x=K0-sind)/2, )
. iv
where k? is a certain positive constant to be determined later. -y = k(1 - cos6)/2. ‘
(a) Solve Eq. (i) for y'. Why is it necessary to choose the . Equations (iv) are parametric equations of the solution of
positive square root? Eq. (i) that passes through (0, 0). The graph of Eqs. (iv) is
(b) Introduce the new variable ¢ by the relatipn called a cycloid.

(i) (d) If we make a proper choice of the constant k, then the
) ] ‘ cycloid also passes through the point (x;, y,) and is the so-
Show that the equation found in part (a) then takes the form 1y of the brachistochrone problem. Find & if x, = 1 and

2k sin® tdt = dx. ‘ S o y=2.

y = k?sin® ¢.

~

.

2.4 Différences Between Lin_ea'r
and Nonlinear Equations | | s

Up to now, we have been primarily concerned with showing that first order differential equa-
tions can be used to investigate many different kinds of problems in the natural sciences,
and with presenting methods of solving such equations if they are either linear or separa-
ble. Now it is time to turn our attention to some more general questions about differential
equations and to expiore, in more detail, some important ways in which nonlinear equations
differ from linear ones.

“ Existence and Uniqueness of Solutions. So far, we have discussed a number of initial value

‘ problems, each of which had a solution and apparently only one solution. This raises the

question of whether this is true of all initial value problems for first order equations. In

other words, does every initial value problem have exactly one solution? This may be an

important question even for nonmathematicians. If you encounter an initial value problem

in the course of investigating some physical problem, you might want to know that it has

a solution before spending very much time and effort in trying to find it. Further, if you

are successful in finding one solution, you might be interested in knowing whether you

should continue a search for other possible solutions or whether you can be sure that there

are no other solutions. For linear equations, the answers to these questions are given by the
following fundamental theorem.

B A e B

THEOREM
2.4.1

If the functions p and g are continuous on an open interval / = (a, §) containing the point
t = 1y, then there exists a unique function y = ¢(¢) that satisfies the differential equation

Y +p@y =g®) - W
for each ¢ in 7, and that also satisfies the initial condition
W)=y, ‘ @

where yj is an arbitrary prescribed initial value.

Observe that Theorem 2.4.1 states that the given initial value problem 4as a solution and
also that the problem has only one solution. In other words, the theorem asserts both the
existence and unigueness of the solution of the initial value problem (1), (2).
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Integral curves of Eq. (19).

You may also verify that a second integrating factor of BEq. (19) is
‘ . n
xy2x+y)’ .
and that the same solution is obtamed though with much greater difficulty, if this iﬁtegraﬁng
- factor is used (see Problem 32).

Hx,y) =

E\act Tquatmns In each of Problems 1 through 12: 10 @/x+60)+(Inx—2)yY =0, - x>0

} (}?) Determine whether the equation is exact. If it is exact, 11, (xlny+x) + (y]nx+xy)y’ =0; x>0, y>0
then: / I
(b) Solve the equation. o 12 2+ 22 + T y2)3/2y’ 0

= (¢) Usea computer to draw‘ several mtegral curves.

In each of Problems 13 and 14, solve the given initial value

1L 2x+3)+ 2Zy-2)y =0 problem and determine, at least approximately, where the so-

2. x+4)+2x -2y =0 l lution is valid.

3B -2+ +67 -2 +3)y =0 B Qr=-»+Q-xy=0, y1)=3

T4 220+ (22 + 2% =0 M O +y-D=-@y-xy =0, X1 =0

5 EZZ — A +2y In each of Problems 15 and 16, find the value of b for which
dx  2x+3y ) the given equation'is exact, and then solve it using that value

5 dy  4x—2y . of b.

C A 2x-3y 15, (2 + b2y + (x + a2y =0
7. (€°siny - 2ysinx) + (e“cosy + 2cosx)y =0 16. (529 +x)+ bxe®¥y =0

8. (e"siny+3y) — (3x —e'siny)y =0 17. Assume that Eq. (6) meets the requirements of Theo-
9. (ve™ cos2x — 27 sin 2x + 2x) + (xe™ cos2x—3)y =0 rem 2.6.1 in a rectangle R and is therefore exact. Show that a

i
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possible function y(x, y) is
X ¥
wxy) = / M(s,yp) ds+ / NG, 1) ds,
X0 Yo

where (x;, y,) is a point in R.
18. Show that any separable equation
C ME@A+NGY =0

is also exact.

2.7 Substitution Methods 101

>f 24. Show that if (N, —~M,)/(xM —yN) = R, where R de-

pends on the quantity xy only, then the differential equation
M+NY =0

has an integrating factor of the form p(xy). Find a generz;l
formula for this integrating factor.

In each of Problems 25 through 31:

" (a) Find an integrating factor and solve the given equation.

1]

(b) Use a computer to draw several integral curves.
25. Bty + 25+ + G2+ =0
26, Y =eF+y—1

Integrating Factors. Ineach of Problems 19 through 22:

(a) Show that the given equation is not exact but becomes
exact when multiplied by the given integrating factor.

