“P#Nn(ﬁ[ Gﬂ;vm MG A /”H’r*D £a /Maféem , oﬂ*ﬁr%wm\s "W’ el

J.R. Efﬂnv\ﬁ,« - Wg B’)v’c—?—

4.6 Forced Vibrations, Frequency Response, and Resonance i 26T

he 10. 4y’ — 4y +y=16¢/*> (Compare with Problem 131in (a) Substitute Y (¢), ¥'(z), and Y"(?) into Eq. (i) and show that
Section 4.7.) v(t) must satisfy v — 50/ = 2.
1. 2y +3y +y=£+3sint (b) Let w(®) =v'() and show that w(r) must satisfy
. ' — 5w = 2. Solve this equation for w(z).
12, y" +y=3sin2t+tcos2t W
VO yory SIn 21+ 1,008 (¢) Integrate w(¥) to find v(f) and then show that
13. o' + o?u = cos wt, * # w? -
nd S 0 Y() = -2t + o6 4 oot
- 14, o + wiu = cos wyt =75 561 2¢ -
on 15. y"+y +4y =2sinht The first term on the right side is the desired particular solu-
Hint: sinht = (¢ — e™)/2 tion of the nonhomogeneous equation. Note that it is a prod-
16. y' —y —2y = cosh 2t uct of r and e™.
Hint: cosht = (¢ +¢7)/2 Nonhomogeneous Cauchy—Euler Equations. In each of Prob-
208 In each of Problems 17 through 22, find the solution of the lems 32 through 35, find the general solution by using the
n given initial value problem. change of variable ¢t = Inx to transform the equation into
‘ 17. ¥/ +y =2y =121, y0) =0, Y0)=1 one with constant coefficients (see the discussion preceding
18. yl/ + 4y =£4 3¢, y(o) =0, yl(o) — PI‘OblC;Il 52 in Section 4.3).
) "o ! _
Ag 19, y' =2y +y=tf+4, yO0)=1, yO0)=1 = xzy Bty =i
. ! —
vill 20,y =2y “3y=3t, yO)=1, y(©0)=0 33y Tayf 4 5y =x
of 2.y +dy =3sin, YO =2, Y(0)=~1 34. 2y !~ 2xy 4 2y =3x> + 2Inx
) s 1" ’ — o
22,y 42y 45y =4de“cos2, O)=1, y(0)= 39 Xy ey iy = sl
this In each of Problems 23 through 30: 36. Determine the general solution of
eit (a) Determine a suitable form for Y(¢) if the method of un- :
her determined coefficients is to be used. ” YAy = z a,, sinmmnt,
(b) Use a computer algebra system to find a particular solu— ) -
tion of the given equation. where A>Qand A #mrform=1,...,N
23. 43y =2 + e +sin3t 37. In many physical problems, the nonhomogeneous term *
for 24. y'+y=1(1+sing) may be specified by different formulas in different time peri-
25. Y — 5y + 6y = ¢ cos 2t + e¥ (3t + 4) sin ¢ ods. As an example, determine the solution y = ¢(¢) of
26. Y +2y +2y =3¢ +2¢ " cost+ e P sint P 0<r<m,
e 27. Y — 4y +4y =28 + 4te¥ +tsin2s yorr= e, > 7,
. 28. y' 4+ 4y = 2 sin2t + (6 + 7) cos 2t ~
sist- N y o=l s 2( ) . t satisfying the initial conditions y(0) = 0 and y'(0) = 1. As-
sine 29. " +3y +2y =€t + 1)sin2t + 3eT cost + de sume that y and y’ are also.continuous at ¢ = x. Plot the non-
tion 30. Y +2y + 5y =3te™ cos 2 — 2te™¥ cos ¢ homogeneous term and the solution as functions of time.
31. Consider the equation Hint: First solve the initial value problem for ¢ < z; then
—_— : . , _t ) solve for ¢ > 7, determining the constants in the latter so-
Y =3y —dy =2¢ ) . . i
lution from the continuity conditions at ¢ = 7.
» as- from Example 5. Recall that y,(z) = ¢ and y,(r) = ¢* 38, Follow the instructions in Problem 37 to solve the dif-
y to are solutions of the corresponding homogeneous equation. ferential equation
j too Adapting the method of reduction of order (see the discus-
ero sion preceding Problem 28 in Section 4.2), seek a solution of " , 1, 0<t<#x/2,
’ . Y +2y +5y = ! -
the nonhomogeneous equation of the form ¥(#) = v(f)y,(?) = 10, t> /2
v(H)e™, where v(f) is to be determined.
with the initial conditions y(0) = 0 and y'(0) = 0
g
Sec- 4.6 Forced Vibrations, Frequency
S Response, and Resonance
ec-
We will now investigate the situation in which a periodic external force is applied to a
Sec-