(b) Solve the equation. 27. 1+ @x/y—siny)y =0

(¢) Use a computer to draw several integral curves. 28. y+ Qy—e 2y =0

19. 2y +x(1+y)y =0,  p@xy)=1/%" 29. & + (¢“coty +2ycsey)y =0

20. (siny o
< ¥ 2e Smx) _ 30. 4("—2+%>+3(12+4y>y'=0

. ¥ y
cosy+2e*cosx\ , p
)Y =0 sy =ye st (3+8)+ x2+3 Yo
y y y dx

—_ L— —
21, y+ @x—ye)y =0, pnx,y) Hint: See Problem 24.

b

b 1 ; ! = =
2. e+ 2)siny+xcosyy =0, Hx, ) = xe’ 32. Use the integrating factor u(x, ) =[xy(2x+y)]! to solve
3. Show that if (N, — M,)/M = Q, where Q is a function the differential equation

of y only, then the differential equation
yony ‘ q @Gy +39) + (2 +xy)y =0.

M+NyY =0 . ..
) ) +AY Verify that the solution is the same as that obtained in Exam-
has an integrating factor of the form ple 4 with a different integrating factor.

() = exp / o) dy.

2.7 Substitution Methods

In the preceding sections we developed techniques for solving three important classes of
differential equations, namely, separable, linear, and exact. But the differential equations
arising in many, if not most, applications do not fall into these three categories. In some

. cases, though, an appropriate substitution or a change of variable can be used to transform
the equation into a member of one of these classes This sectlon focuses on two such types
of equations.

Homogeneous Differential Equations

A function f(x, y) is homogeneous of degree k if

F0 ) = W47 y) W

for all (x, y) in its domajn.‘_ For example, f(x,y) = x% is homogeneous of degree 0

~ because

32— 009+ N2 [ —xy 7P
009 +M W -m Ay

FOx ) =

() () B 22 [yl
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o1

Phase line for Eq. (29).

Homogeneous Differential Equations. In each of Prob-
* lems 1 through 10:

(a) Determine if the equation is.homogeneous. If it is homo-
geneous, then:

~ (b) Solve the equation.
(¢) Use a computer to draw several integral curves.

Reiationships Among Classes of Equations

We have developed techniques for solvin,
transformation methods used to convert
equations) into one of these types.

g separable, linear, and eXact equations, as well as
other equations (e.g., homogeneous and Bernoulli

The initial struggle you face when solving a first order
differential equation is determining which of these techniques, if any, is applicable. In fact,
. sometimes more than one approach can be used to solve an equation,

- The interrelationships among the main equation types are displayed in Figure 2.7.4. We

use arrows to indicate that the type of equation listed near its taj] can be transformed into
the type of equation to which the arrowhead points.

Equztions that can be made exact

. |Autonomous

LINEAR

—
@mogeneouq LBernoulr,

Interrelationships among equation types.

There is a collection of exercises at the end

classify equations and to solve those
method.

of the section that will challenge you to
that have multiple classifications using more than one

I —— . = =] ‘ ‘
. Ity +33 dx -

e

dy
. - = 1
x(x 1)Z yo+1)
dy
2 2 = X —
VX =Yty=yx

d
w£=@+ﬁ

n

@

dy —Tx
Sx—y

dy
7. -= =
T

12,
Be

(a)
(b

- (e)

13
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d - . - 0] . ’ - . .
3. xay PR =y, y>0 is called a Riccati equation. Such equations arise in optimal

control theory.
9 @ _ y* + 2% — 3%y — 2%y (a) If y, is a known solution of (i), prove that the substitu-
" odx 2x2y% — 2x3y — 2x* tion y = y, + v transforms (i) into a Bernoulli equation with
n=2.

dy
10. (y +xe"/‘y) i yely (b) Solve the equation % + 3ty = 4 — 4% + y?, after show-

In Problems 11 and 12, solve the given initial value problem ing that it has y = 47 as a particular solution.

and determine, at least approximately, where the solutionis ~ Mixed Practice. In each of Problems 24 through 36:

valid. (a) List each of the following classes into which the equation
dy 2| s falls: autonomous, separable, linear, exact, Bernoulli, homo-
1L xya =x"+y, =1 ‘ geneous.
dy x+y (b) Solve the equation. If it has more than one classification,
12. o x—y y(5)=38 solve it two different ways. .-

X Bernoulli Differential Equations. In each of Problems 13 24. 3x—y) dx +(©Qy-2%)=0
through 22: Tdy

(a) Write the Bernoulli equation in the proper form (19). 25. 1= (3¢¥ — 2x) fi_}i