spring-mass system. The behavior of this simple system models that of many oscillatory
systems with an external force due, for example, to a motor attached to the system. We




262 Chapter 4 Second Order Linear Equations

will ﬁrst consider the case in which damping is present and will look later at the idealized
special case in which there is assumed to be no damping.

Forced Vibrations with Damping

Recall that the equation of motion for a damped spring-mass system with external forcing,
F(n,is

my" +yy +ky=F@), W

where m, y, and & are the mass, démping coefficient, and spring constant, respectively.
Dividing through Eq. (1) by m puts it in the form

Y28y vagy=f@), 2

where § = y/(2m), a)(z) = k/m, and f(t) = F(t)/m. These definitions for § and for wq sim-
plify important mathematical expressions that appear below as we analyze the behavior of
solutions of Eq. (2). _

The assumption that the external force is periodic means f(f) involves a linear combina-
tion of A cos(wt) and A sin(wt) with frequency w and amplitude A. While we could work
with these forms individually, the ensuing analysis is, as we shall see, less complicated—
and more informative—if we write the external force in the form of a complex-valued expo-
nential: f(r) = Ae™" = A cos(wr) + iA sin(w?), because it allows us to consider both trigono-
metric terms at once. Thus we wish to find the general solution of '

Y+ 26y + é)%y = A, 3)

Note that the solutions y;(#) and y,(¢) of the homogeneous equation corresponding to
Eq.(3) dépend on the roots A; and X, of the characteristic equation AZ + 28X + co(z) = 0. Note
that m, y, and k all positive imply that § and a)g are also positive. Damped free vibrations
are discussed in Section 4.4, and in Problem 51 in Section 4.3. Recall that Ay and M, are

either real and negative (when § > @) or are complex conjugates with a negative real part

(when 0 < § < wy). : -

Because the exponent on the right-hand side of Eq. (3) is purely imaginary, its real part
- is zero. Consequently, the forcing function on the right-hand side of Eq. (3) cannot be a so-
lution of the homogeneous equation. The correct form to assume for the particular solution
using the method of undetermined coefficients is therefore ¥ (1) = Cel*t,

Substituting Y (¢) into Eq. (3) leads to ‘ ‘

((0) +26(iw) + 0?2) Ce = Ac,
Solving for the unknown coefficient in ¥ (¢) yields

A
(@2 +25(i) +

SO

Y — A zwt.
® (i0)? + 25(io) + ? ’ : @

The general solution of Eq. (3) is
Yy =30+ Y@,

where Y () is the particular solution in Eq. 4), and y,(2) = c1¥1(8) + ¢y, (¢) is the general
solution of the homogeneous equation with constants ¢q and ¢, depending on the initial
conditions. Since the roots of A% + 25 + co% = 0 are either real and negative or complex
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with negative real part, each of y,(f) and y,(#) contains an exponentially decaying term. As
a consequence, y () = Oast — 0 and y(z) is referred to as the transient solution. In many
applications the transient solution is of little importance. Its primary purpose is to satisfy
whatever initial conditions may be imposed. With increasing time, the energy put into the
system by the initial displacement and- velocity dissipates through the damping force. The
motion then becomes the response of the system to the external force.

Note that without damping (6 = 0), the effects of the initial conditions would persist for .
‘all time. This situation will be considered at the end of this section. i

Consider the initial value problem

Y+ 3 +y=3cos(@t), ¥0)=2, ¥(0)=0. (5)

Show plots of the solution for different values of the forcing frequency w, and compare
them with corresponding plots of the forcing function.

For this system we have § = 1/16 and @, = 1. The amplitude of the harmonic input,
A, is equal to 3. The transient part of the solution of the forced problem (5) resembles the
solution

: =17 2c0s V255 2 . V255

y I+

s
16 ' 55 16

of the corresponding unforced problem that was discussed in Example 2 of Section 4.4. The

" graph of that solution was shown in Figure 4.4.7. Because the damping is relatively small,

the transient solution of the problem (5) also decays fairly slowly.

Turning to the nonhomogeneous problem, since the external force is 3 cos(wt), we work

with f(£) = 3¢/*!. From Eq. (4) we know

— —3_____ it
0= o vies 1t ©

Since 3 cos(wt) = Re(3e™®) the particular solution for Eq. -(5) is the real part of Eq. (6).
To identify the real part of Eq. (6) it helps if the denominator in Eq. (6) is real-valued. To
bring this about, multiply both the numerator and denominator of Eq. (6) by the complex

‘conjugate of the denominator.

Y = 3elt (miw)* — iw/8 + 1
(0P +io/8+1 (oY —io/8+1 .
3(cos(wt) + i sin(@n) (1 — w* — i)

8

24
(1 -w*)* + i
Thus, the real part of Eq. (6) is
3
(1—-a?)? +w?/64

Yre(H) =ReY () = ((1 — »?) cos(wt) + _cg_ sin(cut)) . )
Figures 4.6.1, 4.6.2, and 4.6.3 show thé solution of the forced problem (5) for w = 0.3,

o = 1, and w = 2, respectively. The graph of the corresponding forcmg funct1on 18 shown
(as a dashed curve) in each figure.
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Forcing function
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The solutions in Figures 4.6.1, 4.6.2, and 4.6.3 show three different behaviors. In each
case the solution does not die out as ¢ increases but persists indefinitely, or at least as long
as the external force is applied. From Eq. (7) we see that each solution represents a steady
oscillation with the same frequency as the external force. For these reasons the particular
solution to a damped, harmonically forced system is called the steady-state solution, the
steady-state response, the steady-state output, or the forced response.

In general, in the real- valued case with f(#) = A cos(wt), the real-valued particular solu-
tion is.the real part of Eq (4). Now, apply to Eq. (4) the same steps that were just applied
to Eq. (6); in this way we obtain the following more general expression.for the real part of -
Eq. (4):

- a)g — @?) cos(wt) + 26w sin(wt)
Yo (1) =ReY(¥) = . 8

The Frequency Response Function

In Example 1, even though the forcing function is a pure cosine, cos(wt), the forced re-
sponse involves both sin(w?) and cos(wr). However, when considering the external force as
a complex-valued exponential, Eq. (4) tells us that the forced output is directly proportional
to the forced input:

Y@ 1

' Ae (i + 26(iw) + @2

This quotient is referred to as the frequency response of the system. As the frequency
response depends on the frequency o (and & and wgy)—but not on #—it is commonly defined
as

1 1
 Glio) = — - . 9
O R 1 2 1 @+ P+ -5 ®

To continue the analysis of the frequency response function, it is convenient to represent
the G(za)) in Eq (9) in its complex exponential form (see Figure 4.6.4),

Gliw) = |Gliw)] @ = |G(io)] (cos($(@)) — isin(d(@))), (10)

o|Re Gliw) =|G( Lw)[ cos dlw)

x
/ —p(w) .