(b) Solve the equation. : dx

L, ( ﬁb < % (e) Use a computer to draw several integral curves. 26. fX — 4y =y
) dy -
. 13. t = +y = & . s
© - a7 iy 27. x—y+(x+1)y=x
° 14‘fl-y-=y(zy3—l) & 2 Lginox
dt ~ . g B A Sl
4 ’ - - 2
dt t ; \/;d
16. &y +2ty—y* =0, >0 - 20 Y22

dy y &
2D 3 _ .
17. 500 +¢ )dt- 4ty (¥? ‘1) ) 30, (Sx% + 5y) + (5% +5%) % =0

dy
18. 32 4oy =213 d
to T =2 31 292 lnx =y -1
X

dy -
19, = = d

dt y+\/')7 32. (2A-x)d—y=y+2(2~—x)5
20. ¥ = ry —ky?, r > 0 and k > 0. This equation is impor-, d * 1
tant in population dynamics and is discussed in detail in 33. x-X = ——

. . dx Inx
Section 2.5. PR SR

Xy +x
2.y = ey~ oy . This equati n M Z=
1. y' = ey — 6y°, € > 0 and & > 0. This equation occurs in & 3+ 2y

the study of the stability of fluid flow.

C o d
to 22. dy/dt= (Ccost+T)y —y, where T and T are con- 35 4x)’ay = 8x% + 5
e stants. This equation also occurs in the study of the stability dy '
- of fluid flow. | 36. —+y={y=0
%- 23. A differential equation of the form .

d s L .
= = AW + By + COY @

. : R A " CHAPTER SUMMARY

In this chapter we discuss a number of special solution methods for first order equations
dy/dt = (£, ). The most important types of equations that can be solved analytically are .
linear, separable, and exact equations. Others, like Bernoulli and homogeneous equations,
can be transformed into one of these. For equations that cannot be solved by symbolic
analytic methods, it is necessary to resort to geometrical and numerical methods.
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so that the substitution can be readily made. Doing so yields

d
(2@y)*y + 47 (vy) + 47°) = (y)y? [v + yg%] - )
Simplifying Eq. (14) yields
2 + 4+ 4 = oy%2. . (15)
dy
Sepdrating the variables in Eq. (15) leads to
1
dv = =dy. _ (16
(v +2)? Y )
We solve Eq. (16) by integrating both sides to arrive at the implicitly defined solution
2
Inlv+2|+ ——==1 +c.
nlv I+v+2 nlyl+c¢ )

The solution of Eq. (12) is then obtained by resubstituting v = i into Eq. (17):

x+2y
y

2y
x+2y

In

\+ =Inlyl+¢, y#0. (18)

12)  DEFINITION.
2.7.2

13)

[ dr

Remark. Looking back, had we used the substitution

d
y = ux, d—z =u+ X%,
the algebra in Eq. (14) would have been slightly worse in that simplifying the left side would
have entailed multiplying two binomials, whereas we only had to multiply a monomial times a
binomial in Eq. (14) when using x = vy.

Bernoulli Differential Equations

A first order differential equation related to linear differential equations is the so-called
Bernoulli equation, named after Jacob Bernoulli (1654—-1705) and solved first by Leibnitz
in 1696. Such an equation has the following form.

Bernoulli Diﬁ'erenﬁal Equation. A différenﬁal équétidﬁ of ‘tvhe,rform"f e

Cdy |
—y"FQ(t)}’=r(t)y"?’ ST e )

where 7 is any real number, is called a Bernoulli equation. - f

If n = 0, then Eq. (19) is linear, and if n = 1, then Eq. (19) is separable, linear, and homo-
geneous. For all other real values of n, Eq. (19) is not one of the forms studied thus far in
the chapter.

To solve a Bernoulli equation when # is neither O nor 1, we shall make a substitu-
tion that reduces it to a linear equation that can subsequently be solved using the method
of integrating factors. Specifically, we perform the following initial steps to transform
Eq. (19) into a linear equation. : :
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EXAMPLE
3

First divide Eq. (19) by y” to obtain

d
¥+ gy = ). 20)
z :
Define u =y, which is a function of t. Observe that
du _ _ady
v g ==y dt’
or equivalently,
- _,dy 1 du .
n_7 _-—
_ dt  (1-n)dt @1
Substituting Eq. (21) into Eq. (20) yields
1 du '
— Hu(t) = r(1),
—— L+ qou(n) = ()
and subsequently, : p
du
= T —ma@u@® = (1 - nyr(@), (22)
! ——— ———
Call this p(t) Call this g()

which is a linear differential equation (in ).

Now solve Eq. (22) as you would any other linear differential equation. Once you ob-
tain the solution u(¢), resubstitute u(t) = y'" to determine the solution () of the original
differential equation (19).

Solve the initial value problem

d .
%+y=ﬁ (0) = y,, 23)

where —1 <y, < 1. Determine the long-term behavior of the solution of Eq. (23) for such
initial conditions.
To begin, divide both sides of the equation by > to obtain

dy
-3 -2
— =1.
" +y
Let u = y~2 and observe that
du _3 dy
===y
a7 @
or equivalently,
1du I dy
2dr Y ar @4
Using the new variable u with Eq. (24) transforms the original equation into the linear
.equation :
du '
— —2u(f) = -2.
o —u) = (25)

Solving Eq. (25) using the method of integrating factors leads to ‘
u(®) =1+ Ce*. _ (26)