Im Gliw) = -|G{ )] sin ¢(w)

|G w)|

Polar coordinate representation of the frequency response function
P ~ G(iw).
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2

where the gain of the frequency response is

: —_—\12 ’
|Gio)| = <G(ia))G(ia))) - 1 ' )

V/@F — @22 + 4527

and the phase of the frequency respounse is the angle

b(w) = arccos "% . 12)
\(@F = 022 + 45207

2 2
0

Using Eq. (10), the particular solution (4) is
Y(t) = Gio)Ae™ = |G(iw)| e-l¢<w>Aela’f = A |G(iw)| el<ﬂ’f-¢<w>> (13)

Find the gain and phase for each of the three response functions found in Example 1.
Recall that @y = 1 and § = 1/16. The three cases ate @ = 0.3, w = 1, and @ = 2.
Classification of the external force as low- or high-frequency is done relative to the forc-

ing frequency @. For example, the case with @/wy = 0.3 is a low-frequency force. The

steady-state response is

0.91 cos(0.39) + %3 sm(O 30

0.912 + 0.09 /64
~ 3.29111 cos(0.37) + 0.13562 sin(0.3£) ~ 3.2923 cos(0.3¢ — 0.04119).

Y() =3

That the gain is a little larger than the amplitude of the input and the phase is small are
consistent with the graph shown in Figure 4.6.1.
For the comparatively high-frequency case, w/w, = 2, the particular solution is

~3cos(2) + i- sin(2¢)

Y =3 :
-9+ T
~ 0.99310 COS(ZI) + 0.08276 sin(2¢) &~ 0.99655 cos(2t — 3.0585).

In this case the amplitude of the steady forced response is approximately one-third the
amplitude of the harmonic input and the phase between the excitation and the response
is approximately 7. These findings are consistent with the particular solution plotted in
Figure 4.6.3." .

In the third case, using Eq. (8) with w/w, = 1, the steady-state response is

1/364 <(1 -1 cos(t) + = Sm(t))

= 24 5in(t) = 24 cos(t — 7 /2).

Y

Here, the gain is much larger-—8 times the amplitude of the harmonic input—and the phase
is exactly z /2 relatlve to the external force.

The explicit formulas for the gain factor and phase shift given in Eqs. (11) and (12)
are rather complicated. The three cases considered in Examples 1 and 2 illustrate the




4.6 Forced Vibrations, Frequency Response, and Resonance 267

Input: f(f) = Acos{wt)
Output: Yge(t) = 1Glie)l A cos(wt - plw))

The steady-state response Y, = |G(iw)|A cos(wt — dp(w)) of a
spring-mass system due to the harmonic input f(f) = A cos wt.

two ways the harmonic input is modified -as it passes through a spring-mass system (see
Figure 4.6.5):

1. The amplitude of the output equals the amplitude of the harmonic input amplified or
attenuated by the gain factor, |G(iw)].

2. There is a phase shift in the steady-state output of magnitude ¢(w) relatwe to the
harmonic input.

Our next objective is to understand‘better how the gain |G(iw)| and the phase shift ¢p(w)

-depend on the frequency of the harmonic input. For low-frequency excitation, that is, as

@ — 0T, it follows from Eq. (11) that |G(iw)] — 1/ a)g = m/k. At the other extreme, for
very high-frequency excitation, Eq. (11) implies that |{G(iw)| — 0 as @ — oo.

The case with @/wy = 1 in Example 2 suggests that the gain can have a maximum at an .
intermediate value of @. To find this maximum point, find where the derivative of IG(zco)l
with respect to @ is zero. You will find that the maximum amplitude occurs when w = w
where

max>»

2 2 2_ 2 1 2 r’ '
W = W — 26 =w0—2—m—2.=a)o< ~m> (14)
Note that 0 < @, < @y and, when the damping coefficient, y, is small, ., is close to
‘g The maximum value of the gain is
m m 2
|Glioma)| = — 1+, (15)
woV/1 = (y2/4mk) ™ g 8mk

where the last expression is an approximation for small y.
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If y% /mk > 2, then ®pmax 85 given by Eq. (14), is imaginary. In this case, which is iden-
tified as highly damped, the maximum value of the gain occurs for @ = 0, and |Gliw)| is a
monotone decreasing function of . Recall that critical damping occurs when y2/mk = 4.

For small values of y, if follows from Eq. (15) that | G(io,,,, )| ~ m/ y@y. Thus, for lightly
damped systems, the gain | G(iw)| is large when w/w,, ~ 1. Moreover the smaller the value
of y, the more pronounced is this effect.

Resonance is the physical tendency of solutions to periodically forced systems to have
a steady-state response that oscillates with a much greater amplitude than the input. The
specific frequency at which the amplitude of the steady state response has a local maximum
is called the resonant frequency of the system.

Resonance can be an important design consideration; it can be good or bad, depend-
ing on the circumstances. It must be taken seriously in the design of structures, such as
buildings and bridges, where it can produce instabilities that might lead to the catastrophic
failure of the structure. On the other hand, resonance can be put to good use in the design
of instruments, such as seismographs, that are intended to detect weak per10d1c incoming
signals.

The phase angle ¢ also depends in an interesting way on . For w near zero, it follows
from Eq: (12) that cos(¢) ~ 1. Thus ¢ ~ 0, and the response is nearly in phase with the
excitation. That is, they rise and fall together and, in particular, they assume their respective
maxima nearly together and their respective minima nearly together.

For the resonant frequency, @ = wy, we find that cos(¢) =0, s0 ¢ = x /2. In this case
the response lags behind the excitation by z /2, that is, the peaks of the response occur 7z /2
later than the peaks of the excitation, and similarly for the valleys.

Finally, for @ very large (relative to @), we have cos(¢) ~ —1. Here, ¢ =7, so the
response is nearly out of phase with the excitation. In these cases the response is minimum
when the excitation is maximum, and vice versa.

We conclude this discussion of frequency response, gain, phase, and resonance by look-
ing at typical graphs of the gain and phase. Figures 4.6.6 and 4.6.7 plot the normalized

12 =
~— 8/wy=0
10 0
'_'3/0)0:005
8_
S~
@ ] B/COO:O].
 |sf
e~ :
3
<]

6/(,00 =0.25
dlwg=1.25

| I 1 T t

I
0 02 04 06 08 1 __12 14 16 18 2

Gain function |G(iw)| for the damped spring-mass system: .

8wy =y /2\/mk.

Fc
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case : :
7/2 gain, [G(iw)|/G(0), and the phase, ¢(w), versus the normalized wavelength, w/wy. With
‘ these normalizations, each frequency response curve in Figure 4.6.6 starts at height 1 when
5 the w/wy = 0. For heavily damped systems (y?/4m > 4), the response decreases for all @ > 0.
mum As the damping decreases, the frequency response acquires a maximum at o /wy = 1. The
size of the gain increases as § — 0.
look- In a similar way, the phase is always O whenw = 0, 7 / 2whenw/wg = 1, and approaches
lized 7 as w/wy — oo, as shown in Figure 4.6. 7. Notice how the transition from ¢ ~ 0 to ¢ ~ 7

becomes more rapid as the damping decreases. »

To conclude this introduction to the frerquency response function for damped sys-
tems, we point out how Figure 4.6.6 illustrates the usefulness of dimensionless variables.
It is easy to verify that each of the quantities |G(iw)|/|G(0)| = »*|G(i®)|, w/wy, and
8fowyg=vy/ (2\/m—k) is dimensionless. The importance of this observation can be seen in
that the number of parameters in the problems has been reduced from the five that appear
in Eq. (3)—m, v, k, A, and co—to the three that are in Eq. (3), namely, 6, @y, and w. Thus
this one family of curves, of which a few are shown in Figure 4.6.6, describes the response-
versus-frequency behavior of the gain factor for all systems governed by Eq. (3). Likewise,
Figure 4.6.7 shows representative curves describing the response-versus-frequency behav-
ior of the phase shift for any solutionto Eq. (3).

Forced Vibrations Without Damping

Notice that while Figures 4.6.6 and 4.6.7 include curves labeled as 6/ wq = 0, these curves
are not {govemed by the formulas for G(iw) and ¢(w) given in this section. We conclude
with a discussion of the limiting case when there is no damping.

We now assume y = 0 in Eq. (1) so that § = y/2m = 0 in Eq. (2) thereby obtaining the
equatlon of motion of an undamped forced oscillator

Yy + a)gy = A cos wt, . (16)
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3

where we have assumed that f(f) = A cos wt. The form of the general solution of Eq. (16)
is different, depending on whether the forcing frequency w is different from or equal to the
natural frequency @y = /k/m of the unforced system. First consider the case @ # @g; then
the general solution of Eq. (16) is - : ‘

¥ = ¢y o8 wyt + ¢, sin wyt + TA————— cos ot. a7
(w0~ a?) |

The constants ¢; and ¢, are determined by the initial conditions. The resulting motion is,
in general, the sum of two. periodic motions of different frequencies (e, and ) and ampli-
tudes. ' ;

It is particularly interesting to suppose that the mass is initially at rest, so the initial
conditions are y(0) = 0 and y'(0) = 0. Then the energy driving the system comes entirely
from the external force, with no contribution from the initial conditions. In this case, it turns
out that the constants ¢y and ¢, in Eq. (17) are given by

=0, (18)

and the solution of Eq. (16) is

Yy = —————(cos ot — cos wyt). ' (19

(0§ — ?)
This is the sum of two periodic functions of different periods but the same amplitude.
Making use of the trigonometric identities for cos(A + B) with A = (wy + @)z/2 and

B = (wy — w)t/2, we can write Eq. (19) in the form

. 24 . (wg =)t | . (wy+ o)t
Ly = sin sin Lo
/ (60% - wl) 2 2

(20)

If oy ~ el is small, then wy + @ is much greater than:|wy — @|. Hence sin((cwg + @)t/2)
is a rapidly oscillating function compared to sin((wg ~ ®)z/2). Thus the motion is a rapid
oscillation with frequency (g + @)/2 but with a slowly varying sinusoidal amplitude

(w9 — @)t]
2

24

sin
2 2
[ - o

This type of motion, possessing a periodic variation of amplitude, exhibits what is called a
beat. For example, such a phenomenon occurs in acoustics when two tuning forks of nearly
equal frequency are excited simultaneously. In this case, the periodic variation of amplitude
is quite apparent to the unaided ear. In electronics, the variation of the amplitude with time
is called amplitude modulation.

1

Solve the initial value problem
Y +y=05c0s0.8,  y0)=0, y(0)=0, ' Q1)

and plot the solution.
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In this case, wg =1, 0 = 0.8, and A = 0.5‘, so from Eq. (20) the solution of the given
problem is ' : ‘

y = 2.77778 5in 0.1¢5in 0.9z. (22)

A graph of this solution is shown in Figure 4.6.8.

YA y'=277778 sin 0.1¢ sin 0.9¢
3 / y=2.77778sin 0.1¢
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y =-2.77778 sin 0.1¢

A beat; solution of ¥’ +y = 0.5 cos 0.8, y(0) = 0, ' (0) = 0;
y =2.77778 sin 0.1¢sin 0.91.

The amplitude variation has a slow frequency of 0.1 and a corresponding slow period
of 20z. Note that a half-period of 10z corresponds to a single cycle of increasing and
then decreasing amplitude. The displacement of the spring-mass system oscillates with a
relatively fast frequency of 0.9, which is only slightly less than the natural frequency .

Now imagine that the forcing frequency w is further increased, say, to @ = 0.9. Then the
slow frequency is halved to 0.05, and the corresponding slow half-period is doubled to 20z.
The multiplier 2.7778 also increases substantially, to 5.2632. However the fast frequency
is only marginally increased, to 0.95. Can you visualize what happens as @ takes on values
closer and closer to the natural frequency wg = 17

Now let us return to Eq. (16) and consider the case of resonance, where @ = @y, that
is, the frequency of the forcing function is the same as the natural frequency of the system.

Then the nonhomogeneous term A cos wt is a solution of the homogeneous equation. In this

case, the solution of Eq. (16) is

A ‘
Y = ¢y cos mpt + ¢y Sinawyt + —Z—ZJ—Otsma)Ot. . (23)

Because of the term #sin wyt, the solution (23) predicts that the motion will become
unbounded as ¢ — oo regardless of the values of ¢; and ¢;; see Figure 4.6.9 for a typical
example. Of course, in reality, unbounded oscillations do not occur. As soon as y becomes
large, the mathematical model on which Eq. (16) is based is no longer valid, since the

-assumption that the spring force depends linearly on the displacement requires that y be
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small. As-we have seen, if damping is included in the model, the predicted motion remains
bounded. However the response to the input function A cos wf may be quite large if the
damping is small and  is close to @.

In each of Problems 1 through 4, write the given expression
as a product of two trigonometric functions of different fre-
quencies.

1. cos 11t —cos3t 2. sin7t —sin4¢

3. cos 7zt +cos2nt 4. sin 9t + sin 4z

5. A mass weighing 4 pounds (Ib) stretches a spring 1.5 in.
The mass is displaced 12 in. in the positive direction from
its equilibrium position and released with no initial veloc-
ity. Assuming that there is no damping and that the mass
is acted on by an external force of 7cos3z lb, formu-

late the initial value problem describing the motion of the

mass.

6. A mass of 4 kg stretches a spring 8 cm. The mass is acted
on by an external force of 8 sin(z/2) newtons (N) and moves
in a medium that imparts a viscous force of 4 N when the
speed of the mass is 2 cm/s. If the mass is set in motion from
its equilibrium position with an initial velocity of 16 cm/s,
formulate the initial value problem describing the motion of
the mass.

‘(a) Find the solution of Problem 5. -
(b) Plot the graph of the solution.
(¢) If the given external force is replaced by a force
Aexplior). of frequency w, find the frequency re-
sponse G(iw), the gain |G(iw)|, and the phase ¢(w) =
—arg(G(iw)). Then find the value of @ for which resonance
occurs.

8. (a) Find the solution of the 1n1t1a1 value problem in Prob-
lem 6.

[

(b) Identify the transient and steady-state parts of the solu-
tion.

(c) Plot the graph of the steady-state solution.

(d) If the given external force is replaced by a force
A exp(iot) of frequency o, find the frequency response
G(iw), the gain |G(iw)], and the phase ¢(w) = ~arg(G(iw)).
Then find the value of e for which the gain is maxnnum Plot
the graphs of |G(iw)| and ¢(w).

9. If an undamped spring-mass system with a mass that
weighs 12 Ib-and a spring constant 2 Ib/in. is suddenly set
in motion at # = 0 by an external force of 15 cos 7¢ Ib, deter-
mine the position of the mass at any time and draw a graph
of the displacement versus ?.

16. A mass that weighs 8 Ib stretches a spring 24 in. The
system is acted on by an external force of 4sin4t 1b. If the
mass is pulled down 6 in. and then released, determine the
position of the mass at any time. Determine the first four
times at which the velocity of the mass is zero.

11. A spring is stretched 6 in. by a mass that weighs 8 Ib.
The mass is attached to a dashpot mechanism that has a
damping constant of 0.25 Ib-s/ft and is acted on by an ex-
ternal force of 3 cos 2¢ 1b. ,

(a) Determine the steady-state response of this system.

(b) If the given mass is replaced by a mass m, determine the
value of m for which the amplitude of the steady-state re-
sponse is maximum.

12. A spring-mass ‘system has a spring constant of
3 N/m. A mass of 2 kg is attached to the spring, and the
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motion takes place in a viscous fluid that offers a resis-
tance numerically equal to the magnitude of the instanta-
neous velocity. If the system is driven by an external force of
(12 cos 3t — 8sin 3¢) N, determine the steady-state response.

13. Furnish the details in determining when the gain func-
tion given by Eq. (10) is maximum, that is, show that
a)fm and |G(iw,,,)| are given by Egs. (14) and (15), res-
pectively. : .

14. Find the solution of the initial value problem

0 =0, y(©0) =0,

where .

' +y=F@),

At, 0<Lt<m,
FO)=<AQr -1, =<t<2x,

0, 2z < t.

Hint: Treat each time interval separately, and match the
solutions in the different intervals by requiring that y and
y' be continuous functions of ¢.

15. A series circuit has a capacitor of 0.25 microfarad, a
resistor of 5 X 10° ohms, and an inductor of 1 henry. The
initial charge on the capacitor is zero. .If a 9-volt bat-
tery is connected to the circuit and the circuit is closed
at ¢ = 0, determine the charge on the capacitor at
t=0.001s, at = 0.01 s, and at any time z. Also determine
the limiting charge as t — oo.

i 16. Consider a vibrating system described by the initial

value problem
¥+ 025y + 2y = 2 cos wt,
y0) =0, Y0 =2

(a) Determine the steady-state part of the solution of this
problem.

(b) Find the gain function |G(iw)| of the system.

(c) Plot |G(iw)| and ¢(w) = —arg(G(iw)) versus w.

(d) Find the maximum value of |G(iw)| and the frequency @
for which it occurs.

» 17. Consider the forced But undamped system described by

the initial value problem
¥ +y=3coswt, y0) =0, ¥y(©0) =0.

(a) Find the solution y(¢) for w # 1.

(b) Plot the solution y(#) versus ¢ for @ = 0.7, @ = 0.8, and
@ = 0.9. Describe how the response y(¢) changes as w varies
in this interval. What happens as o takes on values closer and
closer to 1?7 Note that the natural frequency of the unforced
System is e = 1.

+ 18. Consider the vibrating system described by the initial

value problem

' +y = 3coswt, YO =1, YOy =1.

(a) Find the solution for @ # 1.

(b) Plot the solution y(f) versus ¢ for @ = 0.7, ® = 0.8,
and w = 0.9. Compare the results with those of Prob-
lem 17, that is, describe the effect of the nonzera initial
conditions.

19. For the initial value problem in Problem 18, plot y’ ver-
susyforo=0.7, w=0.8, and @ = 0.9, that is,-draw the phase
plot of the solution for these values of . Use a ¢ interval that
is long enough, so the phase plot appears as a closed curve.
Mark your curve with arrows to show the direction in which
it is traversed as ¢ increases.

Problems 20 through 22 deal with the initial value problem
¥’ +0.125Y + 4y = £(), 0 =2, Yy =0.

In each of these problems:

(a) Plot the given forcing functionf(#) versus ¢, and also plot
the solution y(#) versus ¢ on the same set of axes. Use a  inter-
val that is long enough, so the initial transients are substan-
tially eliminated. Observe the relation between the amplitude
and phase of the forcing term and the amplitude and phase
of the response. Note that w, = 1/k/m = 2.

(b) Draw the phase plot of the solution, that is, plot ¥’
Versus y.

20. f(®) =3cos(t/4)
21. f(®) =3cos2t
22. f(¥) =3cos 6t

23. A spring-mass system with a hardening spring (Section ¢ -

4.1) is acted on by a periodic external force. In the absence of
damping, suppose that the displacement of the mass satisfies
the initial value problem

Y +y+0.2y* = cos wt, y(0) = 0, ¥'(0) = 0.

(a) Let w = 1 and plot a computer-generated solution of the
given problem. Does the system exhibit a beat?

(b) Plot the solution for several values of @ between % and
2. Describe how the solution changes as w increases.

24. Suppose that the system of Problem 23 is modified to *

include a damping term and that the resulting initial value
problem is

Y 402 +y+02° = coswt, y0)=0, y(0)=0.

(a) Plot a computer-generated solution of the given prob-
lem for several values of  between = and 2, and estimate

. the amplitude, say, Gy(w), of the steady response in each

case.

(b) Using the data from part (a), plot the graph of
Gy(®) versus w. For what frequency w is the amplitude
greatest?

(c) Compare the results of parts (a) and (b) with the corre-
sponding results for the linear spring.




